We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The condition assessment of underground infrastructure (UI) is critical for maintaining the safety, functionality, and longevity of subsurface assets like tunnels and pipelines. This article reviews various data acquisition techniques, comparing their strengths and limitations in UI condition assessment. In collecting structured data, traditional methods like strain gauge can only obtain relatively low volumes of data due to low sampling frequency, manual data collection, and transmission, whereas more advanced and automatic methods like distributed fiber optic sensing can gather relatively larger volumes of data due to automatic data collection, continuous sampling, or comprehensive monitoring. Upon comparison, unstructured data acquisition methods can provide more detailed visual information that complements structured data. Methods like closed-circuit television and unmanned aerial vehicle produce large volumes of data due to their continuous video recording and high-resolution imaging, posing great challenges to data storage, transmission, and processing, while ground penetration radar and infrared thermography produce smaller volumes of image data that are more manageable. The acquisition of large volumes of UI data is the first step in its condition assessment. To enable more efficient, accurate, and reliable assessment, it is recommended to (1) integrate data analytics like artificial intelligence to automate the analysis and interpretation of collected data, (2) to develop robust big data management platforms capable of handling large volumes of data storage, processing and analysis, (3) to couple different data acquisition technologies to leverage the strengths of each technique, and (4) to continuously improve data acquisition methods to ensure efficient and reliable data acquisition.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Recent studies of viscous dissipation mechanisms in impacting droplets have revealed distinct behaviours between the macroscale and nanoscale. However, the transition of these mechanisms from the macroscale to the nanoscale remains unexplored due to limited research at the microscale. This work addresses the gap using the many-body dissipative particle dynamics (MDPD) method. While the MDPD method omits specific atomic details, it retains crucial mesoscopic effects, making it suitable for investigating the impact dynamics at the microscale. Through the analysis of velocity contours within impacting droplets, the research identifies three primary contributors to viscous dissipation during spreading: boundary-layer viscous dissipation from shear flow; rim geometric head loss; and bulk viscous dissipation caused by droplet deformation. This prompts a re-evaluation of viscous dissipation mechanisms at both the macroscale and nanoscale. It reveals that the same three kinds of dissipation are present across all scales, differing only in their relative intensities at each scale. A model of the maximum spreading factor (βmax) incorporating all forms of viscous dissipation without adjustable parameters is developed to substantiate this insight. This model is validated against three distinct datasets representing the macroscale, microscale and nanoscale, encompassing a broad spectrum of Weber numbers, Ohnesorge numbers and contact angles. The satisfactory agreement between the model predictions and the data signifies a breakthrough in establishing a universal βmax model applicable across all scales. This model demonstrates the consistent nature of viscous dissipation mechanisms across different scales and underscores the importance of integrating microscale behaviours to understand macroscale and nanoscale phenomena.
Binary nanodroplet collisions have received increasing attention, whilst the identification of collision outcomes and the viscous dissipation mechanism have remained poorly understood. Using molecular dynamics simulations, this study investigates binary nanodroplet collisions over wide ranges of Weber number (We), Ohnesorge number (Oh) and off-centre distances. Coalescence, stretching separation and shattering are identified; however, bouncing, reflexive separation and rotational separation reported for millimetre-sized collisions are not observed, which is attributed to the enhanced viscous effect caused by the ‘natural’ high-viscosity characteristics of nanodroplets. Intriguingly, as an intermediate outcome, holes form in retracting films at relatively high We, arising from the vibration and thermal fluctuation of the films. Due to the combined effects of inertial, capillary and viscous forces, binary nanodroplet collisions fall into the cross-over regime, so estimating viscous dissipation becomes extremely important for distinguishing outcome boundaries. Based on the criterion that stretching separation is triggered only when the residual off-centre kinetic energy exceeds the surface energy required for separation, the boundary equation between coalescence and stretching separation is established. Here, viscous dissipation is calculated by the extracted flow feature from simulations, showing that the ratio of viscous dissipation to the initial kinetic energy depends only on Oh, not on We. Because of complex viscous dissipation mechanisms, the same boundary equation in the cross-over regime has also not been satisfactorily revealed for macroscale collisions. Therefore, the proposed equation is tested for wide data sources from both macroscale and nanoscale collisions, and satisfying agreement is achieved, demonstrating the universality of the equation.
