We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As a new management reform adapting the development of the times, electronic human resource management (E-HRM) covers all possible integration mechanisms and contents between HRM and Information Technologies. E-HRM promotes employees' subject status with the network characteristics of openness and cooperation. Taking the theory of work adjustment as the instruction, this research studies the adaptive process induced by reconstructing the sense of matching when employees experience the reform, along with the influence of E-HRM on employee's initiative behavior from the perspective of job crafting. In total, 706 employees and their supervisors were investigated with matched questionnaire survey. The results show that: (1) E-HRM can stimulate employees' personal initiative behavior; (2) task crating, relational crafting and cognitive crafting as three dimensions of employees' job crafting, mediate the effect of E-HRM on personal initiative behavior and (3) the self-development motivation of employees' internet use plays a positive moderating role, steering self-oriented job crafting in the positive direction which conforms to the organizations' expectation.
In minimally invasive surgery, surgical instruments with a wrist joint have better flexibility. However, the bending motion of the wrist joint causes a coupling motion between the end-effector and wrist joint, affecting the accuracy of the movement of the surgical instrument. Aiming at this problem, a new gear train decoupling method is proposed in the paper, which can automatically compensate for the coupled motion in real-time. Based on the performance tests of the instrument prototype, a series of decoupling effects tests are carried out. The test results show that the surgical instrument has excellent decoupling ability and stable performance.
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
A few former studies suggested that there are partial overlaps in abnormal brain structure and cognitive function between hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear.
Methods:
Twenty-one HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ.
Results:
Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL), and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG, and left paracentral lobule, but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MATRICS consensus cognitive battery (MCCB) in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients.
Conclusion:
Our results suggested that the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula are closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.
The flow topology and leading-edge vortex (LEV) formation and detachment mechanism of a pitching and plunging flat plate are experimentally investigated in this study. Focus is placed on three novel aspects. First, to examine the differences between start-up and cyclic motions, the flow fields of one-shot experiments are compared to cyclic cases. The results show that the start cycle has very limited effect on the cyclic LEV development and flow topology evolution. Next, the influence of the maximum effective angle of attack on the LEV development in cyclic motion is introduced. Different secondary structures that lead to the detachment of LEV are found with variation of maximum effective angle of attack. Depending on the leading-edge shear-layer angle, three different flow topologies develop on the plate: quasi-steady development, boundary-layer eruption and secondary vortex formation. Which of these three topological scenarios occurs depends entirely on the maximum effective angle of attack. A vortex Reynolds number based on the transition time of the leading-edge shear-layer angle is defined to quantitatively assess which of the flow topologies will appear. Finally, a simplified model to describe the observed LEV growth is proposed, based on the assumptions that the velocity is constant at the outer vortex boundary and that the vortex boundary is a circular arc starting from the leading edge. The LEV circulation growth is found to increase linearly with the combination of the effective inflow velocity and the effective angle of attack.
The novel coronavirus disease 2019 (COVID-19) pandemic has spread to over 213 countries and territories. We sought to describe the clinical features of fatalities in patients with severe COVID-19.
Methods:
We conducted an Internet-based retrospective cohort study through retrieving the clinical information of 100 COVID-19 deaths from nonduplicating incidental reports in Chinese provincial and other governmental websites between January 23 and March 10, 2020.
Results:
Approximately 6 of 10 COVID-19 deaths were males (64.0%). The average age was 70.7 ± 13.5 y, and 84% of patients were elderly (over age 60 y). The mean duration from admission to diagnosis was 2.2 ± 3.8 d (median: 1 d). The mean duration from diagnosis to death was 9.9 ± 7.0 d (median: 9 d). Approximately 3 of 4 cases (76.0%) were complicated by 1 or more chronic diseases, including hypertension (41.0%), diabetes (29.0%) and coronary heart disease (27.0%), respiratory disorders (23.0%), and cerebrovascular disease (12.0%). Fever (46.0%), cough (33.0%), and shortness of breath (9.0%) were the most common first symptoms. Multiple organ failure (67.9%), circulatory failure (20.2%), and respiratory failure (11.9%) are the top 3 direct causes of death.
