Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T12:45:59.575Z Has data issue: false hasContentIssue false

8 - Tensegrity as a Mechanism for Integrating Molecular and Cellular Mechanotransduction Mechanisms

Published online by Cambridge University Press:  05 July 2014

Donald E. Ingber
Affiliation:
Harvard Medical School and Children’s Hospital
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

Large-scale mechanical forces due to gravity, movement, air flow, and hemodynamic forces have been recognized to be important regulators of tissue form and function for more than a century. The effects of compression on bone, tension on muscle, respiratory motion on lung, and shear on blood vessels are a few prime examples. Although interest in mechanics waned when biology shifted its focus to chemicals and genes in the middle of the last century, there has been a recent renaissance in the field of mechanical biology. Physical forces are now known to be key regulators of virtually all facets of molecular and cellular behavior, as well as developmental control and wound repair [1]. Impaired mechanical signaling also underlies many diseases, and numerous clinical therapies utilize mechanical stimulation to produce their healing effects [2]. However, we still do not fully understand “mechanotransduction” – the process by which individual cells sense and respond to mechanical forces by altering biochemistry and gene expression.

To understand how individual cells respond to mechanical forces, we need to define how stresses are borne and distributed within cells, as well as how they are focused on critical molecular elements that mediate mechanochemical conversion. Early studies assumed that mechanotransduction might be mediated through generalized deformation of the cell’s surface membrane that produced changes in membrane-associated signal transduction. Although this may occur, it is now clear that multiple molecules and structures distributed throughout the membrane, cytoplasm, cytoskeleton, and nucleus contribute to the mechanotransduction response that governs cell behavioral control [1, 3, 4]. Thus, it is critical that we understand how cells are structured so that mechanical stresses are channeled and focused simultaneously on the various key conversion molecules and structures that mediate the transduction response.

Type
Chapter
Information
Cellular Mechanotransduction
Diverse Perspectives from Molecules to Tissues
, pp. 196 - 219
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ingber, D. E. Cellular mechanotransduction: Putting all the pieces together again, FASEB J 20, 2006, 811–827.CrossRefGoogle Scholar
Ingber, D. E. Mechanobiology and diseases of mechanotransduction, Ann Med 35, 2003, 564–577.CrossRefGoogle ScholarPubMed
Ingber, D. E. Tensegrity: The architectural basis of cellular mechanotransduction, Annu Rev Physiol 59, 1997, 575–599.CrossRefGoogle ScholarPubMed
Geiger, B., Bershadsky, A., Pankov, R. and Yamada, K. M. Transmembrane crosstalk between the extracellular matrix – Cytoskeleton crosstalk, Nat Rev Mol Cell Biol 2, 2001, 793–805.CrossRefGoogle ScholarPubMed
Sukharev, S. and Corey, D. P. Mechanosensitive channels: Multiplicity of families and gating paradigms, Sci STKE 2004, 2004, re4.Google ScholarPubMed
Wang, N., Butler, J. P. and Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton, Science 260, 1993, 1124–1127.CrossRefGoogle ScholarPubMed
Choquet, D., Felsenfeld, D. P. and Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages, Cell 88, 1997, 39–48.CrossRefGoogle ScholarPubMed
Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K. and Ingber, D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex, Mol Biol Cell 6, 1995, 1349–1365.CrossRefGoogle ScholarPubMed
Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K. and Yamada, K. M. Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules, J Cell Biol 131, 1995, 791–805.CrossRefGoogle ScholarPubMed
Chicurel, M. E., Singer, R. H., Meyer, C. J. and Ingber, D. E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions, Nature 392, 1998, 730–733.CrossRefGoogle ScholarPubMed
Meyer, C. J., Alenghat, F. J., Rim, P., Fong, J. H., Fabry, B. and Ingber, D. E. Mechanical control of cyclic AMP signalling and gene transcription through integrins, Nat Cell Biol 2, 2000, 666–668.CrossRefGoogle ScholarPubMed
