Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T21:02:49.573Z Has data issue: false hasContentIssue false

11 - A Molecular Perspective on Mechanotransduction in Focal Adhesions

Published online by Cambridge University Press:  05 July 2014

Seung E. Lee
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Mechanotransduction and Focal Adhesions

Living cells respond to mechanical stimulation in a variety of ways that shape their phenotype in health and disease. Such a mechanosensing character is essential for cells to probe their environment and respond accordingly to their fate of cell growth, differentiation, or death. Although the biochemical signaling pathways activated by mechanical stimuli have been extensively studied, little is known of the basic underlying mechanisms. As discussed throughout this book, several mechanisms of mechanotransduction have been proposed. It is conceivable that the mechanical signal may be transduced into a chemical signal through protein activation, leading to the upregulation of intracellular signaling proteins. Alternatively, the forces may be transmitted via individual proteins either at the site of cell adhesion to its surroundings or within the stress-bearing members of the cytoskeleton and can cause conformational changes that alter their binding affinity to other intracellular molecules. This altered equilibrium state can subsequently initiate a biochemical signaling cascade or produce more immediate and local structural changes; see reviews [1–4].

One extensively studied example of mechanotransduction is force regulation of the focal adhesion assembly. Focal adhesions have important cellular functions, and their study can provide useful insight into understanding mechanotransduction pathways. Many studies have looked into the force response of focal adhesions with the aim of understanding their mechanisms and implications. The focus of this chapter will be on the direct mechanical response of focal adhesions at the cellular and molecular levels. In the remainder of this section, the role of focal adhesions and their maturation stages are discussed. In the following section, experimental studies on force regulation of focal adhesions are described. Then, the numerical works on the effect of force on adhesion proteins and their molecular mechanisms are examined. Finally, future outlook and perspectives are presented in the last section.

