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Abstract
The language-guided visual robotic grasping task focuses on enabling robots to grasp objects based on human
language instructions. However, real-world human-robot collaboration tasks often involve situations with ambigu-
ous language instructions and complex scenarios. These challenges arise in the understanding of linguistic queries,
discrimination of key concepts in visual and language information, and generation of executable grasping configura-
tions for the robot’s end-effector. To overcome these challenges, we propose a novel multi-modal transformer-based
framework in this study, which assists robots in localizing spatial interactions of objects using text queries and
visual sensing. This framework facilitates object grasping in accordance with human instructions. Our developed
framework consists of two main components. First, a visual-linguistic transformer encoder is employed to model
multi-modal interactions for objects referred to in the text. Second, the framework performs joint spatial localization
and grasping. Extensive ablation studies have been conducted on multiple datasets to evaluate the advantages of
each component in our model. Additionally, physical experiments have been performed with natural language-driven
human-robot interactions on a physical robot to validate the practicality of our approach.

1. Introduction
In today’s rapidly evolving world, robots [1, 2] are progressively integrating into our daily lives, excelling
in tasks ranging from household assistance [3] to industrial operations [4]. As robots diversify their
applications, the need for more intuitive and natural human-robot communication becomes paramount.
Traditional human-robot interfaces [5], however, impose significant constraints, often requiring spe-
cialized training and proficiency in complex programing skills. These limitations hinder not only the
widespread adoption of robots but also efficient collaboration between humans and their mechanical
counterparts. To address this, there is a growing demand for robots to engage in natural communication
with humans, with natural language emerging as an attractive option due to its convenience, direct-
ness, and user-friendly nature compared to traditional interfaces like keyboards, mice, and programing
languages.

This work emphasizes the potential of harnessing natural language to facilitate seamless interactions
between humans and robots. By leveraging the power of language, our aim is to bridge the communica-
tion gap and enhance the collaborative capabilities of robots across a variety of real-world scenarios. It
is worth noting that humans rely on vision for processing and perceiving over 70% of information [6].
Therefore, relying solely on language may prove insufficient for robots attempting to perceive and under-
stand their surroundings. Consequently, the integration of visual and language modalities is emerging
as a promising research area in the field of human-robot interaction. Just like humans, language helps
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Figure 1. The robot assists in fruit grasping based on user instructions.

robots capture higher-level context and task intent, while vision provides detailed information about
the environment and objects. Combining these modalities empowers robots to comprehend both the
“what” (object recognition) and the “why” (user intent) of a task. This integration of language and vision
enhances natural and intuitive communication between humans and robots. Furthermore, by incorporat-
ing both language and vision, robots become more versatile in comprehending and adapting to diverse
tasks. Language enables users to convey complex and dynamic instructions, while vision aids in adapting
to changing environments and identifying objects not explicitly mentioned in the commands. Different
modalities can complement each other, compensating for limitations in one modality with information
from the other. For example, if an object is occluded from the robot’s view, language input may help the
robot infer missing information.

However, the inherent ambiguity and complexity of human language, coupled with the captured
visual information, poses a significant challenge for robots to achieve effective joint reasoning between
these two data streams. For instance, consider a language query instructing the robot to grasp the orange
on the right, as depicted in Fig. 1. This task becomes challenging when the desk is cluttered with unre-
lated objects like a mouse, an apple, and a remote, alongside multiple oranges. The model must not only
accurately identify and locate these objects but also comprehend their spatial relationships. Furthermore,
depending on the region of interest (ROI) specified by the robot, it must generate executable manipula-
tions for the end-effector to grasp objects that align with the desired shape, size, and color specified by
the user’s instructions.

In the context of multi-modal robot learning, previous research [7] has focused on parsing textual
and perceptual information using manually designed rules. However, recent studies have witnessed a
gradual transition from traditional language representation approaches to the adoption of deep learn-
ing methodologies. For example, Chen et al. [8] employed ResNet for visual information processing
and long short-term memory (LSTM) for textual input handling. Nonetheless, their approach is lim-
ited in handling only simple instructions due to constrained inner feature alignment. Another approach
by Lin et al. [9] utilized the powerful language model BERT [10] for manipulation tasks; however, it
still struggles with understanding spatial relationships between objects. On the other hand, significant
advancements have been made in vision-language understanding tasks, such as image captioning and
visual grounding. Regrettably, this line of research lacks a coherent mapping from language command
comprehension to physical robot actions.

The goal of this work is to bridge the gap between current vision-language models and human-robot
interaction models. Although natural language is the most natural form of communication with humans,
existing language interaction-based robot models still struggle with understanding spatial relationships
among objects or rely on a limited set of instructions [11]. To tackle these challenges, our framework
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incorporates the following three key ideas. Semantic Parsing: The visual-linguistic encoder extracts
meaningful information from the visual scene and natural language instructions, where the visual branch
performs visual scene perception and the linguistic branch breaks down the given instructions into
actionable commands, taking into account linguistic cues that imply spatial relationships. Cross-Modal
Embeddings: Our model highlights the significance of cross-modal embeddings, where linguistic cues
are aligned with visual cues. This enables the robot to associate words with corresponding visual fea-
tures, aiding in the recognition of spatial arrangements. Contextual Understanding: Our model integrates
the cross-attention mechanism to reinforce contextual understanding, thereby enabling the model to
inherently capture and interpret spatial relationships.

