Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T11:56:42.140Z Has data issue: false hasContentIssue false

5 - Cellular Mechanotransduction: Interactions with the Extracellular Matrix

Published online by Cambridge University Press:  05 July 2014

Andrew D. Doyle
Affiliation:
National Institutes of Health
Kenneth M. Yamada
Affiliation:
National Institutes of Health
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

Much like whole organisms, single cells have the ability to “sense” and respond to their surroundings. This “sensing” not only includes monitoring and responding to changes in extracellular chemical messages, but also the physical nature of the cell’s microenvironment, particularly the components of the extracellular matrix (ECM). Anchorage to the surrounding ECM is important for many cellular functions and is mediated primarily by the integrin family, a group of heterodimeric transmembrane proteins that provide physical links of the cell to the external environment. Although integrins were once viewed as structural membrane proteins providing anchor points involved in cell adhesion and movement, they are now known to be centrally important for sensing the external environment and regulating the precise intracellular responses necessary for proper mechanotransduction.

Recent evidence suggests that besides its biochemical composition, the dimensional and rheological properties of the ECM are involved in signaling processes that not only affect cell motility, but also a multitude of intracellular second messenger pathways and gene regulation. In this chapter, we review how cells and their surrounding ECM interact, particularly focusing on integrins and fibronectin, and examine how their points of contact are involved in inside-out and outside-in signaling for setting the stage for mechanotransduction. In addition, a second major focus will be on the most recent findings regarding cellular mechanosensing and its relationship to the ECM. Furthermore, we describe how alterations to matrix components can lead to altered cellular motility, phenotype, and cellular responses.

Type
Chapter
Information
Cellular Mechanotransduction
Diverse Perspectives from Molecules to Tissues
, pp. 120 - 160
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, M., and Dunn, G. A.. 1975. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res. 92: 57–62.CrossRefGoogle ScholarPubMed
Abercrombie, M., Heaysman, J. E., and Pegrum, S. M.. 1971. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res. 67: 359–67.CrossRefGoogle ScholarPubMed
Akiyama, S. K. 1996. Integrins in cell adhesion and signaling. Hum Cell. 9: 181–6.Google ScholarPubMed
Akiyama, S. K., and Yamada, K. M.. 1985. The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem. 260: 4492–500.Google ScholarPubMed
Akiyama, S. K., Yamada, S. S., Chen, W. T., and Yamada, K. M.. 1989. Analysis of fibronectin receptor function with monoclonal antibodies: Roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol. 109: 863–75.CrossRefGoogle ScholarPubMed
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.. 2002. Molecular Biology of the Cell. Garland Science, New York.Google Scholar
Alon, R., Cahalon, L., Hershkoviz, R., Elbaz, D., Reizis, B., Wallach, D., Akiyama, S. K., Yamada, K. M., and Lider, O.. 1994. TNF-alpha binds to the N-terminal domain of fibronectin and augments the beta 1-integrin-mediated adhesion of CD4+ T lymphocytes to the glycoprotein. J Immunol. 152: 1304–13.Google ScholarPubMed
Aota, S., Nomizu, M., and Yamada, K. M.. 1994. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem. 269: 24756–61.Google ScholarPubMed
Arnaout, M. A., Mahalingam, B., and Xiong, J. P.. 2005. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 21: 381–410.CrossRefGoogle ScholarPubMed
Balaban, N. Q., Schartz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addad, L., and Geiger, B.. 2001. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3: 466–472.CrossRefGoogle ScholarPubMed