Foilless diode are widely used in high-power microwave devices, but the traditional foilless diodes have large volume, heavy weight, and high power consumption, which are not conducive to the application of high-power microwave system on mobile platform. In order to reduce the size of the foilless diode, improve the transmission efficiency of electron beams, and reduce the weight and power consumption of the guiding magnetic field system, an axial foilless diode with a composite guiding magnetic field system is developed in this paper. By adjusting the structure size and magnetic field parameters of solenoid coil, permanent magnet, and soft magnet, the configuration of the composite magnetic field is optimized. The diameter of the anode tube is about 40% smaller than that of the original structure, and the weight and power consumption of the guiding magnetic system are about 40% lower than that of the original system when the same axial magnetic field intensity in the uniform region is generated. When the magnetic field strength of the permanent magnet is set as 1.4 T and that of the solenoid coil is in the range of 0.5 T∼1 T, the electron beam transmission efficiency is 100%, and the diode impedance is adjustable in the range of 100 Ω∼240 Ω. The experimental results verify the correctness of the simulation analysis. The experimental results show that when the magnetic field strength of the solenoid coil is 0.98 T (0.5 T) and that of the permanent magnet is 1.4 T, the transmission efficiency of the high-current annular electron beam with a peak voltage of 636 kV (590 kV) and a peak current of 3.3 kA (2.6 kA) is 100%, and the diode impedance is about 194 Ω (220 Ω).
Many scholars have used local Chinese county gazetteers for historical and socioeconomic analyses, yet little research has examined the completeness of coverage or the biases in reporting that characterize the compilation of these gazetteers. In this paper, we provide a novel source for studying Chinese political movements and local history under the communist regime after 1949: the internal-discussion drafts of county gazetteers (xianzhi pingyigao). Our findings constitute the first study to use internal review drafts to examine the authenticity and credibility of county gazetteers. Prior to their publication, gazetteer drafts are compiled by a team of editors and typically receive at least three rounds of rigorous internal review. These internal-discussion drafts are subject to a prolonged and strict process of self and external censorship. Our analysis engages in a close comparison of text samples extracted from two versions of local gazetteers collected from four counties in Guangxi province. Compared to the draft versions, we find evidence of serious data manipulation and a tendency to underreport historical events in the published editions. Our research evidently demonstrates the process of historiography editing and reveals how local history is presented through the lens of government public documents in China.
Handling and manipulating flexible porous objects is one of the main challenges in robotics for household and industrial tasks. Improving the design of grippers for flexible objects of manipulation is an important stage in the development of this topic. This article proposes a method of modeling a gripper for porous objects using the finite element method. It identifies the main parameters of the model that will affect the grasping force and the permeability of porous objects. The power characteristics of the obtained gripper model for different supply pressures, with varying porosity of the manipulated objects, are determined. The obtained characteristics are then used to find the correspondence of channel length for three textile materials with different permeable properties. An experimental study of the lifting force is conducted, and a comparison is made with the obtained modeling data for the presented samples. Additionally, using the obtained simulation data, an analysis of the pressure distribution on the surface of the porous object of manipulation is performed. As a result, it is found that the gripping device must use a design with elements to stabilize the distribution of pressure in its chamber, which will increase the stability of the gripping process.
Schistosomiasis has been subjected to extensive control efforts in the People's Republic of China (China) which aims to eliminate the disease by 2030. We describe baseline results of a longitudinal cohort study undertaken in the Dongting and Poyang lakes areas of central China designed to determine the prevalence of Schistosoma japonicum in humans, animals (goats and bovines) and Oncomelania snails utilizing molecular diagnostics procedures. Data from the Chinese National Schistosomiasis Control Programme (CNSCP) were compared with the molecular results obtained.