Type
Chapter
Information
Cellular Mechanotransduction
Diverse Perspectives from Molecules to Tissues
, pp. 250 - 268
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Janmey, P. A. and Weitz, D. A.. 2004. Dealing with mechanics: Mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370.CrossRefGoogle ScholarPubMed
Kamm, R. D. and Kaazempur-Mofrad, M. R.. 2004. On the molecular basis for mechanotransduction. Mech Chem Biosyst 1:201–209.Google ScholarPubMed
Vogel, V. 2006. Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488.CrossRefGoogle ScholarPubMed
Vogel, V. and Sheetz, M.. 2006. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275.CrossRefGoogle ScholarPubMed
Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., and Geiger, B.. 2001. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472.CrossRefGoogle ScholarPubMed
Galbraith, C. G., Yamada, K. M., and Sheetz, M. P.. 2002. The relationship between force and focal complex development. J Cell Biol 159:695–705.CrossRefGoogle ScholarPubMed
Pelham, R. J. and Wang, Y.. 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665.CrossRefGoogle ScholarPubMed
Cramer, L. P. and Mitchison, T. J.. 1995. Myosin is involved in postmitotic cell spreading. J Cell Biol 131:179–189.CrossRefGoogle ScholarPubMed
Lo, C. M., Wang, H. B., Dembo, M., and Wang, Y. L.. 2000. Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152.CrossRefGoogle Scholar
Nobes, C. D. and Hall, A.. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62.CrossRefGoogle ScholarPubMed
Ridley, A. J. and Hall, A.. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.CrossRefGoogle ScholarPubMed
Fukata, Y., Amano, M., and Kaibuchi, K.. 2001. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39.CrossRefGoogle ScholarPubMed
Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A., and Boone, C.. 2002. Role of formins in actin assembly: Nucleation and barbed-end association. Science 297:612–615.CrossRefGoogle ScholarPubMed
Geiger, B. and Bershadsky, A.. 2001. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592.CrossRefGoogle ScholarPubMed
Frisch, S. M. and Francis, H.. 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626.CrossRefGoogle ScholarPubMed
Domingos, P. P., Fonseca, P. M., Nadruz, Jr W.., and Franchini, K. G.. 2002. Load-induced focal adhesion kinase activation in the myocardium: Role of stretch and contractile activity. Am J Physiol Heart Circ Physiol 282: H556–564.CrossRefGoogle ScholarPubMed
Ren, X. D., Kiosses, W. B., Sieg, D. J., Otey, C. A., Schlaepfer, D. D., and Schwartz, M. A.. 2000. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci 113(Pt 20):3673–3678.Google ScholarPubMed
Zamir, E. and Geiger, B.. 2001. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590.Google ScholarPubMed
Jiang, G. Y., Giannone, G., Critchley, D. R., Fukumoto, E., and Sheetz, M. P.. 2003. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337.CrossRefGoogle ScholarPubMed
DeMali, K. A., Barlow, C. A., and Burridge, K.. 2002. Recruitment of the Arp2/3 complex to vinculin: Coupling membrane protrusion to matrix adhesion. J Cell Biol 159:881–891.CrossRefGoogle ScholarPubMed
Laukaitis, C. M., Webb, D. J., Donais, K., and Horwitz, A. F.. 2001. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol 153:1427–1440.CrossRefGoogle ScholarPubMed
Rottner, K., Hall, A., and Small, J. V.. 1999. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 9:640–648.CrossRefGoogle ScholarPubMed
Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A. D.. 2001. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1186.CrossRefGoogle ScholarPubMed
Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., and Chen, C. S.. 2003. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489.CrossRefGoogle ScholarPubMed
Finer, J. T., Mehta, A. D., and Spudich, J. A.. 1995. Characterization of single actin-myosin interactions. Biophys J 68:291S–296S; discussion 296S–297S.Google ScholarPubMed
Thoumine, O. and Meister, J. J.. 2000. Dynamics of adhesive rupture between fibroblasts and fibronectin: Microplate manipulations and deterministic model. Eur Biophys J 29:409–419.CrossRefGoogle ScholarPubMed
Carrion-Vazquez, M., Li, H., Lu, H., Marszalek, P. E., Oberhauser, A. F., and Fernandez, J. M.. 2003. The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 10:738–743.CrossRefGoogle ScholarPubMed
Gao, M., Craig, D., Vogel, V., and Schulten, K.. 2002. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J Mol Biol 323:939–950.CrossRefGoogle ScholarPubMed
Lu, H., Isralewitz, B., Krammer, A., Vogel, V., and Schulten, K.. 1998. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671.CrossRefGoogle ScholarPubMed
Marszalek, P. E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Schulten, K., and Fernandez, J. M.. 1999. Mechanical unfolding intermediates in titin modules. Nature 402:100–103.CrossRefGoogle ScholarPubMed
Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M., and Fernandez, J. M.. 2002. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447.CrossRefGoogle ScholarPubMed
Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R., and Sheetz, M. P.. 2003. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163:409–419.CrossRefGoogle Scholar
Gilmore, A. P., Jackson, P., Waites, G. T., and Critchley, D. R.. 1992. Further characterization of the talin-binding site in the cytoskeletal protein vinculin. J Cell Sci 103:719–731.Google Scholar
Menkel, A. R., Kroemker, M., Bubeck, P., Ronsiek, M., Nikolai, G., and Jockusch, B. M.. 1994. Characterization of an F-actin-binding domain in the cytoskeletal protein vinculin. J Cell Biol 126:1231–1240.CrossRefGoogle ScholarPubMed
Gingras, A. R., Ziegler, W. H., Frank, R., Barsukov, I. L., Roberts, G. C., Critchley, D. R., and Emsley, J.. 2005. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J Biol Chem 280:37217–37224.CrossRefGoogle ScholarPubMed
