We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Monitoring the prevalence and abundance of parasites over time is important for addressing their potential impact on host life histories, immunological profiles and their influence as a selective force. Only long-term ecological studies have the potential to shed light on both the temporal trends in infection prevalence and abundance and the drivers of such trends, because of their ability to dissect drivers that may be confounded over shorter time scales. Despite this, only a relatively small number of such studies exist. Here, we analysed changes in the prevalence and abundance of gastrointestinal parasites in the wild Soay sheep population of St. Kilda across 31 years. The host population density (PD) has increased across the study, and PD is known to increase parasite transmission, but we found that PD and year explained temporal variation in parasite prevalence and abundance independently. Prevalence of both strongyle nematodes and coccidian microparasites increased during the study, and this effect varied between lambs, yearlings and adults. Meanwhile, abundance of strongyles was more strongly linked to host PD than to temporal (yearly) dynamics, while abundance of coccidia showed a strong temporal trend without any influence of PD. Strikingly, coccidian abundance increased 3-fold across the course of the study in lambs, while increases in yearlings and adults were negligible. Our decades-long, intensive, individual-based study will enable the role of environmental change and selection pressures in driving these dynamics to be determined, potentially providing unparalleled insight into the drivers of temporal variation in parasite dynamics in the wild.
Individuals are typically coinfected with multiple parasite species. Laboratory studies have shown that coinfecting parasites can interact strongly within individual hosts with potentially serious consequences for disease progression and successful treatment. Understanding the occurrence of these interactions in natural systems and their effect on host health and parasite epidemiology in the wild are only beginning. Rodents are the ideal ‘wild’ model taxon to study these effects due to their ubiquity, high abundance, ease of capture, diagnostic assessment, and experimentation in their natural setting. Also, their close phylogenetic relatedness to the standard laboratory mouse (Mus musculus) model means that studies of wild rodents have great potential to advance our understanding of the dynamics and mechanisms of coinfection interactions. We review coinfection studies in wild rodents and compare the findings with predictions of general coinfection theory. We show that the relationship between coinfection interactions at the within-host scale and their pattern of association at the host population scale can be complex, as predicted by the general theory. Patterns of parasite association at the host population level can be poor predictors of the occurrence or direction of the underlying within-host interaction.
Within-host interactions among coinfecting parasites are common and have important consequences for host health and disease dynamics. However, these within-host interactions have traditionally been studied in laboratory mouse models, which often exclude important variation and use unnatural host–parasite combinations. Conversely, the few wild studies of within-host interactions often lack knowledge of parasite exposure and infection history. Here we exposed laboratory-reared wood mice (Apodemus sylvaticus) that were derived from wild-caught animals to two naturally-occurring parasites (nematode: Heligmosomoides polygyrus, coccidia: Eimeria hungaryensis) to investigate the impact of coinfection on parasite infection dynamics, and to determine if the host immune response mediates this interaction. Coinfection led to delayed worm expulsion and prolonged egg shedding in H. polygyrus infections and lower peak E. hungaryensis oocyst burdens. By comparing antibody levels between wild and colony-housed mice, we also found that wild mice had elevated H. polygyrus-IgG1 titres even if currently uninfected with H. polygyrus. Using this unique wild-laboratory system, we demonstrate, for the first time, clear evidence for a reciprocal interaction between these intestinal parasites, and that there is a great discrepancy between antibody levels measured in the wild vs those measured under controlled laboratory conditions in relation to parasite infection and coinfection.
Essential fatty acids (EFA) are PUFA that are metabolised to long-chain PUFA and are important for brain development and cognitive function. The objective of this study was to determine the association between whole-blood EFA and cognitive function in Tanzanian children. A total of 325 2–6-year-old children attempted the dimensional change card sort (DCCS) tasks to assess executive function. Blood samples were collected for fatty acid (FA) analysis by GC. Associations between executive function and FA levels were assessed by regression. Among the 130 4–6-year-old children who attempted the DCCS tasks, whole-blood levels of linoleic acid were positively associated with executive function, whereas whole-blood levels of α-linolenic acid and nervonic acid were inversely associated with executive function. A full model including all twenty-five FA explained 38 % of the variation in executive function, whereas a reduced model including only the EFA (α-linolenic acid and linoleic acid), DHA and EPA explained 25 % of the variation in executive function. Children who had sufficient whole-blood levels of EFA were 3·8 times more likely to successfully complete all DCCS tasks compared with children with insufficient EFA. These results suggest that whole-blood FA levels are associated with cognitive abilities. Intervention trials that include assessment of whole-blood FA levels are required to determine the relationships between intake, blood levels and executive function in Tanzanian children.