Sixteen villages from Hunan and Jiangxi provinces were surveyed; animals were only found in Hunan. The prevalence of schistosomiasis in humans was 1.8% in Jiangxi and 8.0% in Hunan determined by real-time polymerase chain reaction (PCR), while 18.3% of animals were positive by digital droplet PCR. The CNSCP data indicated that all villages harboured S. japonicum-infected individuals, detected serologically by indirect haemagglutination assay (IHA), but very few, if any, of these were subsequently positive by Kato-Katz (KK).
Based on the outcome of the IHA and KK results, the CNSCP incorporates targeted human praziquantel chemotherapy but this approach can miss some infections as evidenced by the results reported here. Sensitive molecular diagnostics can play a key role in the elimination of schistosomiasis in China and inform control measures allowing for a more systematic approach to treatment.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
From 24 January 2020 to 18 May 2020, Chaoshan took measures to limit the spread of coronavirus disease 2019 (COVID-19), such as restricting public gatherings, wearing masks and suspending classes. We explored the effects of these measures on the pathogen spectrum of paediatric respiratory tract infections in Chaoshan. Pharyngeal swab samples were collected from 4075 children hospitalised for respiratory tract infection before (May–December 2019) and after (January–August 2020) the COVID-19 outbreak. We used liquid chip technology to analyse 14 respiratory pathogens. The data were used to explore between-group differences, age-related differences and seasonal variations in respiratory pathogens. The number of cases in the outbreak group (1222) was 42.8% of that in the pre-outbreak group (2853). Virus-detection rates were similar in the outbreak (48.3%, 590/1222) and pre-outbreak groups (51.5%, 1468/2853; χ2 = 3.446, P = 0.065), while the bacteria-detection rate was significantly lower in the outbreak group (26.2%, 320/1222) than in the pre-outbreak group (44.1%, 1258/2853; χ2 = 115.621, P < 0.05). With increasing age, the proportions of respiratory syncytial virus (RSV) and cytomegalovirus (CMV) infections decreased, while those of Mycoplasma pneumoniae and adenovirus infections increased. Streptococcus pneumoniae, CMV and rhinovirus infections peaked in autumn and winter, while RSV infections peaked in summer and winter. We found that the proportion of virus-only detection decreased with age, while the proportion of bacteria-only detection increased with age (Table 2). Anti-COVID-19 measures significantly reduced the number of paediatric hospitalisations for respiratory tract infections, significantly altered the pathogen spectrum of such infections and decreased the overall detection rates of 14 common respiratory pathogens. The proportion of bacterial, but not viral, infections decreased.
The relationship between dietary nut intake and hyperuricemia risk remains unclear. The aim of this study was to investigate the relationship between different nut intake and hyperuricemia risk with a cross-sectional study.
Design:
A semi-quantitative FFQ was adopted to collect dietary information. Biochemical and anthropometric parameters were measured by standard methods. Multivariate-adjusted logistic regression models were implemented to analyse the relationship between individual nut intake and hyperuricemia risk.
Setting:
Qingdao University in Shandong Province, China.
Participants:
During 2018–2019, a total of 14 056 undergraduates (6862 males and 7194 females) aged 15–25 years participated in the study.
Results:
After adjusting for multiple confounding factors, compared with the lowest quartile, the highest quartile intakes of pine nut (95 % CI (0·51, 0·98)) was significantly associated with 29 % reduction in hyperuricemia risk, the highest quartile intake of walnut (OR = 0·78; 95 % CI (0·58, 1·05)) was marginally negatively associated with hyperuricemia risk.
Conclusions:
The present study showed that the relationships between intakes of different nuts and hyperuricemia risk were different. Increased dietary intakes of walnut and pine nut are negatively associated with the hyperuricemia.
The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.
The current study evaluated the associations between different forms and sources of Fe and breast cancer risk in Southern Chinese women.
Design:
Case–control study. We collected data on the consumption of Fe from different forms and food sources by using a validated FFQ. Multivariable logistic regression and restricted cubic spline (RCS) analysis was used to reveal potential associations between Fe intake and breast cancer risk.