Ballestrem, C., Hinz, B., Imhof, B. A., and Wehrle-Haller, B.. 2001. Marching at the front and dragging behind: Differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J Cell Biol. 155: 1319–32.CrossRefGoogle ScholarPubMed
Baneyx, G., Baugh, L., and Vogel, V.. 2002. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA. 99: 5139–43.CrossRefGoogle ScholarPubMed
Bass, M. D., Roach, K. A., Morgan, M. R., Mostafavi-Pour, Z., Schoen, T., Muramatsu, T., Mayer, U., Ballestrem, C., Spatz, J. P., and Humphries, M. J.. 2007. Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J Cell Biol. 177: 527–38.CrossRefGoogle ScholarPubMed
Bazzoni, G., Shih, D. T., Buck, C. A., and Hemler, M. E.. 1995. Monoclonal antibody 9EG7 defines a novel beta 1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J Biol Chem. 270: 25570–7.CrossRefGoogle Scholar
Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V., and Wang, Y. L.. 2001. Nascent focal adhesions are responsible for the generation of strong propulsive forces on migrating fibroblasts. J Cell Biol. 153: 881–7.CrossRefGoogle ScholarPubMed
Beningo, K. A., Dembo, M., and Wang, Y. L.. 2004. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci USA. 101: 18024–9.CrossRefGoogle ScholarPubMed
Bershadsky, A. D., Balaban, N. Q., and Geiger, B.. 2003. Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol. 19: 677–95.CrossRefGoogle ScholarPubMed
Bischofs, I. B., Safran, S. A., and Schwarz, U. S.. 2004. Elastic interactions of active cells with soft materials. Phys Rev E Stat Nonlin Soft Matter Phys. 69: 021911.CrossRefGoogle ScholarPubMed
Bischofs, I. B., and Schwarz, U. S.. 2003. Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA. 100: 9274–9.CrossRefGoogle ScholarPubMed
Buck, C. A., Shea, E., Duggan, K., and Horwitz, A. F.. 1986. Integrin (the CSAT antigen): Functionality requires oligomeric integrity. J Cell Biol. 103: 2421–8.CrossRefGoogle ScholarPubMed
Cai, Y., Biais, N., Giannone, G., Tanase, M., Jiang, G., Hofman, J. M., Wiggins, C. H., Silberzan, P., Buguin, A., Ladoux, B., and Sheetz, M. P.. 2006. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys J. 91: 3907–20.CrossRefGoogle ScholarPubMed
Calderwood, D. A. 2004a. Integrin activation. J Cell Sci. 117: 657–66.CrossRefGoogle ScholarPubMed
Calderwood, D. A. 2004b. Talin controls integrin activation. Biochem Soc Trans. 32: 434–7.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C. J., Liddington, R. C., and Ginsberg, M. H.. 2003. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA. 100: 2272–7.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Yan, B., de Pereda, J. M., Alvarez, B. G., Fujioka, Y., Liddington, R. C., and Ginsberg, M. H.. 2002. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem. 277: 21749–58.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Zent, R., Grant, R., Rees, D. J., Hynes, R. O., and Ginsberg, M. H.. 1999. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J Biol Chem. 274: 28071–4.CrossRefGoogle ScholarPubMed
Carreiras, F., Denoux, Y., Staedel, C., Lehmann, M., Sichel, F., and Gauduchon, P.. 1996. Expression and localization of alpha v integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma. Gynecol Oncol. 62: 260–7.CrossRefGoogle ScholarPubMed
Carter, S. B. 1967. Haptotaxis and the mechanism of cell motility. Nature. 213: 256–60.CrossRefGoogle ScholarPubMed
Chen, W. 1981. Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol. 90: 187–200.CrossRefGoogle ScholarPubMed
Choquet, D., Felsenfeld, D. P., and Sheetz, M. P.. 1997. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 18: 39–48.CrossRefGoogle Scholar
Chrzanowska-Wodnicka, M., and Burridge, K.. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 133: 1403–15.CrossRefGoogle ScholarPubMed
Citi, S., and Kendrick-Jones, J.. 1988. Regulation of non-muscle myosin structure and function. BioEssays. 7: 155–159.CrossRefGoogle Scholar