Conclusions:
COVID-19 deaths are mainly elderly and patients with chronic diseases especially cardiovascular disorders and diabetes. Multiple organ failure is the most common direct cause of death.
The clinical characteristics of patients with COVID-19 were analysed to determine the factors influencing the prognosis and virus shedding time to facilitate early detection of disease progression. Logistic regression analysis was used to explore the relationships among prognosis, clinical characteristics and laboratory indexes. The predictive value of this model was assessed with receiver operating characteristic curve analysis, calibration and internal validation. The viral shedding duration was calculated using the Kaplan–Meier method, and the prognostic factors were analysed by univariate log-rank analysis and the Cox proportional hazards model. A retrospective study was carried out with patients with COVID-19 in Tianjin, China. A total of 185 patients were included, 27 (14.59%) of whom were severely ill at the time of discharge and three (1.6%) of whom died. Our findings demonstrate that patients with an advanced age, diabetes, a low PaO2/FiO2 value and delayed treatment should be carefully monitored for disease progression to reduce the incidence of severe disease. Hypoproteinaemia and the fever duration warrant special attention. Timely interventions in symptomatic patients and a time from symptom onset to treatment <4 days can shorten the duration of viral shedding.
The current study aimed to evaluate the association of major dietary patterns with anxiety in middle-aged adults in eastern China.
Design:
Dietary intake was assessed using a semi-quantitative FFQ. Binary logistic regression analysis was used to estimate OR and 95 % CI for anxiety according to quartiles of each dietary pattern score.
Setting:
Evidence regarding the relationship between dietary patterns and anxiety in the Chinese population is scarce.
Participants:
The study participants were 1360 Chinese adults aged 45–59 years, who participated in a health survey at the time of periodic check-up in the city of Linyi, Shandong Province, China.
Results:
Four major dietary patterns were identified by factor analysis: traditional Chinese, western, grains–vegetables and high-salt diets. After adjusting for potential confounders, participants in the highest quartile of the western pattern had greater odds for anxiety, compared with those in the lowest quartile (OR 1·35, 95 % CI 1·000, 3·086, P < 0·05). In contrast, participants in the highest quartile of the grains–vegetables pattern had lower odds for anxiety than did those in the lowest quartile (OR 0·78, 95 % CI 0·574, 1·000, P < 0·05). Moreover, no significant associations were observed between the traditional Chinese and high-salt patterns and the risk of anxiety.
Conclusions:
Our findings indicate that the western pattern is associated with an increased risk, and the grains–vegetables pattern is associated with a decreased risk of anxiety.
Situated between the North China Craton to the east and the Tarim Craton to the west, the northern Alxa area in westernmost Inner Mongolia in China occupies a key location for interpreting the late-stage tectonic evolution of the southern Central Asian Orogenic Belt. New LA-ICP-MS zircon U–Pb dating results reveal 282.2 ± 3.9 Ma gabbros and 216.3 ± 3.2 Ma granites from the Yagan metamorphic core complex in northern Alxa, NW China. The gabbros are characterized by low contents of Si, Na, K, Ti and P and high contents of Mg, Ca, Al and Fe. These gabbros have arc geochemical signatures with relative enrichments in large ion lithophile elements and depletions in high field strength elements, as well as negative εNd(t) (−0.91 to −0.54) and positive εHf(t) (2.59 to 6.37) values. These features indicate that a depleted mantle magma source metasomatized by subduction fluids/melts and contaminated by crustal materials was involved in the processes of magma migration and emplacement. The granites show high-K calc-alkaline and metaluminous to weakly peraluminous affinities, similar to A-type granites. They have positive εNd(t) (1.55 to 1.99) and εHf(t) (5.03 to 7.64) values. These features suggest that the granites were derived from the mixing of mantle and crustal sources and formed in a postcollisional tectonic setting. Considering previous studies, we infer that the final closure of the Palaeo-Asian Ocean in the central part of the southern Central Asian Orogenic Belt occurred in late Permian to Early–Middle Triassic times.