In this paper, we present a unified transformer framework designed to effectively map natural lan-
guage commands and raw visual observations to executable actions performed by a robotic manipulator.
Our framework incorporates a vision and language transformer to process image and linguistic instruc-
tions. Through multi-stage contextual information reasoning, we fuse aggregated visual and linguistic
token representations in the encoder stage to identify discriminative features. Specifically, the model uti-
lizes textual embeddings to query visual representations using the cross-attention mechanism, enabling
focused attention on regions relevant to the given language expressions. Moreover, a grasping decoder
leverages progressive attention layer propagation to determine the grasping configuration parameters
of the robotic gripper. Experimental results demonstrate the significant improvements achieved by
our model on mainstream benchmarks for both visual-linguistic understanding and visual grasping.
Furthermore, we validate the effectiveness of our approach in real-world applications by conducting
physical experiments using a Franka Panda robot, in addition to numerical simulations.

The highlights of using a unified transformer for visual-linguistic robotic understanding can be
summarized as follows: (1) Token-based representations facilitate a seamless alignment of visual and lin-
guistic features within the robotic semantic space. (2) The attention-based context mechanism empowers
robots with a comprehensive perception of the scene, enabling them to achieve more efficient and
reliable grasping in unstructured and cluttered environments. (3) Adopting a unified modeling perspec-
tive enables a more effective mapping between the perception space of robots and their corresponding
physical action space.

In a nutshell, the contributions of this paper can be summarized in three folds:

• This work presents a novel approach to multi-modal human-robot interface tailored to the domain
of robotic grasping. To the best of our knowledge, our work represents one of the pioneer-
ing attempts to leverage multi-modal transformers, enabling the integration of vision-language
understanding with physical robotic manipulations.

• We propose an elegant framework for seamlessly combining visual and linguistic information in
multi-modal human-robot interaction tasks. Remarkably, our model facilitates robots in compre-
hending the semantics of complex natural language instructions, including spatial relationships
between objects and color information.

• Extensive experiments have been conducted to validate the effectiveness of our approach,
demonstrating significant improvements across several widely used benchmarks.

2. Related work
2.1. Visual grasping and human-robot interaction
Reliable grasping plays a vital role in numerous applications [12, 13]. Recent studies [14–15] have
focused on leveraging deep learning techniques for visual grasping. Notably, Lenz et al. [16] were
the pioneers in neural networks as classifiers for grasp prediction. Building upon this, Guo et al.
[17] extended the model by integrating tactile information to enhance grasping performance. Our
studies encompass a range of tasks including transformer-based visual grasping [18], grasp planning
[19], and unsupervised grasp detection [20]. These research endeavors have significantly advanced our
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comprehension of how robots perceive and interact with their surroundings. Furthermore, our research
endeavors have delved into transformer-based models, including their applications in visual grasping
[18] and depth prediction [21]. Our profound familiarity with these models has paved the way for our
exploration of their adaptability to vision-language models tailored for robotic applications. As robotics
continues to permeate everyday life, it becomes increasingly important to develop natural and user-
friendly ways of interacting with robots. Traditional control methods, such as mouse, keyboard, and
touchscreen interfaces, often require users to issue complex commands that can be challenging for non-
experts in robotics. Wang et al. [22] have proposed a sight-based robotic arm assistance system that
enables users to operate robots even when their upper limbs are injured or occupied. In contrast, natu-
ral language-based interfaces offer a user-friendly approach with robots, and reduced effort required to
educate and familiarize the personnel or users who will be interacting with the robot. However, exist-
ing methods, like the one presented by Chen et al. [8], employed separate model architectures, utilizing
a convolutional neural network (CNN) for visual feature extraction and an LSTM to capture textual
information. Unfortunately, these distinct modalities struggle to align their semantic meaning accurately
within different model architectures.

2.2. Multi-modal vision and language understanding
When humans perceive the world, they naturally integrate and align information from various sources,
such as visual and audio cues. In the field of artificial intelligence (AI), there is a growing interest in
enabling AI systems [23, 24] to learn from multi-modal data. Recently, there has been growing interest in
perceptual models that simultaneously incorporate visual and linguistic signals [25–26]. These systems
manipulate images to generate corresponding text, as seen in image caption tasks, or engage in vision-
language interaction tasks like visual question answering. Among these tasks, visual grounding, which
involves localizing regions based on verbal descriptions, is particularly relevant to our objective. Existing
approaches to tackle this task typically follow either a two-phase or one-phase pipeline. Two-phase
approaches [27–28] initially detect a set of region proposals, which are then matched against linguistic
queries to identify the top-ranked proposals. Within the two-stage methods, several appealing techniques
have been developed to enhance the modeling of multi-modal relationships, such as modular attention
networks [29] and scene graphs [23]. On the other hand, one-stage approaches [30–31] integrate text
information with image features to directly produce dense predictions. For instance, Fast and Accurate
One-stage Approach (FAOA) [32] incorporates linguistic features into each spatial position of visual
feature maps by concatenating them. Distinguishing itself from prior works, our study tailors the vision-
language model to suit robotic tasks in the physical world.