Clark, K., Pankov, R., Travis, M. A., Askari, J. A., Mould, A. P., Craig, S. E., Newham, P., Yamada, K. M., and Humphries, M. J.. 2005. A specific alpha5beta1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci. 118: 291–300.CrossRefGoogle ScholarPubMed
Clark, R. A. F. 1996. The Molecular and Cellular Biology of Wound Repair. Plenum Press, New York. 611 pp.Google Scholar
Cluzel, C., Saltel, F., Lussi, J., Paulhe, F., Imhof, B. A., and Wehrle-Haller, B.. 2005. The mechanisms and dynamics of (alpha)v(beta)3 integrin clustering in living cells. J Cell Biol. 171: 383–92.CrossRefGoogle ScholarPubMed
Cukierman, E., Pankov, R., Stevens, D. R., and Yamada, K. M.. 2001. Taking cell-matrix adhesions to the third dimension. Science. 294: 1708–12.CrossRefGoogle ScholarPubMed
Cukierman, E., Pankov, R., and Yamada, K. M.. 2002. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol. 14: 633–9.CrossRefGoogle ScholarPubMed
Danen, E. H., Aota, S., van Kraats, A. A., Yamada, K. M., Ruiter, D. J., and van Muijen, G. N.. 1995. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha 5 beta 1. J Biol Chem. 270: 21612–8.CrossRefGoogle ScholarPubMed
Danen, E. H., and Yamada, K. M.. 2001. Fibronectin, integrins, and growth control. J Cell Physiol. 189: 1–13.CrossRefGoogle ScholarPubMed
Davis, S., Lu, M. L., Lo, S. H., Lin, S., Butler, J. A., Druker, B. J., Roberts, T. M., An, Q., and Chen, L. B.. 1991. Presence of an SH2 domain in the actin-binding protein tensin. Science. 252: 712–5.CrossRefGoogle ScholarPubMed
DeMali, K. A., Wennerberg, K., and Burridge, K.. 2003. Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol. 15: 572–82.CrossRefGoogle ScholarPubMed
Dembo, M., and Wang, Y. L.. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76: 2307–16.CrossRefGoogle ScholarPubMed
DiMilla, P. A., Barbee, K., and Lauffenburger, D. A.. 1991. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J. 60: 15–37.CrossRefGoogle ScholarPubMed
DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M., and Lauffenburger, D. A.. 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol. 122: 729–37.CrossRefGoogle ScholarPubMed
Discher, D. E., Janmey, P., and Wang, Y. L.. 2005. Tissue cells feel and respond to the stiffness of their substrate. Science. 310: 1139–43.CrossRefGoogle ScholarPubMed
Doyle, A., Marganski, W., and Lee, J.. 2004. Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes. J Cell Sci. 117: 2203–14.CrossRefGoogle ScholarPubMed
Doyle, A. D., and Lee, J.. 2002. Simultaneous, real-time imaging of intracellular calcium and cellular traction force production. Biotechniques. 33: 358–64.Google ScholarPubMed
Doyle, A. D., Wang, F. W., Matsumoto, K., and Yamada, K. M.. 2009. One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol. 184: 481–90.CrossRefGoogle ScholarPubMed
Duband, J. L., Dufour, S., Yamada, S. S., Yamada, K. M., and Thiery, J. P.. 1991. Neural crest cell locomotion induced by antibodies to beta 1 integrins. A tool for studying the roles of substratum molecular avidity and density in migration. J Cell Sci. 98(Pt 4):517–32.Google Scholar
Duband, J. L., Nuckolls, G. H., Ishihara, A., Hasegawa, T., Yamada, K. M., Thiery, J. P., and Jacobson, K.. 1988. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J Cell Biol. 107: 1385–96.CrossRefGoogle ScholarPubMed
Duband, J. L., Rocher, S., Chen, W. T., Yamada, K. M., and Thiery, J. P.. 1986. Cell adhesion and migration in the early vertebrate embryo: Location and possible role of the putative fibronectin receptor complex. J Cell Biol. 102: 160–78.CrossRefGoogle ScholarPubMed
Dunn, G. A. 1980. The locomotory machinery of fibroblasts. Eur J Cancer. 16: 6–8.CrossRefGoogle ScholarPubMed
Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., and Discher, D.. 2004. Substrate compliance versus ligand density in cell on gel responses. Biophys J. 86: 617–28.CrossRefGoogle ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E.. 2006. Matrix elasticity directs stem cell lineage specification. Cell. 126: 677–89.CrossRefGoogle ScholarPubMed