The passive oscillations of inverted flags are investigated both experimentally and theoretically in this paper. First, the force and energy distributions of inverted flags, which contain elastic and inertia components, are analysed based on the experimental data. Two main differences between inverted and conventional flags are found: (1) the elastic energy of a conventional flag is concentrated near the free end, while the fixed end of an inverted flag presents the largest elastic energy; and (2) the elastic component is several orders of magnitude greater than the inertia component for an inverted flag, while they are of the same magnitude for a conventional flag. Second, a linear analysis shows that the critical flow velocities obtained from the experiments at small mass ratios are scattered around the theoretical curve of wavenumber $k=1.875$, which is in contrast with $k=4.694$ of a conventional flag. For large mass ratios, the mass ratio has a certain influence on the critical velocity rather than being irrelevant. For two parallel inverted flags, both the experimental and theoretical results indicate that the range of the in-phase flapping mode becomes smaller with an increase in the separation distance, and a multiple flapping state may occur. For $n\geqslant 2$ parallel inverted flags, the theoretical results show that two of all coupled flapping modes are dominant with most parameters. These findings could contribute to a better understanding of the passive oscillations of inverted flags.
Autonomous ships are gaining in importance and are expected to shape the future of the global shipping industry. This evolutionary shift raises serious issues about compliance with the International Regulations for Preventing Collisions at Sea 1972 (COLREGs). This paper reviews the literature on autonomous ships from the perspective of the obligations of good seamanship imposed by COLREGs. The authors conclude that to facilitate the introduction of autonomous ships, the application barriers presented by COLREGs need to be analysed. With this goal, this paper presents a perspective from navigational practice. Four nautical scientists and two deck officers were invited to give their opinions. The analysis indicates that COLREGs require further elaboration and amendments to eliminate uncertainty of interpretation. In particular, the paper highlights the need to amend the ‘look-out’ rule (COLREGs Rule 5) to permit look-out by ‘computer vision’ alone while, at the same time, preserving the distinction between vessels navigating in restricted visibility and in sight of one another.
Subacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.
The influence of the nozzle aspect ratio ($AR=1$, 2 and 4), stroke length ($L_{0}=1.85$, 3.7 and 5.55) and Reynolds number ($Re=79$, 158, 316 and 632) on the behaviour of elliptic synthetic jets is studied experimentally. Laser-induced fluorescence and two-dimensional and stereoscopic particle image velocimetry are used to analyse the vortex dynamics and evolution mechanism. It is found that the fluid elements around the major axis of an elliptic vortex ring move downstream faster and tend to approach the centreline, while the fluid elements around the minor axis move downstream at a slower speed and away from the centreline, thereby resulting in the occurrence of the well-known axis-switching phenomenon for elliptic synthetic jets. During this process, a pair of arc-like vortices forms ahead of the primary vortex ring, and they are constituted by streamwise vortices in the leg part and spanwise vortices in the head part; two pairs of streamwise vortices form from the inside of the primary vortex ring and develop in the tails. The streamwise vortices are pushed away progressively from the centreline by the synthetic jet vortex rings that are formed during the subsequent periods. These additional vortical structures for non-circular synthetic jets show regular and periodic characteristics, which are quite different from the previous findings for non-circular jets. Their mutual interaction with the vortex ring causes significant changes in the topology of elliptic synthetic jets, which further results in the variation of the statistical characteristics. Increasing the aspect ratio, stroke length and Reynolds number will make the evolution of the synthetic jet become more unstable and complex. In addition, the entrainment rate of an elliptical synthetic jet is larger than that of a circular synthetic jet and it increases with the nozzle aspect ratio ($AR\leqslant 4$) and Reynolds number. It is indicated that the formation of streamwise vortices could enhance the entrainment rate. This finding provides substantial evidence for the potential application of elliptic synthetic jets for effective flow control.