2.3. Transformer
The attention architecture [33] has demonstrated significant potential in sequence modeling and
machine translation tasks. As an attention-based model, transformers [10] have emerged as the
predominant approach in natural language processing. Furthermore, transformers have also made
notable contributions to computer vision tasks. An exemplary work, DEtection TRansformer (DETR)
[34], formulates object detection as a set prediction problem by employing learnable queries and a

contextual attention mechanism to capture object relationships. In a related study, Wang et al. [18]
adopt a pure transformer architecture to capture global relationships within a grasping scene using
attention mechanisms, resulting in improved grasp detection.

3. Method
3.1. Problem formulation
Our objective is to develop a flexible linguistic-based human-robot interface that enables seamless under-
standing of human intentions by robots. Our system finds applications in scenarios such as industrial
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assembly lines, where robots follow human instructions to perform assembly tasks, or situations where
individuals with impairments employ language to control a robotic arm for handling inconvenient tasks.
Let I represent the captured image and L denote the user’s instruction. The ultimate goal is to learn
a function f that maps the image and user commands to a grasp representation, satisfying the user’s
specifications:

g = f (I, L). (1)

A grasp configuration, denoted as g, can be represented in the image space as a 5-dimensional tuple:
g = {x, y, θ , w, h}. Here, (x, y) represents the grasping center, θ denotes the orientation angle of the grip-
per, and w and h indicate the width and height of the parallel gripper when opened, respectively. In the
context of robotic visual grounding tasks, there are additional constraints compared to common visual
grounding tasks. For instance, due to the limitations of the physical gripper, the angle of the grasping
rectangle must fall within the range of [− π

2
, π

2
], and the opening width of the gripper cannot exceed its

predefined limit.

3.2. Architecture overview
In Fig. 1, our framework comprises four essential components: (1) Linguistic Branch, (2) Visual
Branch, (3) Language-Conditioned Visual Fusion Module, and (4) Fine-Grained Grasping
Module. Before introducing our framework, we address a fundamental challenge in grounded language-
based robot understanding: establishing a connection between human language and the visual perceptual
world in which the robot operates. To tackle this challenge, we break it down into two sub-problems.
Firstly, we aim to construct a unified semantic space that bridges the gap between visual and linguis-
tic concepts. Secondly, we endeavor to establish a mapping between these semantic concepts and the
corresponding robotic actions in the physical world. Our approach employs a cascaded encoder-decoder
architecture. Initially, the RGB image and the human language query are individually processed through
the visual and text branches, respectively. The tokenized features extracted from both branches are
then fused using the language-conditioned fusion module to derive the corresponding bounding region.
Subsequently, this bounding region is integrated with the scene depth image and provided as input to
the grasping decoder, which generates the optimal grasp configuration.

In summary, our visual-linguistic robot grasping system offers the following key features:
Alignment: Leveraging transformer-based models to seamlessly integrate visual and linguistic

modalities, facilitating a unified approach to robotic tasks.
Representation: Utilizing homogeneous token-based representations to enhance interaction between

visual concepts and textual entities within the system.
Co-learning: Incorporating synchronized learning of visual-verbal understanding and robotic grasp-

ing, enabling the establishment of a mapping from the human-interactive world to corresponding robot
actions.

The general framework is broadly presented in the following three parts.

3.2.1. Text and vision encoder
As shown in Fig. 2, the input consists of images and language instructions, which are processed sepa-
rately in two branches. In the visual branch, a convolutional neural network (CNN) backbone is utilized
to extract visual features. To facilitate the model’s understanding of the relationship between text and
images, we propose using a unified model, such as a transformer, to process both modalities. In this
unified model, image information is treated as word-tokens within the transformer model. Following
the CNN backbone, we employ a stack of attention layers to handle the visual features. As an illustra-
tion, let’s consider the process of passing an image I0 ∈R

3×H×W through a backbone network, resulting
in a 2-dimensional feature map z ∈R

C×Hz×Wz . Here, C represents the output channel of the feature map,
while Hz and Wz denote the dimensions of the feature map. To ensure compatibility with the following
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[SEP]
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Figure 2. The overview of the framework. The language and visual encoders are served as prefixes to
the fusion decoder, and the resulting grounding information is then combined with the scene depth image
as input to the grasping model to produce the grasping configuration according to language instructions.

attention layer, the internal variable is flattened into z ∈R
C×L, where L = Hz × Wz represents the size

of the input tokens. By employing visual tokens in the vision transformer branch, global features are
captured by focusing on multiple areas across the entire image.

In parallel to the vision branch, the language branch operates as a sibling branch that receives natural
language instructions as input. The linguistic branch comprises a token embedding layer and a series of
stacked transformer layers. In order to leverage the benefits of pre-trained BERT model [10], the design
is inspired by the BERT architecture, with each linguistic transformer layer having an output channel
dimension of 768. In terms of linguistic expressions, each word in a sentence is transformed into a one-
hot vector, which is then passed through an embedding layer to obtain the corresponding token-based
representation. Furthermore, our approach aligns with machine translation techniques, wherein [CLS]
and [SEP] tokens are inserted at the beginning and end of each sentence. The resulting latent embed-
dings are subsequently inputted into linguistic transformer layers, generating the corresponding features
denoted as zl ∈R

C×Nl . Notably, the image features are also treated as word-tokens to establish a homoge-
neous token-based representation shared between linguistic and visual features, allowing different modal
information to be embedded into a joint semantic space.

