We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a numerical study on the flow around two tandem circular cylinders beneath a free surface at a Reynolds number of $180$. The free-surface effects on the wake dynamics and hydrodynamic forces are investigated through a parametric study, covering a parameter space of gap ratios from $0.20$ to $2.00$, spacing ratios from $1.50$ to $4.00$ and Froude numbers from $0.2$ to $0.8$. A jet-like flow accompanied by a shear layer of positive vorticity separating from the free surface is formed in the wake at small gap ratios, which significantly alters the wake pattern through its dynamic behaviours. At shallow submergence depths, the three-dimensional wake transitions from mode B to mode A as the distance between the cylinders increases. As submergence depth increases, the wavy deformation of the primary vortex cores disappears in the wake, and the flow transitions to a two-dimensional state. Higher Froude numbers can extend the effect of the free surface to deeper submergence depths. The critical spacing ratio tends to be larger at higher Froude numbers. Furthermore, the free-surface deformation is examined. The free-surface profile typically comprises a hydraulic jump immediately ahead of the upstream cylinder, trapped waves in the vicinity of the two tandem cylinders and well-defined travelling waves on the downstream side. The frequencies of the waves cluster around the vortex shedding frequency, indicating a close association between the generation of waves and the vortex shedding process.
This work investigates the spatio-temporal evolution of coherent structures in the wake of a generic high-speed train, based on a three-dimensional database from large eddy simulation. Spectral proper orthogonal decomposition (SPOD) is used to extract energy spectra and energy ranked empirical modes for both symmetric and antisymmetric components of the fluctuating flow field. The spectrum of the symmetric component shows overall higher energy and more pronounced low-rank behaviour compared with the antisymmetric one. The most dominant symmetric mode features periodic vortex shedding in the near wake, and wave-like structures with constant streamwise wavenumber in the far wake. The mode bispectrum further reveals the dominant role of self-interaction of the symmetric component, leading to first harmonic and subharmonic triads of the fundamental frequency, with remarkable deformation of the mean field. Then, the stability of the three-dimensional wake flow is analysed based on two-dimensional local linear stability analysis combined with a non-parallelism approximation approach. Temporal stability analysis is first performed for both the near-wake and the far-wake regions, showing a more unstable condition in the near-wake region. The absolute frequency of the near-wake eigenmode is determined based on spatio-temporal analysis, then tracked along the streamwise direction to find out the global mode growth rate and frequency, which indicate a marginally stable global mode oscillating at a frequency very close to the most dominant SPOD mode. The global mode wavemaker is then located, and the structural sensitivity is calculated based on the direct and adjoint modes derived from a local spatial analysis, with the maximum value localized within the recirculation region close to the train tail. Finally, the global mode shape is computed by tracking the most spatially unstable eigenmode in the far wake, and the alignment with the SPOD mode is computed as a function of streamwise location. By combining data-driven and theoretical approaches, the mechanisms of coherent structures in complex wake flows are well identified and isolated.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
Panonychus citri is one of the most destructive pests in citrus orchards, exhibiting varying degrees of tolerance to numerous insecticides, such as spirodiclofen. To effectively manage pests, this study explores the response of P. citri to spirodiclofen stress from the perspectives of life history, enzymatic parameters, and reproduction. The effects of two concentrations (LC30 and LC50) of spirodiclofen on the biological parameters of P. citri were evaluated by the life table method. The results showed that the development duration, fecundity, oviposition days, and lifespan were shortened, though the pre-oviposition period of two treatments was prolonged in comparison with the control. A significant decrease was recorded in the net reproductive rate (R0) and the mean generation time (T) for the two treatments. Nevertheless, the intrinsic rate of increase (r) and the rate of increase (λ) were not significantly affected in the LC30 treatment, whereas they declined in the LC50 treatment. The enzyme activity assay resulted in higher activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and carboxylesterase (CarE), among the treatments than the control. In contrast, the treatments recorded lower cytochromeP450 (CYP450) and Glutathione S-transferase (GST) activities than the control. Furthermore, the study detected that relative mRNA expression of Vitellogenin (Vg) and Vitellogenin receptor (VgR) for two treatments were lower than the control. In summary, two concentrations of spirodiclofen inhibited progeny growth and fecundity of P. citri. Additionally, the results of this study may support further research on tolerance of P. citri in response to spirodiclofen stress.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
Studies on obesity and risk factors from a life-course perspective among residents in the Tibet Plateau with recent economic growth and increasing obesity are important and urgently needed. The birth cohort in this area provides a unique opportunity to examine the association between maternal dietary practice and neonatal obesity. The study aims to detect the prevalence of obesity among neonates, associated with maternal diet and other factors, supporting life-course strategies for obesity control. A cohort of pregnant women was enrolled in Tibet Plateau and followed till childbirth. Dietary practice during pregnancy was assessed using the Chinese FFQ – Tibet Plateau version, food items and other variables were associated with the risk for obesity of neonates followed by logistic regression, classification and regression trees (CART) and random forest. Of the total 1226 mother–neonate pairs, 40·5 % were Tibetan and 5·4 % of neonates with obesity. Consuming fruits as a protective factor for obesity of neonates with OR (95 % CI) = 0·61 (0·43, 0·87) from logistic regression; as well as OR = 0·20 (0·12, 0·35) for consuming fruits (≥ weekly) from CART. Removing fruit consumption to avoid overshadowing effects of other factors, the following were influential from CART: maternal education (more than middle school, OR = 0·22 (0·13, 0·37)) and consumption of Tibetan food (daily, OR = 3·44 (2·08, 5·69). Obesity among neonates is prevalent in the study population. Promoting healthy diets during pregnancy and strengthening maternal education should be part of the life-course strategies for obesity control.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear.