Matthews, B. D., Overby, D. R., Mannix, R. and Ingber, D. E. Cellular adaptation to mechanical stress: Role of integrins, Rho, cytoskeletal tension, and mechanosensitive ion channels, J Cell Sci 119, 2006, 508–518.CrossRefGoogle ScholarPubMed
Sawada, Y., Tamada, M., Dubin-Thaler, B. J., Cherniavskaya, O., Sakai, R., Tanaka, S. and Sheetz, M. P. Force sensing by mechanical extension of the Src family kinase substrate p130Cas, Cell 127, 2006, 1015–1026.CrossRefGoogle ScholarPubMed
Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y. and Chien, S. Visualizing the mechanical activation of Src, Nature 434, 2005, 1040–1045.CrossRefGoogle ScholarPubMed
Ingber, D. Integrins as mechanochemical transducers, Curr Opin Cell Biol 3, 1991, 841–848.CrossRefGoogle ScholarPubMed
Maniotis, A. J., Bojanowski, K. and Ingber, D. E. Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells, J Cell Biochem 65, 1997, 114–130.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Wang, N. et al. Mechanical behavior in living cells consistent with the tensegrity model, Proc Natl Acad Sci USA 98, 2001, 7765–7770.CrossRefGoogle ScholarPubMed
Hu, S. et al. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells, Am J Physiol Cell Physiol 285, 2003, C1082–C1090.CrossRefGoogle ScholarPubMed
Ingber, D. E., Madri, J. A. and Jamieson, J. D. Role of basal lamina in neoplastic disorganization of tissue architecture, Proc Natl Acad Sci USA 78, 1981, 3901–3905.CrossRefGoogle ScholarPubMed
Ingber, D. and Jamieson, J. D. (1985) in: Gene Expression During Normal and Malignant Differentiation, pp. 13–32 (Andersson, L. C., Gahmberg, C. G. and Ekblom, P., Eds.), Academic Press, Orlando.Google Scholar
Ingber, D. E. Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton, J Cell Sci 104(Pt 3), 1993, 613–627.Google ScholarPubMed
Fuller, B. Tensegrity, Portfolio Artnews Annual 4, 1961, 112–127.Google Scholar
Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology, J Cell Sci 116, 2003, 1157–1173.CrossRefGoogle ScholarPubMed
Stamenovic, D., Fredberg, J. J., Wang, N., Butler, J. P. and Ingber, D. E. A microstructural approach to cytoskeletal mechanics based on tensegrity, J Theor Biol 181, 1996, 125–136.CrossRefGoogle ScholarPubMed
Stamenovic, D. and Ingber, D. E. Models of cytoskeletal mechanics of adherent cells, Biomech Model Mechanobiol 1, 2002, 95–108.CrossRefGoogle ScholarPubMed
Ingber, D. E., Madri, J. A. and Jamieson, J. D. Basement membrane as a spatial organizer of polarized epithelia. Exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro, Am J Pathol 122, 1986, 129–139.Google ScholarPubMed
Ingber, D. E., Madri, J. A. and Folkman, J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion, In Vitro Cell Dev Biol 23, 1987, 387–394.CrossRefGoogle ScholarPubMed
Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape, Proc Natl Acad Sci USA 87, 1990, 3579–3583.CrossRefGoogle ScholarPubMed
Sims, J. R., Karp, S. and Ingber, D. E. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape, J Cell Sci 103(Pt 4), 1992, 1215–1222.Google ScholarPubMed
Wang, N. and Ingber, D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension, Biophys J 66, 1994, 2181–2189.CrossRefGoogle ScholarPubMed
Alenghat, F. J., Fabry, B., Tsai, K. Y., Goldmann, W. H. and Ingber, D. E. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer, Biochem Biophys Res Commun 277, 2000, 93–99.CrossRefGoogle ScholarPubMed
Matthews, B. D., Overby, D. R., Alenghat, F. J., Karavitis, J., Numaguchi, Y., Allen, P. G. and Ingber, D. E. Mechanical properties of individual focal adhesions probed with a magnetic microneedle, Biochem Biophys Res Commun 313, 2004, 758–764.CrossRefGoogle ScholarPubMed
Overby, D. R., Matthews, B. D., Alsberg, E. and Ingber, D. E. Novel dynamic rheological behavior of focal adhesions measured within single cells using electromagnetic pulling cytometry, Acta Biomateriala 3, 2005, 295–303.CrossRefGoogle Scholar
Yoshida, M., Westlin, W. F., Wang, N., Ingber, D. E., Rosenzweig, A., Resnick, N. and Gimbrone, M. A.. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton, J Cell Biol 133, 1996, 445–455.CrossRefGoogle ScholarPubMed
