We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aim to determine the association between Fe status and the metabolic syndrome (MetS) during menopause. Records of 1069 premenopausal and 703 postmenopausal Korean women were retrieved from the database of the fifth Korean National Health and Nutrition Examination Survey (KNHANES V 2012) and analysed. The association between the MetS and Fe status was performed using multivariable-adjusted analyses, subsequently develop a prediction model for the MetS by margin effects. We found that the risk of Fe depletion among postmenopausal women was lower than premenopausal women (PR = 0·813, 95 % CI 0·668, 0·998, P = 0·038). The risk of the MetS was 2·562-fold lower among premenopausal women with than without Fe depletion (PR = 0·390, 95 % CI 0·266, 0·571, P < 0·001). In contrast, the risk of the MetS tended to be higher among postmenopausal women with than without Fe depletion (PR = 1·849, 95 % CI 1·406, 2·432, P < 0·001). When the serum ferritin levels increased, the risk of the MetS increased in both premenopausal women and postmenopausal women. The margin effects showed that an increase in serum Hb and ferritin was associated with an increase in the risk of the MetS according to menopausal status and age group. Therefore, ferritin is the most validated and widely used Fe marker, could be a potential clinical value in predicting and monitoring the MetS during menopause. Further prospective or longitudinal studies, especially, clinically related studies on menopause and Fe status, are needed to clarify the causality between serum ferritin levels and the MetS that could offer novel treatments for the MetS.
This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.
There is considerable uncertainty regarding changes in future mortality rates. This article investigates the impact of such longevity risk on discounted government annuity benefits for retirees. It is critical to forecast more accurate future mortality rates to improve our estimation of an expected annuity payout. Thus, we utilize the Lee–Carter model, which is well-known as a parsimonious dynamic mortality model. We find strong evidence that female retirees are likely to receive more public lifetime annuity than males in the USA, which is associated with systematic mortality rate differences between genders. A cross-country comparison presents that the current public annuity system would not fully cover retiree's longevity risk. Every additional year of life expectancy leaves future retirees exposed to high risk, arising from high volatility of lifetime annuities. Also, because the growth in life expectancy is higher than the growth of expected public pension, there will be a financial risk to retirees.
Residual stress is generally evaluated using indentation by comparing the indentation curves of stressed and stress-free states. Here, we suggest a new method that can evaluate surface residual stress without indentation testing on stress-free specimen using stress-independent indentation parameters and an analysis of indentation contact morphology for the stress-free state. We found that several indentation parameters are independent of the stress by Vickers indentation testing on various stress states. The indentation contact morphology can be represented by indentation parameters including stress-independent ones, and by applying the stress-independent parameters obtained from the stressed state to the indentation contact depth function, we can estimate an indentation curve for stress-free state. The estimated curve matches well with the experimental stress-free indentation curve, and it was also confirmed that the applied stress values evaluated by comparing the estimated curve with the stressed indentation curve agree well with the reference values obtained from strain gauge.
We suggest a new method to evaluate stress directionality, the ratio of principal stresses, using nanoindentation by introducing a modified Berkovich indenter that is extended in one direction from the Berkovich indenter. In a nonequibiaxial stress state, the indentation load-depth curves are shifted differently as the extended axis of the indenter is placed in accordance with each principal direction. The indentation load-difference is proportional to each principal stress and the slopes are defined by the normal and parallel conversion factors whose ratio is constant at 0.58. The suggested method was verified by indentation tests using five nonequibiaxial stressed specimens. The evaluated stress directionality results show agreement with the applied reference values within ±20%. Furthermore, we calculated the conversion factor ratios for other modified Berkovich indenters extended to different degrees through finite element analysis and confirmed that the conversion factor ratio was inversely proportional to the extension of the modified Berkovich indenter.
We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.
The Sewol ferry disaster is one of the most tragic events in Korea’s modern history. Among the 476 people on board, which included Danwon High School students (324) and teachers (14), 304 passengers died in the disaster (295 recovered corpses and 9 missing) and 172 survived. Of the rescued survivors, 72 were attending Danwon High School, located in Ansan City, and residing in a residence nearby. Because the students were young, emotionally susceptible adolescents, both the government and the parents requested the students be grouped together at a single hospital capable of appropriate psychiatric care. Korea University Ansan Hospital was the logical choice, as the only third-tier university-grade hospital with the necessary faculty and facilities within the residential area of the families of the students. We report the experiences and the lessons learned from the processes of preparing for and managing the surviving young students as a community-based hospital. (Disaster Med Public Health Preparedness. 2017;11:389–393)
Adult onset tic disorders are usually secondary in origin. We report a case of adult onset tic disorder following carbon monoxide (CO) intoxication with typical magnetic resonance imaging features.
Case Report:
A 36-year-old woman developed temporarily suppressible patterned movements on her face, neck, and shoulder associated with sensory discomfort after CO poisoning. Magnetic resonance images showed bilateral symmetric cavitary changes in the globus pallidus. Clonazepam relieved much of her symptoms.
Conclusion:
Our patient developed a mono-symptomatic tic disorder following CO intoxication. This further supports that altered outflow signals from the basal ganglia, especially the globus pallidus, may contribute to the development of tic disorders.
A new species of callianassid ghost shrimp, Paraglypturus tonganus sp. nov., is described and illustrated on the basis of five specimens that were collected from sediments in a vent field of the Tonga Arc, south-western Pacific Ocean. This new species is morphologically very similar to P. calderus Türkay & Sakai, 1995, the type species of the genus Paraglypturus Türkay & Sakai, 1995. It differs from P. calderus mainly in the absence (vs. presence in P. calderus) of an anterolateral row of setal pores on the carapace; the endopod of the second maxilliped, with a dactylus bearing stiff and thick serrate setae at the apex (vs. without in P. calderus); a yellow circular structure located on the ventral surface on the uropodal endopod (vs. on the dorsal surface on the uropodal exopod in P. calderus); and the articulation structure of the first pleopod in males (uniarticulate in P. tonganus vs. biarticulate in P. calderus). The new species is the first record of a ghost shrimp from a vent field of the Tonga Arc, and also the second reported species of the genus Paraglypturus.
Cerebral white matter hyperintensities (WMH) are prevalent incident findings on brain MRI scans among elderly people and have been consistently implicated in cognitive dysfunction. However, differential roles of WMH by region in cognitive function are still unclear. The aim of this study was to ascertain the differential role of regional WMH in predicting progression from mild cognitive impairment (MCI) to different subtypes of dementia.
Methods:
Participants were recruited from the Clinical Research Center for Dementia of South Korea (CREDOS) study. A total of 622 participants with MCI diagnoses at baseline and follow-up evaluations were included for the analysis. Initial MRI scans were rated for WMH on a visual rating scale developed for the CREDOS. Differential effects of regional WMH in predicting incident dementia were evaluated using the Cox proportional hazards model.
Results:
Of the 622 participants with MCI at baseline, 139 patients (22.3%) converted to all-cause dementia over a median of 14.3 (range 6.0–36.5) months. Severe periventricular WMH (PWMH) predicted incident all-cause dementia (Hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.43–3.43) and Alzheimer's disease (AD) (HR 1.86; 95% CI 1.12–3.07). Subcortical vascular dementia (SVD) was predicted by both PWMH (HR 16.14; 95% CI 1.97–132.06) and DWMH (HR 8.77; 95% CI 1.77–43.49) in more severe form (≥ 10 mm).
Conclusions:
WMH differentially predict dementia by region and severity. Our findings suggest that PWMH may play an independent role in the pathogenesis of dementia, especially in AD.
Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.