Methods
By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders.
Results
SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07–1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06–1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04–1.18, p = 1.84 × 10−3).
Conclusions
We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.
Human societies are changing where and how water flows through the atmosphere. However, these changes in the atmospheric water cycle are not being managed, nor is there any real sense of where these changes might be headed in the future. Thus, we develop a new economic theory of atmospheric water management, and explore this theory using creative story-based scenarios. These scenarios reveal surprising possibilities for the future of atmospheric water management, ranging from a stock market for transpiration to on-demand weather. We discuss these story-based futures in the context of research and policy priorities in the present day.
Technical Summary
Humanity is modifying the atmospheric water cycle, via land use, climate change, air pollution, and weather modification. Historically, atmospheric water was implicitly considered a ‘public good’ since it was neither actively consumed nor controlled. However, given anthropogenic changes, atmospheric water can become a ‘common-pool’ good (consumable) or a ‘club’ good (controllable). Moreover, advancements in weather modification presage water becoming a ‘private’ good, meaning both consumable and controllable. Given the implications, we designed a theoretical framing of atmospheric water as an economic good and used a combination of methods in order to explore possible future scenarios based on human modifications of the atmospheric water cycle. First, a systematic literature search of scholarly abstracts was used in a computational text analysis. Second, the output of the text analysis was matched to different parts of an existing economic goods framework. Then, a group of global water experts were trained and developed story-based scenarios. The resultant scenarios serve as creative investigations of the future of human modification of the atmospheric water cycle. We discuss how the scenarios can enhance anticipatory capacity in the context of both future research frontiers and potential policy pathways including transboundary governance, finance, and resource management.
Social Media Summary
Story-based scenarios reveal novel future pathways for the management of the atmospheric water cycle.
The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and improved beam quality. Nevertheless, with an increase in the pump repetition rate, thermally-induced blooming and optical breakdown can emerge, leading to distortions in the Stokes beam. In this study, we delved into the thermal effects in liquid SBS-PCMs employing hydrodynamic analysis, establishing a relationship between beam profile distortion and the thermal convection field. We calculated the temperature and convection velocity distribution based on the pump light parameters and recorded the corresponding beam profiles. The intensities of the beam profiles were modulated in alignment with the convection directions, reaching a velocity peak of 2.85 mm/s at a pump pulse repetition rate of 250 Hz. The residual sum of squares (RSS) was employed to quantify the extent of beam profile distortion relative to a Gaussian distribution. The RSS escalated to 7.8, in contrast to 0.7 of the pump light at a pump pulse repetition rate of 500 Hz. By suppressing thermal convection using a high-viscosity medium, we effectively mitigated beam distortion. The RSS was reduced to 0.7 at a pump pulse repetition rate of 500 Hz, coinciding with a twentyfold increase in viscosity, thereby enhancing the beam quality. By integrating hydrodynamic analysis, we elucidated and mitigated distortion with targeted solutions. Our research offers an interdisciplinary perspective on studying thermal effects and contributes to the application of SBS-PCMs in high-repetition-rate laser systems by unveiling the mechanism of photothermal effects.