3.2.2. Language-conditioned fusion
The language-conditioned fusion module refines visual features through textual embedding using the
latent features obtained from the previous two branches. This refinement process helps identify regions
that are relevant to the referring instructions. Instead of directly feeding visual and textual information
into the grasping decoder, we propose a multi-stage language-guided fusion approach that progressively
gathers contextual information from verbal and visual features to facilitate the localization of the referred
object. Below we briefly recall the attention mechanism. An input sequence X ∈R

n×d is linearly trans-
formed to obtain three successive vectors namely (query Q, key K, and value V) in shaping the interaction
between the input data and the attention mechanism, where n and d is the length and dimension of the
input x. The vectors are computed via

Q = XWQ, K = XWK , V = XWV , (2)

where WQ ∈R
d×dq , WKR

d×dk , WVR
d×dv are three linear projection matrices, which refer to learnable

weight matrices used to transform the input data (queries, keys, and values) before applying the attention
mechanism. In this work, we have dq = dk = dv = d. The attention is then calculated using the formula:
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Figure 3. An illustration of the vision-language fusion cross-attention module.

Attention(Q, K, V) = Softmax
(

QKT

√
d

)
V , (3)

where the attention is obtained by taking the dot-product between query Q and key K, and
√

d serves as
a scaling factor. Finally, a softmax operator is applied to obtain a normalized distribution that is assigned
to value V .

As illustrated in Fig. 3, the input visual tokens serve as the query and value, while the input textual
tokens act as the key in the cross-attention mechanism. In the attention layers, the data is processed
through a multi-head self-attention (MSA). This involves splitting the input embeddings into multiple
“heads” or parallel subspaces. Each head computes attention scores between different elements of the
input sequence, capturing dependencies and relationships. Following the MSA step, the data is passed
through a feed-forward network. This process gathers visual information relevant to the text. Similarly,
in parallel, the visual tokens serve as the key and query, while the textual tokens are used as the value
in another cross-attention operation. This dual cross-attention mechanism enhances the textual-related
visual features by computing their correlation, effectively suppressing irrelevant visual and textual infor-
mation. The features obtained from the dual cross-attention are then aggregated and passed through a
normalization layer to ensure internal alignment. In the subsequent fusion stage, the output features serve
as the input for cross-model reasoning. Through our cross-model attention fusion approach, the model
progressively eliminates redundant information in visual features using linguistic queries, enabling the
model to focus more on the regions crucial for human grasping.

3.2.3. Grasping decoder
The grasping decoder takes a depth image and a coarse location region specified by a language expres-
sion to accurately estimate the precise grasping pose. To achieve this, we convert the task of planar grasp
detection into pixel-level prediction tasks. We employ a series of attention layers that capture the interre-
lationship between different parts of the object, thereby identifying regions suitable for grasping. These
attention layers enable us to retrieve relevant contextual information. Subsequently, a feature pyramid
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fusion module is employed to incorporate the contextual features gathered from the previous attention
layers. We refer to the set of grasps in the image space as the grasp map, which is denoted as

G = (Q, �, W) ∈R
3×H×W (4)

The grasp map G estimates the parameters of a set of grasps, executed at the Cartesian point p,
corresponding to each pixel. We represent the grasp map G as a set of images:

• Q is an image describing the quality of a grasp executed at each point (x, y). The value is a scalar
within the range [0, 1] where a value closer to 1 indicates higher grasp quality, i.e. higher chance
of successful grasp.

• � represents the grasp angle that should be executed at each point. Given the symmetry of the
antipodal grasp around ± π

2
radians, the angles are provided in the range of

[− π

2
, π

2

]
.

• W indicates the width of the gripper to be employed at each point. To achieve depth invari-
ance, we set the range of the variable w to [0, 150] pixels, which can be converted to a physical
measurement utilizing the depth camera parameters and the measured depth.

Finally, three grasping heads are connected in parallel to the top of the fusion layer to estimate the
grasping score estimation head Q, the gripper angle estimation head �, and the gripper width head W.
Each head generates a heatmap of the same dimensions as the input depth image. The feature maps
obtained from each stage of the fusion module are resized to match the resolution of the final output.
These feature maps are then passed through convolutional layers with 1 × 1 kernels to generate the three
grasp heatmaps. Each position in the grasping score heatmap Q produces a value between 0 and 1, indi-
cating the likelihood of successful grasping at that particular pixel. Similarly, the width and angle heads
provide information about the gripper’s width and rotation angle during the grasping process. Instead of
sampling the input image to create grasp candidates, the grasp point g′ is determined by the highest con-
fidence score in the grasping quality heatmap Q. Mathematically, Gpos = arg max Q, signifying the pixel
location where successful grasping is most likely to occur. The predicted angle θ and the corresponding
orientation width w are obtained from the angle � and width W heatmaps.

3.3. Training optimization
The optimization of the entire architecture consists of two stages. Firstly, the visual-linguistic transformer
encoder is responsible for the rough localization of the referred object by capturing the relation-
ships between visual and language tokens. Secondly, the grasping decoder generates precise grasping
parameters based on the position and shape of the referred object.

During the visual grounding procedure, the model directly calculates the regression loss between the
predicted bounding box b̂ and the ground truth bounding box b. The training objective is defined as:

Lvg = λ1Ll1 + λ2LGIoU(b), (5)

where the loss is composed of two terms: Ll1 and the GIoU (Generalized Intersection over Union) loss
denoted by Lgiou. The hyperparameters λ1 and λ2 control the relative contribution of each loss term. b
refers to the ground truth bounding box, which represents the actual location and size of an object in the
image. b̂ represents the predicted bounding box, which is the model’s estimated location and size for
the object.