Papagrigoriou, E., Gingras, A. R., Barsukov, I. L., Bate, N., Fillingham, I. J., Patel, B., Frank, R., Ziegler, W. H., Roberts, G. C. K., Critchley, D. R., and Emsley, J.. 2004. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. Embo J. 23:2942–2951.CrossRefGoogle ScholarPubMed
Patel, B. C., Gingras, A. R., Bobkov, A. A., Fujimoto, L. M., Zhang, M., Liddington, R. C., Mazzeo, D., Emsley, J., Roberts, G. C., Barsukov, I. L., and Critchley, D. R.. 2006. The activity of the vinculin binding sites in talin is influenced by the stability of the helical bundles that make up the talin rod. J Biol Chem 281(11):7458–67.CrossRefGoogle ScholarPubMed
Bakolitsa, C., de Pereda, J. M., Bagshaw, C. R., Critchley, D. R., and Liddington, R. C.. 1999. Crystal structure of the vinculin tail suggests a pathway for activation. Cell 99:603–613.CrossRefGoogle ScholarPubMed
Winkler, J., Lunsdorf, H., and Jockusch, B. M.. 1996. The ultrastructure of chicken gizzard vinculin as visualized by high-resolution electron microscopy. J Struct Biol 116:270–277.CrossRefGoogle ScholarPubMed
Gilmore, A. P. and Burridge, K.. 1996. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381:531–535.CrossRefGoogle ScholarPubMed
McGregor, A., Blanchard, A. D., Rowe, A. J., and Critchley, D. R.. 1994. Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. Biochem J 301:225–233.CrossRefGoogle ScholarPubMed
Xu, W. M., Coll, J. L., and Adamson, E. D.. 1998. Rescue of the mutant phenotype by reexpression of full-length vinculin in null F9 cells; effects on cell locomotion by domain deleted vinculin. J Cell Sci 111:1535–1544.Google ScholarPubMed
Critchley, D. R. 2000. Focal adhesions – the cytoskeletal connection. Curr Opin Cell Biol 12:133–139.CrossRefGoogle ScholarPubMed
Izard, T., Evans, G., Borgon, R. A., Rush, C. L., Bricogne, G., and Bois, P. R. J.. 2004. Vinculin activation by talin through helical bundle conversion. Nature 427:171–175.CrossRefGoogle ScholarPubMed
Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W., and Anderson, R. A.. 2002. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420:89–93.CrossRefGoogle ScholarPubMed
Bakolitsa, C., Cohen, D. M., Bankston, L. A., Bobkov, A. A., Cadwell, G. W., Jennings, L., Critchley, D. R., Craig, S. W., and Liddington, R. C.. 2004. Structural basis for vinculin activation at sites of cell adhesion. Nature 430: 583–586.CrossRefGoogle ScholarPubMed
Bass, M. D., Smith, B. J., Prigent, S. A., and Critchley, D. R.. 1999. Talin contains three similar vinculin-binding sites predicted to form an amphipathic helix. Biochem J 341:257–263.CrossRefGoogle ScholarPubMed
Bass, M. D., Patel, B., Barsukov, I. G., Fillingham, I. J., Mason, R., Smith, B. J., Bagshaw, C. R., and Critchley, D. R.. 2002. Further characterization of the interaction between the cytoskeletal proteins talin and vinculin. Biochem J 362:761–768.CrossRefGoogle ScholarPubMed
Priddle, H., Hemmings, L., Monkley, S., Woods, A., Patel, B., Sutton, D., Dunn, G. A., Zicha, D., and Critchley, D. R.. 1998. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J Cell Biol 142:1121–1133.CrossRefGoogle Scholar
Fillingham, I., Gingras, A. R., Papagrigoriou, E., Patel, B., Emsley, J., Critchley, D. R., Roberts, G. C. K., and Barsukov, I. L.. 2005. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13:65–74.CrossRefGoogle Scholar
Izard, T. and Vonrhein, C.. 2004. Structural basis for amplifying vinculin activation by talin. J Biol Chem 279:27667–27678.CrossRefGoogle ScholarPubMed
Lee, S. E., Kamm, R. D., and Mofrad, M. R.. 2007. Force-induced activation of Talin and its possible role in focal adhesion mechanotransduction. J Biomech 40:2096–2106.CrossRefGoogle ScholarPubMed
Evans, E. and Ritchie, K.. 1997. Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555.CrossRefGoogle ScholarPubMed
Hummer, G. and Szabo, A.. 2003. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85:5–15.CrossRefGoogle ScholarPubMed
Litvinov, R. I., Shuman, H., Bennett, J. S., and Weisel, J. W.. 2002. Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc Natl Acad Sci USA 99:7426–7431.CrossRefGoogle ScholarPubMed
Lazaridis, T. and Karplus, M.. 1999. Effective energy function for proteins in solution. Proteins 35:133–152.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Im, W., Lee, M. S., and Brooks, C. L., 3rd. 2003. Generalized born model with a simple smoothing function. J Comput Chem 24:1691–1702.CrossRefGoogle ScholarPubMed
Schaefer, M., Bartels, C., Leclerc, F., and Karplus, M.. 2001. Effective atom volumes for implicit solvent models: Comparison between Voronoi volumes and minimum fluctuation volumes. J Comput Chem 22:1857–1879.CrossRefGoogle ScholarPubMed
Brockwell, D. J., Paci, E., Zinober, R. C., Beddard, G. S., Olmsted, P. D., Smith, D. A., Perham, R. N., and Radford, S. E.. 2003. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol 10:731–737.CrossRefGoogle ScholarPubMed
Paci, E. and Karplus, M.. 2000. Unfolding proteins by external forces and temperature: The importance of topology and energetics. Proc Natl Acad Sci USA 97:6521–6526.CrossRefGoogle ScholarPubMed
Lee, S. E., Chunsrivirot, S., Kamm, R. D., and Mofrad, M. R.. 2008. Molecular dynamics study of talin-vinculin binding. Biophys J 95:2027–2036.CrossRefGoogle ScholarPubMed
Bois, P. R., Borgon, R. A., Vonrhein, C., and Izard, T.. 2005. Structural dynamics of alpha-actinin-vinculin interactions. Mol Cell Biol 25:6112–6122.CrossRefGoogle ScholarPubMed
Ziegler, W. H., Liddington, R. C., and Critchley, D. R.. 2006. The structure and regulation of vinculin. Trends Cell Biol 16:453–460.CrossRefGoogle ScholarPubMed
Hytonen, V. P. and Vogel, V.. 2008. How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput Biol 4:e24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×