Evans, E. A., and Calderwood, D. A.. 2007. Forces and bond dynamics in cell adhesion. Science. 316: 1148–53.CrossRefGoogle ScholarPubMed
Even-Ram, S., Artym, V., and Yamada, K. M.. 2006. Matrix control of stem cell fate. Cell. 126: 645–7.CrossRefGoogle ScholarPubMed
Even-Ram, S., Doyle, A. D., Conti, M. A., Matsumoto, K., Adelstein, R. S., and Yamada, K. M.. 2007. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol. 9: 299–309.CrossRefGoogle ScholarPubMed
Finer, J. T., Simmons, R. M., and Spudich, J. A.. 1994. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 368: 113–9.CrossRefGoogle ScholarPubMed
French-Constant, C., and Colognato, H.. 2004. Integrins: Versatile integrators of extracellular signals. Trends Cell Biol. 14: 678–86.CrossRefGoogle Scholar
Friedland, J. C., Lee, M. H., and Boettiger, D.. 2009. Mechanically activated integrin switch controls alpha5beta1 function. Science. 323: 642–4.CrossRefGoogle ScholarPubMed
Galbraith, C., and Sheetz, M.. 1997. A micromachined device provides a new bend on fibroblast traction forces. Proc Nat Assoc Sci 94: 9114–9118.CrossRefGoogle ScholarPubMed
Galbraith, C., and Sheetz, M.. 1999. Keratocytes pull with similar forces on their dorsal and ventral surfaces. J. Cell Biol. 147: 1313–23.CrossRefGoogle ScholarPubMed
Galbraith, C. G., Yamada, K. M., and Galbraith, J. A.. 2007. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science. 315: 992–5.CrossRefGoogle ScholarPubMed
Galbraith, C. G., Yamada, K. M., and Sheetz, M. P.. 2002. The relationship between force and focal complex development. J Cell Biol. 159: 695–705.CrossRefGoogle ScholarPubMed
Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D. A., Ulmer, T. S., Critchley, D., Campbell, I. D., Ginsberg, M. H., and Liddington, R. C.. 2003. Structural determinants of integrin recognition by talin. Mol Cell. 11: 49–58.CrossRefGoogle ScholarPubMed
Garcia, A. J., Schwarzbauer, J. E., and Boettiger, D.. 2002. Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry. 41: 9063–9.CrossRefGoogle ScholarPubMed
Gebb, C., Hayman, E. G., Engvall, E., and Ruoslahti, E.. 1986. Interaction of vitronectin with collagen. J Biol Chem. 261: 16698–703.Google ScholarPubMed
Geiger, B., and Bershadsky, A.. 2001. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol. 13: 584–92.CrossRefGoogle Scholar
Giancotti, F. G., and Ruoslahti, E.. 1999. Integrin signaling. Science. 285: 1028–32.CrossRefGoogle ScholarPubMed
Ginsberg, M. H., Partridge, A., and Shattil, S. J.. 2005. Integrin regulation. Curr Opin Cell Biol. 17: 509–16.CrossRefGoogle ScholarPubMed
Grinnell, F. 2003. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13: 264–9.CrossRefGoogle ScholarPubMed
Grzesiak, J. J., Davis, G. E., Kirchhofer, D., and Pierschbacher, M. D.. 1992. Regulation of alpha 2 beta 1-mediated fibroblast migration on type I collagen by shifts in the concentrations of extracellular Mg2+ and Ca2+. J Cell Biol. 117: 1109–17.CrossRefGoogle Scholar
Gupton, S. L., and Waterman-Storer, C. M.. 2006. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell. 125: 1361–74.CrossRefGoogle ScholarPubMed
Harburger, D. S., Bouaouina, M., and Calderwood, D. A.. 2009. Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmic tails and exert intergrin-specific activation effects. J Biol Chem. 284: 11485–97.CrossRefGoogle ScholarPubMed
Harley, B. A., Kim, H. D., Zaman, M. H., Yannas, I. V., Lauffenburger, D. A., and Gibson, L. J.. 2008. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J. 95: 4013–24.CrossRefGoogle ScholarPubMed
Harris, A. K., Stopak, D., and Wild, P.. 1981. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 290: 249–51.CrossRefGoogle ScholarPubMed
Harris, A. K., Wild, P., and Stopak, D.. 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 208: 177–9.CrossRefGoogle Scholar