During the optimization process of grasping, we approach the problem of estimating the grasping
pose as a regression problem. To achieve this, we utilize a grasping decoder, which establishes a mapping
from the designated region of interest to the corresponding executable grasping configuration parame-
ters. The objective is to minimize the L2 distance between the grasping heatmaps and the ground truth
by defining a loss function as follows:

Lgrasp = Lgrasp-score + Langle + Lwidth. (6)
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Figure 4. System diagram of our architecture.

The terms Lgrasp-score, Langle, and Lwidth represent individual loss components related to specific aspects
of the robotic manipulation task. Lgrasp-score is a loss term related to the grasp quality. It measures how
well the predicted grasp aligns with the actual grasp location on the object. Langle is the loss related
to the orientation or angle of the object, indicating how accurately the model predicts the object’s
orientation. Lwidth is the loss associated with the width of the gripper, indicating how well the model
estimates the size of the object. For each component of the loss function, Li is the mean square error
between the corresponding value of the model and the ground truth. For instance, the first term of Lgrasp

is defined as Lgrasp-score = ∑N
i=1 ‖G̃i − G∗

i ‖2, where G̃i is the output of the grasp quality head and G∗
i is the

corresponding ground truth.

4. System design
4.1. Robotic grasping setting
This section provides an overview of the implementation details of our robotic system. The configuration
of the entire system is depicted in Fig. 4. We utilize a Franka Emika Panda Gen 1 robot equipped with a
two-finger parallel gripper for performing grasping tasks. The robot boasts 7 degrees of freedom and can
handle a maximum payload of 3 kg. To enable real-time grasp detection, an Intel RealSense D435 camera
is mounted on the robot’s wrist. The Panda robot has an operational range of 85.5 cm. Additionally, a
desktop computer with a GPU is connected to the robot to execute our model and send commands for
robot manipulation. The training process is conducted on the Ubuntu 18.04 desktop with Intel Core i9
CPU and 4 NVIDIA 3090 GPU. Training the vision-language transformer-based robotic manipulation
system took approximately 15 h.

4.2. Grasp execution pipeline
The grasping flow is visualized in Fig. 4. Upon camera calibration, the captured scene image, along with
the user’s language instruction, is inputted into the model. Subsequently, the model generates grasping
configuration parameters, which are then forwarded to the controller for grasping trajectory planning. In
this planning phase, the position information of the grasping center is transformed from image space to
the world coordinate system. During the grasping process, the robot follows a series of steps. Initially,
it moves to the designated initial position while keeping the gripper aligned with the specified grasp-
ing orientation. Then, the robot commences the grasping operation based on the trajectory calculated
through inverse kinematics. This process continues until successful grasping is achieved or a collision
is detected, which depends on the feedback from contact force sensors.
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A successful grasp is achieved as the robot successfully gripping the object specified by the user’s
language instruction and subsequently placing it in the desired location.

4.3. Grasping scenarios
In order to thoroughly evaluate the effectiveness of our model, we conduct real robot experiments using
a diverse range of everyday objects. These objects encompass both familiar items present in the datasets
and entirely unseen objects. The object categories include fruits, tools, and more. To assess the robust-
ness of our grasping system, the grasped objects exhibit various shapes and sizes. During each trial,
the objects are randomly positioned within the robot’s working space. This random placement ensures
that the grasping system encounters different spatial configurations, contributing to a comprehensive
assessment of its performance.

5. Experiment
In this section, we evaluate our model in both datasets and real-world applications. Experiments are
carried out to investigate (1) the performance of integrating visual-linguistic transformer models in
building effective and general multi-modal human-robot interfaces, and (2) the applicability of the
transformer-based approach to physical robotic systems.

5.1. Dataset and evaluation metric
To facilitate comparison with other methods, we train and test our model on two main grasping datasets:
the Cornell dataset [16] and the Jacquard dataset [35]. The Cornell dataset [16] consists of more than
800 RGB-D images, containing 240 graspable objects. The Jacquard dataset, on the other hand, is
a large synthetic grasp dataset comprising over 50,000 images and featuring 11,000 objects. Its syn-
thetic nature provides a diverse and extensive collection of data for evaluation purposes. In addition to
grasping evaluation, we also assess the visual-linguistic understanding ability of our model using the
RefCOCO/RefCOCO+/RefCOCOg benchmarks. The RefCOCO dataset [28], RefCOCO+ dataset [28],
and RefCOCOg dataset [27] are widely recognized visual grounding benchmarks. These datasets utilize
images from the MS COCO dataset and provide annotations for referring expressions. The dataset is
divided into training, validation, and test sets, with the test set further split into testA and testB sub-
sets. Furthermore, we utilize the Flickr30K Entities dataset [36], which extends the original Flickr30K
dataset [37] by incorporating phrase annotations.

5.2. Evaluation metrics
To make a fair comparison with previous grasp detection works [38–39], this work also adopts the
rectangle criterion to evaluate the grasping quality. A predicted grasp is regarded as a success when the
following conditions are satisfied. (1) The orientation angle difference between the predicted grasp and
the ground truth is under 30◦. (2) The Jacquard index of the predicted grasping rectangle and the ground
truth should be greater than 25%.