Plumbogaidonnayite, ideally PbZrSi3O9⋅2H2O, is a new gaidonnayite-group mineral discovered as a secondary product derived from the alteration of eudialyte from the Saima alkaline complex, China. It occurs as aggregates (up to 1 mm) composed of subhedral to anhedral or platy crystals (individually 5–50 μm), associated closely with microcline, natrolite, aegirine, gaidonnayite, georgechaoite, zircon, bobtraillite and britholite-(Ce) in eudialyte pseudomorphs. The crystals are transparent, colourless or light brown with a vitreous lustre. Plumbogaidonnayite is brittle with conchoidal fracture, and it has a Mohs hardness of ~5 and a calculated density of 3.264 g/cm3. It is optically biaxial (+) with α = 1.61(3), β = 1.63(3) and γ = 1.66(4). The calculated 2V is 80°, with the optical orientations X, Y and Z parallel to the crystallographic a, b and c axes, respectively. The empirical formula is (Pb0.70Ca0.17Ba0.01K0.11Na0.01Y0.01)Σ1.01(Zr1.00Hf0.01Ti0.01)Σ1.02Si3.01O9⋅2H2O calculated on the basis of nine oxygen atoms per formula unit and assuming the occurrence of two H2O groups. Plumbogaidonnayite is orthorhombic, P21nb, a = 11.7690(4) Å, b = 12.9867(3) Å, c = 6.66165(16) Å, V = 1018.17(5) Å3 and Z = 4. The nine strongest lines of its powder XRD pattern [d in Å (I, %) (hkl)] are: 6.489 (36) (020), 5.803 (100) (101), 4.661 (27) (021), 4.336 (29) (121), 3.640 (30) (221), 3.114 (79) (112), 2.947 (27) (400), 2.622 (27) (241) and 2.493 (27) (312). Plumbogaidonnayite has a similar spiral chain framework structure with gaidonnayite and georgechaoite, which is composed of SiO4 tetrahedra and ZrO6 octahedra, but with disordered extra-framework sites (cations and H2O groups) characterised by the substitution of 2Na+ (K+)→Pb2+ (Ca2+) + □ (vacancy). The discovery of plumbogaidonnayite adds a new perspective on the cation ordering and heterovalent substitution mechanism in gaidonnayite-group minerals.
This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes’ strength and their relative importance, and identify the determinants of stakeholders’ preferences.
Methods
A mixed-methods design was used to identify attributes and levels reflecting stakeholders’ preference toward the value of implantable medical devices. This design combined literature reviewing, expert’s consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model.
Results
The results of the mixed logit model showed that all the six attributes had a significant impact on respondents’ choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes).
Conclusions
The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.
We analytically characterize the comparative statics of the macroeconomy after income tax reductions in which production is organized in networks around the inefficient economy. We contribute to the literature by showing that in production networks, income taxes have different effects from revenue taxes which are assumed to be real distortions in the literature. The sectoral income tax reductions’ first-order effect on the GDP is given by a sufficient statistics: the product of the sectoral labor demand elasticity and sectoral Domar weight minus the sectoral labor share in the total labor supply, the latter of which is adjusted for labor supply elasticity if labor is elastic. We apply this model to quantify the effects of income tax reductions during the COVID-19 pandemic in the USA.
Direct numerical simulations are performed to explore the effects of the rotating direction of the vertically asymmetric rough wall on the transport properties of Taylor–Couette (TC) flow, up to a Taylor number of ${Ta} = 2.39\times 10^{7}$. It is shown that, compared with the smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless torque ${Nu}_{\omega }$. More importantly, at high Ta, clockwise rotation of the inner rough wall (where the fluid is sheared by the steeper slope side of the strips) results in a significantly greater torque enhancement compared to counter-clockwise rotation (where the fluid is sheared by the smaller slope side of the strips), due to the larger convective contribution to the angular velocity flux. However, the rotating direction has a negligible effect on the torque at low Ta. The larger torque enhancement caused by the clockwise rotation of the vertically asymmetric rough wall at high Ta is then explained by the stronger coupling between the rough wall and the bulk, attributed to the larger biased azimuthal velocity towards the rough wall at the mid-gap of the TC system, the increased turbulence intensity manifested by larger Reynolds stress and a thinner boundary layer, and the more significant contribution of the pressure force on the surface of the rough wall to the torque.
The language-guided visual robotic grasping task focuses on enabling robots to grasp objects based on human language instructions. However, real-world human-robot collaboration tasks often involve situations with ambiguous language instructions and complex scenarios. These challenges arise in the understanding of linguistic queries, discrimination of key concepts in visual and language information, and generation of executable grasping configurations for the robot’s end-effector. To overcome these challenges, we propose a novel multi-modal transformer-based framework in this study, which assists robots in localizing spatial interactions of objects using text queries and visual sensing. This framework facilitates object grasping in accordance with human instructions. Our developed framework consists of two main components. First, a visual-linguistic transformer encoder is employed to model multi-modal interactions for objects referred to in the text. Second, the framework performs joint spatial localization and grasping. Extensive ablation studies have been conducted on multiple datasets to evaluate the advantages of each component in our model. Additionally, physical experiments have been performed with natural language-driven human-robot interactions on a physical robot to validate the practicality of our approach.