Setting:
A case-control study of women at three major hospitals in Guangzhou, China.
Participants:
From June 2007 to March 2019, 1591 breast cancer cases and 1622 age-matched controls were recruited.
Results:
In quartile analyses, Fe from plants and Fe from white meat intake were inversely associated with breast cancer risk, with OR of 0·65 (95 % CI 0·47, 0·89, Ptrend = 0·006) and 0·76 (95 % CI 0·61, 0·96, Ptrend = 0·014), respectively, comparing the highest with the lowest quartile. No associations were observed between total dietary Fe, heme or non-heme Fe, Fe from meat or red meat and breast cancer risk. RCS analysis demonstrated J-shaped associations between total dietary Fe, non-heme Fe and breast cancer, and reverse L-shaped associations between heme Fe, Fe from meat and Fe from red meat and breast cancer.
Conclusion:
Fe from plants and white meat were inversely associated with breast cancer risk. Significant non-linear J-shaped associations were found between total dietary Fe, non-heme Fe and breast cancer risk, and reverse L-shaped associations were found between heme Fe, Fe from meat or red meat and breast cancer risk.
Cruciferous vegetables contain high levels of glucosinolates (GSL) and isothiocyanates (ITC). ITC are known to induce glutathione S-transferases (GST) and thus exert their anticarcinogenic effects. This study explored the combined effects of cruciferous vegetable, GSL and ITC intake and GST polymorphisms on breast cancer risk. A total of 737 breast cancer cases and 756 controls were recruited into this case–control study. OR and 95 % CI were assessed by multivariable logistic regression. Higher cruciferous vegetable, GSL and ITC intakes were inversely associated with breast cancer risk, with adjusted OR of 0·48 (95 % CI 0·35, 0·65), 0·54 (95 % CI 0·40, 0·74) and 0·62 (95 % CI 0·45, 0·84), respectively. Compared with women carrying the GSTP1 rs1695 wild AA genotype and high cruciferous vegetable, GSL or ITC intake, carriers of the AA genotype with low cruciferous vegetable, GSL and ITC intake had greater risk of breast cancer, with adjusted OR of 1·43 (95 % CI 1·01, 1·87), 1·34 (95 % CI 1·02, 1·75) and 1·37 (95 % CI 1·05, 1·80), respectively. Persons with the GSTM1-null genotype and lower intake of cruciferous vegetables, GSL and ITC had higher risk of breast cancer than those with the GSTM1-present genotype and higher intake, with OR of 1·42 (95 % CI 1·04, 1·95), 1·43 (95 % CI 1·05, 1·96) and 1·45 (95 % CI 1·06, 1·98), respectively. Among women possessing the GSTT1-present genotype, low intake of cruciferous vegetables, GSL or ITC was associated with higher risk of breast cancer. But these interactions were non-significant. This study indicated that there were no significant interactions between cruciferous vegetable, GSL or ITC intake and GST polymorphisms on breast cancer risk.
Findings for the roles of dairy products, Ca and vitamin D on ovarian cancer risk remain controversial. We aimed to assess these associations by using an updated meta-analysis. Five electronic databases (e.g. PubMed and Embase) were searched from inception to 24 December 2019. Pooled relative risks (RR) with 95 % CI were calculated. A total of twenty-nine case–control or cohort studies were included. For comparisons of the highest v. lowest intakes, higher whole milk intake was associated with increased ovarian cancer risk (RR 1·35; 95 % CI 1·15, 1·59), whereas decreased risks were observed for higher intakes of low-fat milk (RR 0·84; 95 % CI 0·73, 0·96), dietary Ca (RR 0·71; 95 % CI 0·60, 0·84) and dietary vitamin D (RR 0·80; 95 % CI 0·67, 0·95). Additionally, for every 100 g/d increment, increased ovarian cancer risks were found for total dairy products (RR 1·03; 95 % CI 1·01, 1·04) and for whole milk (RR 1·07; 95 % CI 1·03, 1·11); however, decreased risks were found for 100 g/d increased intakes of low-fat milk (RR 0·95; 95 % CI 0·91, 0·99), cheese (RR 0·87; 95 % CI 0·76, 0·98), dietary Ca (RR 0·96; 95 % CI 0·95, 0·98), total Ca (RR 0·98; 95 % CI 0·97, 0·99), dietary vitamin D (RR 0·92; 95 % CI 0·87, 0·97) and increased levels of circulating vitamin D (RR 0·84; 95 % CI 0·72, 0·97). These results show that whole milk intake might contribute to a higher ovarian cancer risk, whereas low-fat milk, dietary Ca and dietary vitamin D might reduce the risk.