5.3. Implementation details
The entire architecture is optimized using the AdamW optimizer and the batch size is set to 64. The
parameters of the language branch in our model are initialized using pre-trained BERT [10]. The visual
branch is initialized using the weights from pre-trained DETR [34]. The sentence length processed
by the linguistic branch is fixed at 40. For shorter expressions, empty tokens are padded to match the
sentence length. Longer sentences, exceeding a length of 40, are split up into smaller segments. The
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Figure 5. Our multi-modal grasping system demonstrates the understanding of novel sentences and
enables the end-effector to generate stable grasps.

visual encoder incorporates attention mechanisms to effectively retain the geometric details of objects.
The visual-linguistic fusion module consists of six stacked cross-attention transformer blocks. Each
transformer block comprises two fully connected layers with 512 and 2048 neurons, respectively.

5.4. Results
To investigate the generalization of our model to unseen language commands, we conducted tests using
non-templated phrases and objects that were not present in the training set. A screenshot of physics
experiments is shown in Fig. 5. The results, presented in Table I, indicate that our method achieved
successful completion in 16 out of 20 trials when using novel language instructions to grasp familiar
objects. In Fig. 7, we provide visual examples of robot manipulation using diverse linguistic commands.
The first row shows images capturing the grasping scenes, while the second row visualizes the attention
heatmaps generated by the vision-language transformer encoder. These qualitative examples demon-
strate that our method effectively models queries with complex relationships. Specifically, our model
learns spatial relationships between objects for instructions such as “grasp what in the center” or “pick
the banana on the left of the orange.” This indicates that our multi-modal robotic system can comprehend
language in a human-like manner, rather than relying solely on native methods like keyword retrieval or
template-based approaches.

We also supplement quantitative results to showcase the visual accuracy in recognizing objects. The
accuracy of object recognition refers to how effectively the model can identify and position objects
within the scene by language instructions. We compare the accuracy of INGRESS [40] and UMD Refexp
[41] with our vision-language network as illustrated in Fig. 6 on RefCOCO benchmark. It is evident that
our language grounding model performs better than other two baseline methods.
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Table I. Experimental results for evaluating the generaliza-
tion of the model.

Types of generalization Success rate
New language commands for seen objects 16/20
New language commands for unseen objects 13/20
Grasp unseen objects in the clutter 18/20
Grasp known objects with unseen poses 15/20

val testA testB
0

20

40

60

80
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Figure 6. Results of recognition and positioning accuracy.

We further test our method with new language commands applied to unseen objects, achieving a
success rate of 13 out of 20 trials. Additionally, our method performs well even when objects are cluttered
in the environment or in poses that were not seen during training. It is worth noting that understanding
these instructions requires not only the comprehension of the phrase-referred landmarks but also the
implicit disambiguation.

The results presented in Table II demonstrate the strong performance of our visual understanding
model compared to the baselines, showcasing clear superiority over previous CNN-based approaches.
The experimental findings highlight the importance of training the visual model for language under-
standing on a dataset consisting of text-image pairs. Furthermore, the diversity and size of the dataset
are found to have a significant impact on the overall performance of the model. We also observed
that initializing the visual and linguistic encoders with pre-training weights played a crucial role
in the training process. This initialization greatly facilitated the model in establishing correlations
between images and their corresponding captions. In Table I, we present experimental results that show-
case the generalization capability of our model to different natural language instructions and various
objects.

5.5. Ablation studies
To assess the effectiveness of each component in our model, we conduct independent empirical analyses
of the encoder and decoder on the relevant datasets to evaluate the performance of vision-language
understanding and grasping. Specifically, we perform the following ablation studies:

Encoder analysis: We solely utilize the encoder of our model and use the language input to predict
the bounding box of the corresponding object. This analysis allows us to evaluate the performance of
the vision and text encoder.

Decoder analysis: In this analysis, we disable the language component and focus on evaluating the
grasping performance of the decoder. By excluding the language input, we could assess the capabilities
and effectiveness of the decoder component.
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Table II. The accuracy on mainstream visual grounding dataset.

RefCOCO RefCOCO+ RefCOCOg
Models Venue Backbone Val TestA TestB Val TestA TestB Val-g Val-u Test-u
CMN [42] CVPR’17 VGG16 − 71.03 65.77 − 54.32 47.76 57.47 − −
VC [25] CVPR’18 VGG16 − 73.33 67.44 − 58.40 5.318 62.30 − −
ParalAttn [26] CVPR’18 VGG16 − 75.31 65.52 − 61.34 50.86 58.03 − −
MAttNet [29] CVPR’18 ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 − 66.58 67.27
LGRANs [23] CVPR’19 VGG16 − 76.60 66.40 − 64.00 53.40 61.78 − −
DGA [43] ICCV’19 VGG16 − 78.42 65.53 − 69.07 51.99 − − 63.28
RvG-Tree [44] TPAMI’19 ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 − 66.95 66.51
NMTree [45] ICCV’19 ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
Ref-NMS [46] AAAI’21 ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 − 70.55 70.62
CMRE [47] TPAMI’21 ResNet-101 − 82.53 68.58 − 75.76 57.27 − − 67.38
CM-A-E [48] CVPR’19 ResNet-101 78.35 83.14 71.32 68.09 73.65 58.03 − 67.99 68.67
SSG [30] arXiv’18 DarkNet-53 − 76.51 67.50 − 62.14 49.27 47.47 58.80 −
FAOA [32] ICCV’19 DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF [49] CVPR’20 DLA-34 − 81.06 71.85 − 70.35 56.32 − − 65.73
ReSC-Large [50] ECCV’20 DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
LBYL-Net [31] CVPR’21 DarkNet-53 79.67 82.91 74.15 68.64 73.38 59.49 62.70 − −
Transformer-based:
VGTR [51] ICME’22 ResNet-101 79.30 82.16 74.38 64.40 70.85 55.84 64.05 66.83 67.28
Refformer [52] NeurIPS’21 ResNet-101 82.23 85.59 76.57 71.58 75.96 62.16 − 69.41 69.40
TransVG [53] ICCV’21 ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73
Ours