Hay, E. D. 1981. Extracellular matrix. J Cell Biol. 91: 205s–223s.CrossRefGoogle Scholar
Hodge, T., and Cope, M. J.. 2000. A myosin family tree. J Cell Sci. 113(Pt 19):3353–4.Google ScholarPubMed
Hotary, K., Li, X. Y., Allen, E., Stevens, S. L., and Weiss, S. J.. 2006. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20: 2673–86.CrossRefGoogle ScholarPubMed
Huttenlocher, A., Ginsberg, M. H., and Horwitz, A. F.. 1996. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol. 134: 1551–62.CrossRefGoogle Scholar
Huttenlocher, A., Palecek, S. P., Lu, Q., Zhang, W., Mellgren, R. L., Lauffenburger, D. A., Ginsberg, M. H., and Horwitz, A. F.. 1997. Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem. 272: 32719–22.CrossRefGoogle Scholar
Hynes, R. O. 1987. Integrins: A family of cell surface receptors. Cell. 48: 549–54.CrossRefGoogle ScholarPubMed
Hynes, R. O. 2002. Integrins: Bidirectional, allosteric signaling machines. Cell. 110: 673–87.CrossRefGoogle ScholarPubMed
Jay, P. Y., Pham, P. A., Wong, K., and Elson, E.. 1995. A mechanical function of myosin II in cell motility. J Cell Sci. 108: 387–93.Google ScholarPubMed
Jiang, G., Huang, A. H., Cai, Y., Tanase, M., and Sheetz, M. P.. 2006. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys J. 90: 1804–9.CrossRefGoogle Scholar
Jiang, H., and Grinnell, F.. 2005. Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol Biol Cell. 16: 5070–6.CrossRefGoogle ScholarPubMed
Katoh, K., Kano, Y., Amano, M., Kaibuchi, K., and Fujuiwara, K.. 2001a. Stress fiber organization regulated by MLCK and Rho-kinase in culture human fibroblasts. Am J Physiol Cell Physiol. 280: C1669–C1679.CrossRefGoogle Scholar
Katoh, K., Kano, Y., Masuda, M., Onishi, H., and Fujiwara, K.. 1998. Isolation and contraction of the stress fiber. Mol Biol Cell. 9: 1919–38.CrossRefGoogle ScholarPubMed
Katz, B. Z., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K. M., and Geiger, B.. 2000. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell. 11: 1047–60.CrossRefGoogle ScholarPubMed
Kaverina, I., Krylyshkina, O., and Small, J. V.. 2002. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol. 34: 746–61.CrossRefGoogle ScholarPubMed
Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K.. 1996. Regulation of myosin phosphates by rho and rho-associated kinase (rho-kinase). Science. 273: 245–8.CrossRefGoogle Scholar
Kostic, A., and Sheetz, M. P.. 2006. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol Biol Cell. 17: 2684–95.CrossRefGoogle ScholarPubMed
LaFlamme, S. E., Akiyama, S. K., and Yamada, K. M.. 1992. Regulation of fibronectin receptor distribution. J Cell Biol. 117: 437–47.CrossRefGoogle ScholarPubMed
Lamoureux, P., Steel, V. L., Regal, C., Adgate, L., Buxbaum, R. E., and Heidemann, S. R.. 1990. Extracellular matrix allows PC12 neurite elongation in the absence of microtubules. J Cell Biol. 110: 71–9.CrossRefGoogle ScholarPubMed
Langenbach, K. J., and Sottile, J.. 1999. Identification of protein-disulfide isomerase activity in fibronectin. J Biol Chem. 274: 7032–8.CrossRefGoogle ScholarPubMed
Larjava, H., Plow, E. F., and Wu, C.. 2008. Kindlins: Essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9: 1203–8.CrossRefGoogle ScholarPubMed
Larsen, M., Artym, V. V., Green, J. A., and Yamada, K. M.. 2006. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol. 18: 463–71.CrossRefGoogle ScholarPubMed
Lee, J., and Jacobson, K.. 1997. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J Cell Sci. 110(Pt 22):2833–44.Google ScholarPubMed
Lipfert, L., Haimovich, B., Schaller, M. D., Cobb, B. S., Parsons, J. T., and Brugge, J. S.. 1992. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol. 119: 905–12.CrossRefGoogle Scholar
Lo, C., Wang, H. B., Dembo, M., and Wang, Y. L.. 2000. Cell movement is guided by the rigidity of the substrate. Biophys J. 79: 144–52.CrossRefGoogle Scholar