The associations between Chinese adolescents’ family (maternal, paternal, and sibling) relationship qualities and their adjustment were examined among 540 Chinese families over a one-year period. Path analysis revealed that father-offspring positivity was associated with lower levels of internalising problems, whereas mother-offspring conflict predicted youths’ depressive symptoms and loneliness. Controlling for parent-offspring relationships, sibling intimacy inversely predicted youths’ internalising and externalising problems, whereas sibling conflict predicted youths’ loneliness. Multigroup comparisons revealed that youth gender moderated the associations between maternal conflict and youths’ depressive symptoms, as well as sibling intimacy and youths’ loneliness. Overall, results highlight the importance of family systems for Chinese youths’ mental health and the need to study sibling relationships in future studies of Chinese families.
The present study was undertaken to investigate the antiparasitic activity of extracellular products of Streptomyces albus. Bioactivity-guided isolation of chloroform extracts affording a compound showing potent activity. The structure of the compound was elucidated as salinomycin (SAL) by EI-MS, 1H NMR and 13C NMR. In vitro test showed that SAL has potent anti-parasitic efficacy against theronts of Ichthyophthirius multifiliis with 10 min, 1, 2, 3 and 4 h (effective concentration) EC50 (95% confidence intervals) of 2.12 (2.22–2.02), 1.93 (1.98–1.88), 1.42 (1.47–1.37), 1.35 (1.41–1.31) and 1.11 (1.21–1.01) mg L−1. In vitro antiparasitic assays revealed that SAL could be 100% effective against I. multifiliis encysted tomonts at a concentration of 8.0 mg L−1. In vivo test demonstrated that the number of I. multifiliis trophonts on Erythroculter ilishaeformis treated with SAL was markedly lower than that of control group at 10 days after exposed to theronts (P < 0.05). In the control group, 80% mortality was observed owing to heavy I. multifiliis infection at 10 days. On the other hand, only 30.0% mortality was recorded in the group treated with 8.0 mg L−1 SAL. The median lethal dose (LD50) of SAL for E. ilishaeformis was 32.9 mg L−1.
Nanotechnology has been considered as a promising strategy for diagnosis and treatment of various diseases. However, the stability and circulation times of the conventional nano-carriers, such as liposomes and micelles, are still unsatisfied. Perfluorocarbons (PFCs) are biologic inert synthetic materials, which are highly hydrophobic and have a tendency to self-aggregation. Additionally, PFCs themselves can act as 19F magnetic resonance imaging agents and oxygen carriers. Thus, the construction of the fluorinated carriers will not only improve the stability of the carriers, but also endow them with additional functions. Here we review the recent advances of PFC-based nanosystems for diagnosis and treatment of diseases.
In the current intensive production system, ruminants are often fed high-grain (HG) diets. However, this feeding pattern often causes rumen metabolic disorders and may further trigger laminitis, the exact mechanism is not clear. This study investigated the effect of HG diet feeding on fermentative and microbial changes in the rumen and on the expression of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in the lamellar tissue. In all, 12 male goats were fed a hay diet (0% grain; n=6) or an HG diet (56.5% grain; n=6). On day 50 of treatment, samples of blood, rumen content, and lamellar tissue of hooves of goats were collected. The data showed that compared with the hay group, HG-fed goats had lower (P<0.05) rumen pH but higher (P<0.05) total volatile fatty acids and lactate in the rumen and higher (P<0.05) lipopolysaccharide (LPS) levels in the rumen and blood. HG diet feeding altered the composition of rumen bacterial community, and correspondingly, the results suggested that their functions in the HG group were also altered. HG diet feeding increased (P<0.05) the expression of interleukin-1β, interleukin-6, tumour necrosis factor-α and MMP-2 mRNA in the lamellar tissues compared with the hay group. Correlation analysis indicated that the expression of pro-inflammatory cytokines were positively correlated with MMP-2 expression in lamellar tissues. Overall, these results revealed that HG feeding altered the patterns of rumen fermentation and the composition and functions of rumen bacterial community, and lead to higher levels of LPS in the peripheral blood, and further activated the inflammatory response in lamellar tissues, which may progress to the level of laminar damage.