Language-Grasp ResNet-50 84.19 87.31 79.42 74.20 79.50 64.86 71.88 73.53 73.90
Language-Grasp ResNet-101 84.55 88.34 80.36 75.04 79.54 65.72 72.72 74.26 74.09
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Table III. The accuracy on Flickr30K Entities dataset.

Models Backbone Flickr30K accuracy (%)
Similarity Net [54] ResNet-101 60.89
CITE [24] ResNet-101 61.33
PIRC [55] ResNet-101 72.83
DDPN [56] ResNet-101 73.30
LCMCG [57] ResNet-101 76.74
ZSGNet [58] ResNet-50 63.39
FAOA [32] DarkNet-53 68.71
ReSC-Large [50] DarkNet-53 69.28
TransVG [53] ResNet-50 78.47
TransVG [53] ResNet-101 79.10

Ours ResNet-50 79.41
Ours ResNet-101 80.12

5.5.1. Visual understanding
To evaluate the effectiveness of our visual understanding module, we conduct validation on several
widely recognized visual grounding benchmarks and compare our results with state-of-the-art methods.
We follow standard evaluation criteria to report the performance, considering a prediction as positive
when the Jaccard index between the predicted region and ground truth exceeds 0.5. The comparison
results with recent methods on the RefCOCO, RefCOCO+, and RefCOCOg datasets are presented in
Table II. We categorized the methods into two groups: two-stage and one-stage. Our approach demon-
strates competitive results across all data splits when compared to recent methods. Notably, we achieved
an accuracy of 84.55% on the validation set of RefCOCO, surpassing the prior best method by an
improvement of 2.32%. Moreover, by utilizing the more powerful ResNet-101 backbone instead of
ResNet-50, the performance of our module is further enhanced. Even when dealing with long expres-
sions, our visual-linguistic module continues to perform well. Table III presents the performance of our
model on the Flickr30K Entities test set. With the ResNet-50 and ResNet-101 backbones, our model
achieves accuracies of 79.41% and 80.12%, respectively.

The ablation studies reveal that the integration of visual and textual information in the transformer
layers is the key component of our approach. This integration enables the extraction of visual features
specifically tailored to the textual information. Our visual-linguistic module facilitates homogeneous
inter-modal contextual reasoning by embedding both visual and language information into a shared
semantic space. The superior results presented in Tables II and III provide evidence of the effectiveness
of our visual and linguistic encoder and fusion modules. In Fig. 7, it is evident that our model is capable
of capturing the intricate relationships between objects as described in language expressions, such as
“the orange on the right of the banana.” The attention context awareness allows our model to take a
holistic perspective of the scene, enabling it to focus more accurately on the region where the referred
object is located.

5.5.2. Grasping performance
In this section, we analyze the performance of our grasping module. To determine the number of atten-
tion layers in each branch, we conducted ablation experiments. The ablation studies show the impact
of varying the number of attention layers in the encoder and decoder stages of the model. The two
metrics reported are “GFLOPS” (floating-point operations per second) and “Accuracy” in percentage.
From the results, it’s evident that increasing the number of encoder layers improves accuracy up to a
certain point. The accuracy steadily increases as more layers are employed until it reaches the saturation
point. In Tables IV and V, the results highlight that a configuration with four attention layers in encoder
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Pick the left apple Grasp what in the
center

Pick the banana on 
the left of the orange

Pick the bottom
black pen

I need the center
mouse

(a) (b) (c) (d) (e)

Figure 7. Visualization of the attention heatmaps of the model guided by the language. The first row
shows the grasping scene captured from the camera and the red rectangle box indicates the roughly
generated grasping candidate area. The second row demonstrates the visualization of discriminative
features learned by attention.

and six in decoder yields the highest accuracy while maintaining a reasonable level of computational
efficiency. Table VI presents a comparison of our model with recent state-of-the-art approaches on the
Cornell grasping dataset. Notably, our model achieves significant improvements, such as increasing the
best accuracy on the Cornell dataset from 97.7% to 98.74%. Our approach directly predicts the grasping
center, grasping angle, and opening width of the gripper, eliminating the need for designing anchors to
match different targets. The highest-scoring grasp candidate is selected as the final grasp prediction. To
further assess the performance of our model compared to recent methods, we conduct evaluation of the
Jacquard dataset, the results of which are summarized in Table VII.