Overby, D. R., Alenghat, F. J., Montoya-Zavala, M., Bei, H. C., Oh, P., Karavitis, J. and Ingber, D. E. Magnetic cellular switches, IEEE Trans Magnetics 40, 2004, 2958–2960.CrossRefGoogle ScholarPubMed
Ezzell, R. M., Goldmann, W. H., Wang, N., Parasharama, N. and Ingber, D. E. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton, Exp Cell Res 231, 1997, 14–26.CrossRefGoogle ScholarPubMed
Stamenovic, D. and Coughlin, M. F. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: A quantitative analysis, J Theor Biol 201, 1999, 63–74.CrossRefGoogle ScholarPubMed
Stamenović, D., Wang, N. and Ingber, D. E. Tensegrity architecture and the mammalian cell cytoskeleton. In: Multiscaling in Molecular and Continuum Mechanics: Integration of Time and Size from Macro to Nano (Sih, C. G., Ed.), Springer, New York, 2006.Google Scholar
Pourati, J. et al. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?, Am J Physiol 274, 1998, C1283–1289.CrossRefGoogle Scholar
Wang, N., Tolic-Norrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J. and Stamenovic, D. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells, Am J Physiol Cell Physiol 282, 2002, C606–C616.CrossRefGoogle ScholarPubMed
Stamenovic, D., Mijailovich, S. M., Tolic-Norrelykke, I. M. and Wang, N. Experimental tests of the cellular tensegrity hypothesis, Biorheology 40, 2003, 221–225.Google ScholarPubMed
Rosenblatt, N., Hu, S., Suki, B., Wang, N. and Stamenovic, D. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells, Ann Biomed Eng 35, 2007, 224–234.CrossRefGoogle ScholarPubMed
Maniotis, A. J., Chen, C. S. and Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proc Natl Acad Sci USA 94, 1997, 849–854.CrossRefGoogle ScholarPubMed
Hu, S., Chen, J., Butler, J. P. and Wang, N. Prestress mediates force propagation into the nucleus, Biochem Biophys Res Commun 329, 2005, 423–428.CrossRefGoogle ScholarPubMed
Hu, S. and Wang, N. Control of stress propagation in the cytoplasm by prestress and loading frequency, Mol Cell Biomech 3, 2006, 49–60.Google ScholarPubMed
Wang, N., Hu, S. and Butler, J. P. Imaging stress propagation in the cytoplasm of a living cell, Methods Cell Biol 83, 2007, 179–198.CrossRefGoogle ScholarPubMed
Eckes, B. et al. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts, J Cell Sci 111(Pt 13), 1998, 1897–1907.Google ScholarPubMed
Mooney, D. J., Langer, R. and Ingber, D. E. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix, J Cell Sci 108(Pt 6), 1995, 2311–2320.Google Scholar
Bereiter-Hahn, J., Luck, M., Miebach, T., Stelzer, H. K. and Voth, M. Spreading of trypsinized cells: Cytoskeletal dynamics and energy requirements, J Cell Sci 96(Pt 1), 1990, 171–188.Google ScholarPubMed
Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E. and Ingber, D. E. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics, Biophys J 90, 2006, 3762–3773.CrossRefGoogle ScholarPubMed
Fabry, B., Maksym, G. N., Shore, S. A., Moore, P. E., Panettieri, R. A., Butler, J. P. and Fredberg, J. J. Selected contribution: Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells, J Appl Physiol 91, 2001, 986–994.CrossRefGoogle ScholarPubMed
Stamenovic, D., Suki, B., Fabry, B., Wang, N. and Fredberg, J. J. Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress, J Appl Physiol 96, 2004, 1600–1605.CrossRefGoogle ScholarPubMed
Rosenblatt, N., Hu, S., Chen, J., Wang, N. and Stamenovic, D. Distending stress of the cytoskeleton is a key determinant of cell rheological behavior, Biochem Biophys Res Commun 321, 2004, 617–622.CrossRefGoogle ScholarPubMed
Stamenovic, D. Effects of cytoskeletal prestress on cell rheological behavior, Acta Biomater 1, 2005, 255–262.CrossRefGoogle ScholarPubMed
Vera, C., Skelton, R., Bossens, F. and Sung, L. A. 3-d nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations, Ann Biomed Eng 33, 2005, 1387–1404.CrossRefGoogle ScholarPubMed
Zhu, Q., Vera, C., Asaro, R. J., Sche, P. and Sung, L. A. A hybrid model for erythrocyte membrane: A single unit of protein network coupled with lipid bilayer, Biophys J 93, 2007, 386–400.CrossRefGoogle ScholarPubMed
Gardel, M. L., Nakamura, F., Hartwig, J. H., Crocker, J. C., Stossel, T. P. and Weitz, D. A. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells, Proc Natl Acad Sci USA 103, 2006, 1762–1767.CrossRefGoogle Scholar