For the first time, an experiment has been conducted to investigate synthetic jet laminar vortex rings impinging onto porous walls with different geometries by time-resolved particle image velocimetry. The geometry of the porous wall is changed by varying the hole diameter on the wall (from 1.0 mm to 3.0 mm) when surface porosity is kept constant ($\unicode[STIX]{x1D719}=75\,\%$). The finite-time Lyapunov exponent and phase-averaged vorticity field derived from particle image velocimetry data are presented to reveal the evolution of the vortical structures. A mechanism associated with vorticity cancellation is proposed to explain the formation of downstream transmitted vortex rings; and both the vortex ring trajectory and the time-mean flow feature are compared between different cases. It is found that the hole diameter significantly influences the evolution of the flow structures on both the upstream and downstream sides of the porous wall. In particular, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), the transmitted finger-type jets will reorganize into a well-formed transmitted vortex ring in the downstream flow. However, for the case of a large hole diameter of $d_{h}^{\ast }=0.20$, the transmitted vortex ring is not well formed because of insufficient vorticity cancellation. Additionally, the residual vorticity gradually evolves into discrete jet-like structures downstream, which further weaken the intensity of the transmitted vortex ring. Consequently, the transmitted flow structures for the $d_{h}^{\ast }=0.20$ case would lose coherence more easily (or probably even transition to turbulence), resulting in a faster decay of the axial velocity and stronger entrainment of the transmitted jet. For all porous wall cases, the velocity profile of the transmitted jet exhibits self-similar behaviour in the far field ($z/D_{0}\geqslant 6.03$), which agrees well with the velocity distribution of free synthetic jets. With the help of the control-volume approach, the time-mean drag of the porous wall is evaluated experimentally for the first time. It is shown that the porous wall drag increases with the decrease in the hole diameter. Moreover, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), it appears that the porous wall drag mainly derives from the viscous effect. However, as $d_{h}^{\ast }$ increases to 0.20, the form drag associated with the porous wall geometry becomes significant.
The low-Reynolds-number flow over a multi-element airfoil (30P30N) is investigated with time-resolved particle image velocimetry (TR-PIV) and flow visualization (FV). Dominant flow structures over the main element of the multi-element airfoil are explored with the variation of angle of attack ($\unicode[STIX]{x1D6FC}$). It is of great importance that Görtler vortices are first observed with this configuration at $\unicode[STIX]{x1D6FC}=2^{\circ }{-}12^{\circ }$, which is quite different from the high-Reynolds-number cases. The characteristics of the Görtler vortices are explored to determine the origin of these unexpected flow structures. It is found that these Görtler vortices travel in the spanwise direction. Secondary counter-rotating vortices are induced beneath the main Görtler vortices. The travelling property of the Görtler vortices is utilized to determine the positions of the main Görtler vortices and the secondary counter-rotating vortices. It is observed that Görtler vortices reside above the separated shear layer originating from the leading-edge separation of the main element. The secondary counter-rotating vortices are located within the separated shear layer, as a result of the interaction between the Görtler vortices and the separated shear layer. The relative positions of the Görtler vortices, the secondary counter-rotating vortices and the separated shear layer result in a special transition scenario within the separated shear layer. The position of Görtler vortices combined with the Rayleigh discriminant indicates the mechanism that the Görtler vortices are generated by a virtual curved boundary. The travelling property of the Görtler vortices, which is different from the classical stationary Görtler vortices, can also be interpreted by this mechanism. Ultimately, modified criteria for generating Görtler vortices with a virtual curved boundary are proposed to provide references for the follow-up works.
This research was designed for the first time to investigate the photocatalytic activities of MoO3/g-C3N4 composite in converting CO2 to fuels under simulated sunlight irradiation. The composite was synthesized using a simple impregnation-heating method and MoO3 nanoparticles was in situ decorated on the g-C3N4 sheet. Characterization results indicated that the introduction of MoO3 nanoparticles into g-C3N4 fabricated a direct Z-scheme heterojunction structure. The effective interfacial charge-transfer across the heterojunction significantly promoted the separation efficiency of charge carriers. The optimal CO2 conversion rate of the composite reached 25.6 μmol/(h gcat), which was 2.7 times higher than that of g-C3N4. Additionally, the synthesized MoO3/g-C3N4 also presented excellent photoactivity in RhB degradation under visible-light irradiation.