Comparison with other methods: We surpass the ROI-GD method by 4.1% in terms of grasping
accuracy rate due to several key enhancements in our approach. Our approach demonstrates enhanced
performance due to the inherent benefits of the transformer-based architecture, enabling the robot to
better understand contextual cues from both visual and textual inputs. This facilitates more accurate
perception of object attributes, scene elements, and contextual instructions, resulting in improved grasp
planning and execution. Furthermore, in comparison to the TF-Grasp method, our method leverages a
cross-attention mechanism within a vision-language transformer architecture. The cross-modal interac-
tions between vision and language data enable more effective fusion of information and context, resulting
in a higher level of understanding and manipulation accuracy.

Costs in terms of training and execution: Regarding the potential costs associated with training,
execution time, and computational resources, we acknowledge that the utilization of transformer-based
architectures can indeed introduce higher computational requirements compared to traditional methods.
This is primarily due to the increased model complexity and the demand for larger training datasets
to capture the diverse range of interactions and instructions. However, it’s important to note that the
improvements in grasping accuracy and overall task performance, as demonstrated in our experiments,
justify the investment in computational resources. The enhanced accuracy directly translates to reduced
instances of failed grasps, ultimately leading to a more efficient and reliable robotic manipulation system.
Moreover, the scalability of transformer-based models allows for parallel processing and optimization
techniques that can mitigate some of the resource constraints. In summary, while our proposed method
may require comparatively more computational resources during training and execution, the achieved

https://doi.org/10.1017/S0263574723001510 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001510


430 Shaochen Wang et al.

Table IV. The ablation studies of the attention layer numbers
in encoder.

The encoder stages (N) GFLOPS Accuracy (%)
Encoder layers (1) 1.13 75.64
Encoder layers (2) 2.26 78.05
Encoder layers (3) 3.39 82.70
Encoder layers (4) 4.52 84.19
Encoder layers (6) 6.78 84.18

Table V. The ablation studies of the attention layer numbers
in decoder.

The decoder stages (N) GFLOPS Accuracy (%)
Decoder layers (1) 2.34 63.64
Decoder layers (2) 4.68 72.05
Decoder layers (4) 9.36 80.70
Decoder layers (6) 14.04 84.19
Decoder layers (8) 18.72 84.22

Table VI. The grasping performance on Cornell grasping
dataset.

Authors Algorithm Accuracy (%)
Jiang [59] Fast Search 60.5
Lenz [16] SAE, struct. reg. 73.9
Redmon [60] AlexNet, MultiGrasp 88.0
Wang [14] Two-stage closed-loop 85.3
Asif [61] STEM-CaRFs 88.2
Kumra [39] ResNet-50x2 89.2
Morrison [62] GG-CNN 73.0
Guo [17] ZF-net 93.2
Zhou [63] FCGN, ResNet-101 97.7
Karaoguz [64] GRPN 88.7
Asif [38] GraspNet 90.2

Our GraspDecoder 98.74

advancements in grasping accuracy and human-robot interaction effectiveness substantiate the benefits
and justify the associated costs.

5.6. Discussion and limitations
Our proposed method has been evaluated on various objects with different language instructions,
demonstrating its effectiveness on previously unseen objects such as remote controls, oranges, and
screwdrivers. It exhibits good generalization capabilities by maintaining a high grasping success rate
even when objects are placed in orientations that were not seen during training. The results are summa-
rized in Table VI. Through extensive empirical validation, our model proves to be a powerful solution for
language-driven robotic understanding tasks, offering a seamless and effective human-robot interface.

While our approach has demonstrated promise in language-driven grasping, it is constrained to a two-
dimensional plane. Real-world applications encompass scenarios well beyond this scope. Grasping tasks
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Table VII. The accuracy on Jacquard grasping dataset.

Authors Method Input Accuracy (%)
Depierre [35] Jacquard RGB-D 74.2
Morrison [62] GG-CNN2 D 84
Zhou [63] FCGN, ResNet-101 RGB 91.8
Alexandre [65] GQ-STN D 70.8
Zhang [66] ROI-GD RGB 90.4
Stefan [15] Det Seg RGB 92.59
Stefan [15] Det Seg Refine RGB 92.95
Kumra [67] GR-ConvNet D 93.7
Kumra [67] GR-ConvNet RGB 91.8
Wang [18] TF-Grasp D 93.1

Ours GraspDecoder D 94.5

in vertical spaces, such as hierarchical shelving, introduce additional layers of complexity, including
height considerations, spatial positioning, and object orientation. Notably, our framework’s performance
in these more intricate settings remains unverified, representing a prominent limitation that warrants
dedicated attention in future work. In summary, our forthcoming research will focus on surmounting
the challenges associated with vertical space grasping. Research avenues will encompass enhancing 3D
perception, advancing 6DOF pose estimation, addressing object occlusion, and refining motion planning
precision. By addressing these facets, we aim to extend our framework’s applicability to real-world
scenarios where vertical space grasping is an essential requirement.

6. Conclusions
This paper introduces a novel robotic system designed to comprehend human intentions and execute
user-specified object manipulation commands through natural language. By leveraging natural language
as a means of expressing human intentions, our system enables robots to understand object relationships
and generate desired actions. A key feature of our model is its capability to comprehend flexible language
instructions using a multi-modal transformer. Through extensive evaluations of various datasets and real-
world robotic systems, we demonstrate that our proposed method is user-friendly and exhibits promising
performance. The flexibility of our framework allows for effective multi-modal understanding.
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