Gardel, M. L., Nakamura, F., Hartwig, J., Crocker, J. C., Stossel, T. P. and Weitz, D. A. Stress-dependent elasticity of composite actin networks as a model for cell behavior, Phys Rev Lett 96, 2006, 88–102.CrossRefGoogle ScholarPubMed
Heidemann, S. R., Lamoureaux, P. and Buxbaum, R. E. Opposing views on tensegrity as a structural framework for understanding cell mechanics, J Appl Physiol 89, 2000, 1670–1678.Google ScholarPubMed
Gittes, F., Mickey, B., Nettleton, J. and Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, J Cell Biol 120, 1993, 923–934.CrossRefGoogle Scholar
Kaech, S., Ludin, B. and Matus, A. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins, Neuron 17, 1996, 1189–1199.CrossRefGoogle ScholarPubMed
Brangwynne, C. M. F., Kumar, S., Geisse, N. A., Mahadevan, L., Parker, K. K., Ingber, D. E. and Weitz, D. Microtubules can bear enhanced compressive loads in living cells due to lateral reinforcement, J Cell Biol 175(5), 2006, 733–741.CrossRefGoogle Scholar
Dennerll, T. J., Joshi, H. C., Steel, V. L., Buxbaum, R. E. and Heidemann, S. R. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements, J Cell Biol 107, 1988, 665–674.CrossRefGoogle ScholarPubMed
Buxbaum, R. E. and Heidemann, S. R. A thermodynamic model for force integration and microtubule assembly during axonal elongation, J Theor Biol 134, 1988, 379–390.CrossRefGoogle ScholarPubMed
Mooney, D. J., Hansen, L. K., Langer, R., Vacanti, J. P. and Ingber, D. E. Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover, Mol Biol Cell 5, 1994, 1281–1288.CrossRefGoogle ScholarPubMed
Putnam, A. J., Schultz, K. and Mooney, D. J. Control of microtubule assembly by extracellular matrix and externally applied strain, Am J Physiol Cell Physiol 280, 2001, C556–C564.CrossRefGoogle ScholarPubMed
Hu, S., Chen, J. and Wang, N. Cell spreading controls balance of prestress by microtubules and extracellular matrix, Front Biosci 9, 2004, 2177–2182.CrossRefGoogle ScholarPubMed
Ingber, D. E. The architecture of life, Sci Am 278, 1998, 48–57.CrossRefGoogle Scholar
McMahon, T. A. in: Muscles, Reflexes, and Locomotion, Princeton University Press, Princeton, NJ, 1984.Google Scholar
Stamenovic, D. Micromechanical foundations of pulmonary elasticity, Physiol Rev 70, 1990, 1117–1134.CrossRefGoogle ScholarPubMed
Ralphs, J. R., Waggett, A. D. and Benjamin, M. Actin stress fibres and cell-cell adhesion molecules in tendons: Organisation in vivo and response to mechanical loading of tendon cells in vitro, Matrix Biol 21, 2002, 67–74.CrossRefGoogle ScholarPubMed
Komulainen, J., Takala, T. E., Kuipers, H. and Hesselink, M. K. The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions, Pflugers Arch 436, 1998, 735–741.CrossRefGoogle ScholarPubMed
Quinn, T. M., Dierickx, P. and Grodzinsky, A. J. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression, J Biomech 34, 2001, 1483–1490.CrossRefGoogle Scholar
Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus, J Biomech 28, 1995, 1529–1541.CrossRefGoogle ScholarPubMed
Toshima, M., Ohtani, Y. and Ohtani, O. Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung, Arch Histol Cytol 67, 2004, 31–40.CrossRefGoogle ScholarPubMed
Tschumperlin, D. J. et al. Mechanotransduction through growth-factor shedding into the extracellular space, Nature 429, 2004, 83–86.CrossRefGoogle Scholar
Hutchison, C. J. Lamins: Building blocks or regulators of gene expression?, Nat Rev Mol Cell Biol 3, 2002, 848–858.CrossRefGoogle ScholarPubMed
Pickett-Heaps, J. D., Forer, A. and Spurck, T. Traction fibre: Toward a “tensegral” model of the spindle, Cell Motil Cytoskeleton 37, 1997, 1–6.3.0.CO;2-D>CrossRefGoogle Scholar
Sheetz, M. P., Wayne, D. B. and Pearlman, A. L. Extension of filopodia by motor-dependent actin assembly, Cell Motil Cytoskeleton 22, 1992, 160–169.CrossRefGoogle ScholarPubMed
Domnina, L. V., Rovensky, J. A., Vasiliev, J. M. and Gelfand, I. M. Effect of microtubule-destroying drugs on the spreading and shape of cultured epithelial cells, J Cell Sci 74, 1985, 267–282.Google ScholarPubMed
Ingber, D. E., Prusty, D., Sun, Z., Betensky, H. and Wang, N. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis, J Biomech 28, 1995, 1471–1484.CrossRefGoogle ScholarPubMed
Ingber, D. E. et al. Cellular tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis, Int Rev Cytol 150, 1994, 173–224.CrossRefGoogle ScholarPubMed