Six solar proton events have been observed by ground level cosmic ray detectors so far during solar cycle 21, a little less than one per year. All of these have been much smaller than the giant events observed in solar cycle 19. As with many other aspects of solar activity, the reason for the differences from cycle to cycle remain unknown.
The University of Tasmania balloon-borne large area X-ray telescope was flown from Alice Springs on 20 November 1978. A number of known X-ray sources were observed and a transient increase believed to be a gamma ray burst was detected.
In recent years, cosmic-rays have become part of the study of astrophysics and the search for information as to their origin has assumed considerable importance. The question of the origin of the rays is linked with questions concerning their acceleration and propagation through interstellar space. The main problem facing the cosmic-ray astrophysicist in attempting to elucidate these questions observationally arises from the fact that most particles are electrically charged, causing their paths to be curved by the magnetic fields of the Earth and interplanetary and interstellar space.
The University of Tasmania has been operating muon telescopes since mid-1971 in an underground power station operated by the Hydro-Electric Commission at Poatina in Northern Tasmania. The equipment is located beneath ~ 150 m of rock, corresponding to a total absorption depth of ˜ 365 hg cm-2. The initial pilot experiment was reported (Fenton and Fenton 1972) at the May 1972 meeting of A.S.A., and results from the first two full years of operation were presented to the Hobart meeting of A.S.A. two years later (Fenton and Fenton 1974). We now have complete data for the 5-year period 1972-1976, together with provisional data for 1977.
Although transient decreases in cosmic ray intensity of the type first reported by Forbush (1937) have been observed and studied for more than 40 years using a variety of detectors at many locations, from medium depths underground to those on spacecraft far from Earth, the precise nature of the physical process causing these events is not yet clear (see, for example, McKibben 1981).
The ground level event (GLE) observed on November 22, 1977, is of interest because of the spread of onset times observed by various cosmic ray neutron monitors. Previous reports (Fenton, Fenton and Humble 1978, 1979) have discussed this matter without being able to reach definite conclusions. We have now obtained data from a further seven neutron monitors, and also some from the Imp 8 spacecraft. These data combine to suggest that the event may have been more complex than we initially supposed.
Most of the recent advances in X-ray astronomy have resulted from satellite observations in the low energy (< 20 keV) range. The Einstein X-ray Observatory in particular has been responsible for a dramatic increase in our knowledge of the X-ray sky, in that all major classes of astronomical objects have been detected.
Absorption limits the distances at which X-ray sources may be observed at low photon energies (≲3 keV). Several authors have estimated the X-ray absorption coefficients of the interstellar medium by assuming a chemical composition such as that given by Aller for the general abundances of the elements.
The barometric coefficient of a cosmic-ray neutron monitor is found to increase with atmospheric depth from ~ 150 mm Hg to 600 mm Hg and then to decrease slowly with depth down to 760 mm Hg (Bachelet et al. 1965; Carmichael and Bercovitch 1969). Bachelet et al. 1965) tentatively attributed this change in the slope of the barometric coefficient versus atmospheric depth curve at 600 mm Hg to the contribution made by muons to the neutron monitor counting rate. Carmichael and Bercovitch (1969) have shown that the contribution to the monitor counting rate made by obliquely incident nucleons may be the real cause. Singh et al. (1970) have derived an expression for the barometric coefficient for vertically incident particles in a neutron monitor which increases continuously with increasing atmospheric depth down to 760 mm Hg, demonstrating more definitely that the above explanation of Carmichael and Bercovitch is correct.
Solar flares for which protons of relativistic energies reach Earth are rare events compared with the number in which non-relativistic protons are produced. For instance, Shea and Smart (1978) have listed 139 proton events for the interval 1955-69 of which 17 were GLE’s (i.e. “ground level events” detected by the world network of cosmic ray neutron monitors). We have tentatively identified a further 11 GLE’s in the interval 1970-1977, of which 3 were in 1977 in the sunspot cycle which commenced about mid-1976 (cycle 21). Thus the average rate over the past two solar cycles has been a little over one per year.
Evidence has been mounting for some years that cosmic rays have a dwell time in the disk of the Galaxy of 106-107 years. This evidence comes mainly from the study of the chemical composition of the cosmic rays, for if the particles were stored in the Galaxy for a longer time the heavy nuclei would suffer more collisions with interstellar matter and would be broken down into lighter nuclei or protons (see, for example, Shapiro).
It is now firmly established that a small anisotropy of the galactic cosmic rays exists, observable from Earth as a variation of intensity in sidereal time. The problem now is to determine more clearly the characteristics of the anisotropy and, in particular, its detailed spatial structure and how it depends upon the energy and composition of the cosmic rays. This is a very difficult task and, in the final analysis, may not be fully achievable from Earth-based observations. The purpose of the present paper is to describe briefly an installation now operating in Tasmania to provide further information on the spatial structure of the anisotropy.