A three-section pulse forming network (PFN) based on Guillemin type-C circuit was developed to meet the challenge of a compact design, high withstand voltage, and high-quality output waveform with fast rise time, flat-top duration, and 100-ns pulse width. A simplified pulse forming circuit was proposed and studied that includes only three LC-sections connected in parallel, with each section containing an inductor and a capacitor connected in series. The effect of the capacitance deviation on the output waveform was investigated. The simulation results show that when the capacitance deviation exceeds +3%, both the flat top and fall time of the output waveform of single PFN module deteriorate greatly. Fortunately, in a multi-stage PFN-Marx circuit, even if the capacitance deviation exceeds +10%, when the average capacitance of the same LC sections is close to the theoretical value, the output waveform maintains a good quality and is in good agreement with the theoretical prediction. The compact three-section PFN developed during this project has a size of only 360 mm × 342 mm × 65 mm, and a maximum withstand voltage of 120 kV. Sixteen PFN stages were assembled to form a Marx generator with design parameters to provide of an output peak power of 12 GW and a maximum peak current of 15 kA. The tested output waveform agrees well with the theoretical results, having a rise time of 31 ns, a flat-top of 104 ns, and a pulse with of 164 ns.
This paper introduces recent activities on Marx-based compact repetitive pulsed power generators at the Institute of Applied Electronics (IAE), China Academy of Engineering Physics (CAEP), over the period 2010–2018. A characteristic feature of the generators described is the use of a simplified bipolar charged Marx circuit, in which the normal isolation resistors or inductors to ground are removed to make the circuit simpler. Several pulse-forming modules developed to generate a 100 ns square wave output are introduced, including thin-film dielectric lines of different structures, a pulse-forming line based on a Printed Circuit Board, and non-uniform pulse-forming networks. A compact repetitive three-electrode spark gap switch with low-jitter, high-voltage, and high-current was developed and is used in the generators. A positive and negative series resonant constant current power supply with high precision and high power is introduced. As an important part of the repetitive pulse power generator, a lower jitter pulse trigger source is introduced. Several typical high-power repetitive pulsed power generators developed at IAE are introduced including a 30 GW low-impedance Marx generator, a compact square-wave pulse generator based on Kapton-film dielectric Blumlein line, a 20 GW high pulse-energy repetitive PFN-Marx generator, and a coaxial Marx generator based on ceramic capacitors. The research of key technologies and their development status are discussed, which can provide a reference for the future development and application of miniaturization of compact and repetitive Marx generators.
Fatigue performance of metallic nanolayered composites (NLCs) has been gaining more and more attention due to the rapid development in the field of both micro-electro-mechanical systems and high-performance engineering structure materials and the increasing demand for long-term fatigue reliability. Metallic NLCs have exhibited different damage behaviors due to the effect of high-density heterogeneous interface compared with bulk materials and thin metal films. In this review paper, the cyclic deformation damage behavior, fatigue cracking feature, and fatigue properties of some metallic NLCs are reviewed. Effects of length scales, including layer thickness and grain size, on fatigue damage behaviors of the NLCs are revealed, and the transition of the fatigue cracking behavior and the corresponding damage mechanism are discussed. Then, the fatigue properties of some typical metallic NLCs are presented and compared with that of bulk materials and metal thin films. The effect of interface type and grain boundary alignment is also discussed to correlate with fatigue cracking resistance of the NLCs. Finally, some prospective research topics on fatigue performance of metallic NLCs are addressed.