Caspar, D. L. Movement and self-control in protein assemblies. Quasi- equivalence revisited, Biophys J 32, 1980, 103–138.CrossRefGoogle ScholarPubMed
Schutt, C. E., Kreatsoulas, C., Page, R. and Lindberg, U. Plugging into actin’s architectonic socket, Nat Struct Biol 4, 1997, 169–172.CrossRefGoogle Scholar
Butcher, J. A. and Lamb, G. W. The relationship between domes and foams: Application of geodesic mathematics to micelles, J Am Chem Soc 106, 1984, 1217–1220.CrossRefGoogle Scholar
Farrell, H. M., Qi, P. X., Brown, E. M., Cooke, P. H., Tunick, M. H., Wickham, E. D. and Unruh, J. J. Molten globule structures in milk proteins: Implications for potential new structure-function relationships, J Dairy Sci 85, 2002, 459–471.CrossRefGoogle ScholarPubMed
Ingber, D. E. The origin of cellular life, Bioessays 22, 2000, 1160–1170.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Zanotti, G. and Guerra, C. Is tensegrity a unifying concept of protein folds?, FEBS Lett 534, 2003, 7–10.CrossRefGoogle ScholarPubMed
Smith, S. B., Finzi, L. and Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science 258, 1992, 1122–1126.CrossRefGoogle ScholarPubMed
Pienta, K. J. and Coffey, D. S. Cell motility as a chemotherapeutic target, Cancer Surv 11, 1991, 255–263.Google Scholar
Pienta, K. J., Murphy, B. C., Getzenberg, R. H. and Coffey, D. S. The effect of extracellular matrix interactions on morphologic transformation in vitro, Biochem Biophys Res Commun 179, 1991, 333–339.CrossRefGoogle ScholarPubMed
Baneyx, G., Baugh, L. and Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension, Proc Natl Acad Sci USA 99, 2002, 5139–5143.CrossRefGoogle ScholarPubMed
Ingber, D. E. The riddle of morphogenesis: A question of solution chemistry or molecular cell engineering?, Cell 75, 1993, 1249–1252.CrossRefGoogle ScholarPubMed
Lai, W. M., Hou, J. S. and Mow, V. C. A triphasic theory for the swelling and deformation behaviors of articular cartilage, J Biomech Eng 113, 1991, 245–258.CrossRefGoogle ScholarPubMed
Grodzinsky, A. J. Electromechanical and physicochemical properties of connective tissue, Crit Rev Biomed Eng 9, 1983, 133–199.Google ScholarPubMed
Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I., Whitesides, G. M. and Ingber, D. E. Engineering cell shape and function, Science 264, 1994, 696–698.CrossRefGoogle ScholarPubMed
Chen, B. M. and Grinnell, A. D. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals, J Neurosci 17, 1997, 904–916.CrossRefGoogle ScholarPubMed
Huang, S., Chen, C. S. and Ingber, D. E. Control of cyclin D1, p27(Kip1), and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension, Mol Biol Cell 9, 1998, 3179–3193.CrossRefGoogle Scholar
Parker, K. K. et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces, FASEB J 16, 2002, 1195–1204.CrossRefGoogle ScholarPubMed
Moore, K. A., Polte, T., Huang, S., Shi, B., Alsberg, E., Sunday, M. E. and Ingber, D. E. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension, Developmental Dynamics 232, 2005, 268–281.CrossRefGoogle Scholar
Polte, T. R., Eichler, G. S., Wang, N. and Ingber, D. E. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress, Am J Physiol Cell Physiol 286, 2004, C518–C528.CrossRefGoogle Scholar
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. and Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev Cell 6, 2004, 483–495.CrossRefGoogle ScholarPubMed
Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L. and Discher, D. E. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments, J Cell Biol 166, 2004, 877–887.CrossRefGoogle ScholarPubMed
Resnick, N., Collins, T., Atkinson, W., Bonthron, D. T., Dewey, C. F. and Gimbrone, M. A.. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element, Proc Natl Acad Sci USA 90, 1993, 4591–4595.CrossRefGoogle ScholarPubMed
Chen, J., Fabry, B., Schiffrin, E. L. and Wang, N. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells, Am J Physiol Cell Physiol 280, 2001, C1475–C1484.CrossRefGoogle ScholarPubMed
Alenghat, F. J., Nauli, S. M., Kolb, R., Zhou, J. and Ingber, D. E. Global cytoskeletal control of mechanotransduction in kidney epithelial cells, Exp Cell Res 301, 2004, 23–30.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×