A wideband tunable balanced phase shifter is achieved by utilizing varactor-loaded coupled lines (VLCLs)-embedded multistage branch-line structure. The tunable phase shift with low in-band phase deviation is attributed to the regulation in phase shift of the VLCLs and the horizontal microstrip lines in series. The wideband differential-mode (DM) impedance matching and common-mode (CM) suppression are due to multiple DM transmission poles and CM transmission zeros, which are brought about by the cascade of VLCLs and a microstrip line with short-circuited stubs in the DM-equivalent circuit and open-circuited stubs in the CM-equivalent circuit, respectively. Compared with the state-of-the-art tunable balanced phase shifters, the proposed design not only has the advantages of wide operating bandwidth (BW) with low in-band phase deviation but also has low insertion loss and easily fabricated structure. Theoretical analysis and design procedure were conducted, resulting in a prototype covering the frequency of 1.8 GHz. This prototype offers a tunable phase shift capability ranging from 0° to 90°. The prototype exhibits an operating BW of 45%, with a maximum phase deviation of ±6°. It also achieves a 10 dB DM return loss and CM suppression, while maintaining a maximum insertion loss of 2.5 dB.
We study the following rainbow version of subgraph containment problems in a family of (hyper)graphs, which generalizes the classical subgraph containment problems in a single host graph. For a collection $\mathit {\mathbf {G}}=\{G_1, G_2,\ldots , G_{m}\}$ of not necessarily distinct k-graphs on the same vertex set $[n]$, a (sub)graph H on $[n]$ is rainbow if there exists an injection $\varphi : E(H)\rightarrow [m]$, such that $e\in E(G_{\varphi (e)})$ for each $e\in E(H)$. Note that if $|E(H)|=m$, then $\varphi $ is a bijection, and thus H contains exactly one edge from each $G_i$.
Our main results focus on rainbow clique-factors in (hyper)graph systems with minimum d-degree conditions. Specifically, we establish the following:
(1) A rainbow analogue of an asymptotical version of the Hajnal–Szemerédi theorem, namely, if $t\mid n$ and $\delta (G_i)\geq (1-\frac {1}{t}+\varepsilon )n$ for each $i\in [\frac {n}{t}\binom {t}{2}]$, then $\mathit {\mathbf {G}}$ contains a rainbow $K_t$-factor;
(2) Essentially, a minimum d-degree condition forcing a perfect matching in a k-graph also forces rainbow perfect matchings in k-graph systems for $d\in [k-1]$.
The degree assumptions in both results are asymptotically best possible (although the minimum d-degree condition forcing a perfect matching in a k-graph is in general unknown). For (1), we also discuss two directed versions and a multipartite version. Finally, to establish these results, we in fact provide a general framework to attack this type of problem, which reduces it to subproblems with finitely many colors.
Edited by
Jong Chul Ye, Korea Advanced Institute of Science and Technology (KAIST),Yonina C. Eldar, Weizmann Institute of Science, Israel,Michael Unser, École Polytechnique Fédérale de Lausanne
In this chapter, we review largely targeted tasks in the computed tomography (CT) literature, including low-dose CT, sparse-view CT, limited angle CT, interior CT, etc. We present deep-learning-based methods which operate as image post-processing techniques or raw-to-image mapping techniques.
Chronic total coronary occlusion is among the most complex coronary artery diseases. Elevated homocysteine is a risk factor for coronary artery diseases. However, few studies have assessed the relationship between homocysteine and chronic total coronary occlusion.
Methods:
1295 individuals from Southwest China were enrolled in the study. Chronic total coronary occlusion was defined as complete occlusion of coronary artery for more than three months. Homocysteine was divided into quartiles according to its level. Univariate and multivariate logistic regression models, receiver operating characteristic curves, and subgroup analysis were applied to assess the relationship between homocysteine and chronic total coronary occlusion.
Results:
Subjects in the higher homocysteine quartile had a higher rate of chronic total coronary occlusion (P < 0.001). After adjustment, the odds ratio for chronic total coronary occlusion in the highest quartile of homocysteine compared with the lowest was 1.918 (95% confidence interval 1.237–2.972). Homocysteine ≥ 15.2 μmol/L was considered an independent indicator of chronic total coronary occlusion (odds ratio 1.53, 95% confidence interval 1.05–2.23; P = 0.0265). The area under the receiver operating characteristic curve was 0.659 (95% confidence interval, 0.618–0.701; P < 0.001). Stronger associations were observed in elderly and in those with hypertension and diabetes.
Conclusions:
Elevated homocysteine is significantly associated with chronic total coronary occlusion, particularly in elderly and those with hypertension and diabetes.