Luo, B. H., Strokovich, K., Walz, T., Springer, T. A., and Takagi, J.. 2004. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J Biol Chem. 279: 27466–71.CrossRefGoogle ScholarPubMed
Mao, Y., and Schwarzbauer, J. E.. 2005. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 24: 389–99.CrossRefGoogle ScholarPubMed
Miranti, C. K., and Brugge, J. S.. 2002. Sensing the environment: A historical perspective on integrin signal transduction. Nat Cell Biol. 4: E83–90.CrossRefGoogle ScholarPubMed
Miyamoto, S., Akiyama, S. K., and Yamada, K. M.. 1995a. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 267: 883–5.CrossRefGoogle ScholarPubMed
Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K., and Yamada, K.. 1995b. Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131: 791–805.CrossRefGoogle ScholarPubMed
Miyamoto, S., Teramoto, H., Gutkind, J. S., and Yamada, K. M.. 1996. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: Roles of integrin aggregation and occupancy of receptors. J Cell Biol. 135: 1633–42.CrossRefGoogle ScholarPubMed
Montanez, E., Ussar, S., Schifferer, M., Bosl, M., Zent, R., Moser, M., and Fassler, R.. 2008. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22: 1325–30.CrossRefGoogle ScholarPubMed
Moser, M., Bauer, M., Schmid, S., Ruppert, R., Schmidt, S., Sixt, M., Wang, H. V., Sperandio, M., and Fassler, R.. 2009. Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med. 15: 300–5.CrossRefGoogle ScholarPubMed
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M., and Fassler, R.. 2008. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 14: 325–30.CrossRefGoogle ScholarPubMed
Mould, A. P., Akiyama, S. K., and Humphries, M. J.. 1995a. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem. 270: 26270–7.CrossRefGoogle ScholarPubMed
Mould, A. P., Askari, J. A., Aota, S., Yamada, K. M., Irie, A., Takada, Y., Mardon, H. J., and Humphries, M. J.. 1997. Defining the topology of integrin alpha5beta1-fibronectin interactions using inhibitory anti-alpha5 and anti-beta1 monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alpha5 subunit. J Biol Chem. 272: 17283–92.CrossRefGoogle Scholar
Mould, A. P., Garratt, A. N., Askari, J. A., Akiyama, S. K., and Humphries, M. J.. 1995b. Regulation of integrin alpha 5 beta 1 function by anti-integrin antibodies and divalent cations. Biochem Soc Trans. 23: 395S.CrossRefGoogle Scholar
Mould, A. P., Symonds, E. J., Buckley, P. A., Grossmann, J. G., McEwan, P. A., Barton, S. J., Askari, J. A., Craig, S. E., Bella, J., and Humphries, M. J.. 2003. Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J Biol Chem. 278: 39993–9.CrossRefGoogle ScholarPubMed
Munevar, S., Wang, Y. L., and Dembo, M.. 2001a. Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Mol Biol Cell. 12: 3947–54.CrossRefGoogle ScholarPubMed
Munevar, S., Wang, Y. L., and Dembo, M.. 2001b. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J. 80: 1744–57.CrossRefGoogle ScholarPubMed
Nagai, T., Yamakawa, N., Aota, S., Yamada, S. S., Akiyama, S. K., Olden, K., and Yamada, K. M.. 1991. Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. J Cell Biol. 114: 1295–305.CrossRefGoogle ScholarPubMed
Nelson, C. M., and Bissell, M. J.. 2006. Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 22: 287–309.CrossRefGoogle ScholarPubMed
Numaguchi, Y., Huang, S., Polte, T. R., Eichler, G. S., Wang, N., and Ingber, D. E.. 2003. Caldesmon-dependent switching between capillary endothelial cell growth and apoptosis through modulation of cell shape and contractility. Angiogenesis. 6: 55–64.CrossRefGoogle ScholarPubMed
Oliver, T., Dembo, M., and Jacobson, K.. 1995. Traction forces in locomoting cells. Cell Mot Cyotskelet. 31: 225–40.CrossRefGoogle ScholarPubMed
Oliver, T., Lee, J., and Jacobson, K.. 1994. Forces exerted by locomoting cells. Sem Cell Biol. 5: 139–194.CrossRefGoogle ScholarPubMed
Onley, D. J., Knight, C. G., Tuckwell, D. S., Barnes, M. J., and Farndale, R. W.. 2000. Micromolar Ca2+ concentrations are essential for Mg2+-dependent binding of collagen by the integrin alpha 2beta 1 in human platelets. J Biol Chem. 275: 24560–4.CrossRefGoogle ScholarPubMed
Otey, C. A., Vasquez, G. B., Burridge, K., and Erickson, B. W.. 1993. Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain. J Biol Chem. 268: 21193–7.Google ScholarPubMed
Packard, B. Z., Artym, V. V., Komoriya, A., and Yamada, K. M.. 2009. Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol. 28: 3–10.CrossRefGoogle ScholarPubMed
Palecek, S. P., Horwitz, A. F., and Lauffenburger, D. A.. 1999. Kinetic model for integrin-mediated adhesion release during cell migration. Ann Biomed Eng. 27: 219–35.CrossRefGoogle ScholarPubMed
Palecek, S. P., Huttenlocher, A., Horwitz, A. F., and Lauffenburger, D. A.. 1998. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J Cell Sci. 111(Pt 7):929–40.Google ScholarPubMed
Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., and Horwitz, A. F.. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 385: 537–40.CrossRefGoogle ScholarPubMed
Palecek, S. P., Schmidt, C. E., Lauffenburger, D. A., and Horwitz, A. F.. 1996. Integrin dynamics on the tail region of migrating fibroblasts. J Cell Sci. 109 (Pt 5):941–52.Google ScholarPubMed
Pankov, R., Cukierman, E., Katz, B. Z., Matsumoto, K., Lin, D. C., Lin, S., Hahn, C., and Yamada, K. M.. 2000. Integrin dynamics and matrix assembly: Tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol. 148: 1075–90.CrossRefGoogle ScholarPubMed
Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., Cukierman, E., Matsumoto, K., and Yamada, K. M.. 2005. A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol. 170: 793–802.CrossRefGoogle Scholar
Parrini, M. C., Matsuda, M., and de Gunzburg, J.. 2005. Spatiotemporal regulation of the Pak1 kinase. Biochem Soc Trans. 33: 646–8.CrossRefGoogle Scholar
Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., and Weaver, V. M.. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8: 241–54.CrossRefGoogle ScholarPubMed
Pelham, R. J., and Wang, Y. L.. 1998. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull. 194: 348–9; discussion 349–50.CrossRefGoogle Scholar
Pelham, R. J., and Wang, Y. L.. 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. PNAS. 94: 13661–5.CrossRefGoogle ScholarPubMed
Pelham, R. J., and Wang, Y. L.. 1999. High-resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell. 10: 935–45.CrossRefGoogle Scholar
Peyton, S. R., and Putnam, A. J.. 2005. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol. 204: 198–209.CrossRefGoogle Scholar
Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K., and Ingber, D. E.. 1995. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 6: 1349–65.CrossRefGoogle ScholarPubMed
Polte, T. R., Eichler, G. S., Wang, N., and Ingber, D. E.. 2004. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am J Physiol Cell Physiol. 286: C518–28.CrossRefGoogle ScholarPubMed
Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M., and Keely, P. J.. 2008. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J. 95: 5374–84.CrossRefGoogle ScholarPubMed
Radisky, D. C., Kenny, P. A., and Bissell, M. J.. 2007. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?J Cell Biochem. 101: 830–9.CrossRefGoogle Scholar
Reinhart-King, C. A., Dembo, M., and Hammer, D. A.. 2005. The dynamics and mechanics of endothelial cell spreading. Biophys J. 89: 676–89.CrossRefGoogle ScholarPubMed
Ria, R., Vacca, A., Ribatti, D., Di Raimondo, F., Merchionne, F., and Dammacco, F.. 2002. Alpha(v)beta(3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica. 87: 836–45.Google ScholarPubMed
Ridley, A. J. 2001. Rho proteins: Linking signaling with membrane trafficking. Traffic. 2: 303–10.CrossRefGoogle ScholarPubMed
Ridley, A. J., and Hall, A.. 1992a. Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho. Cold Spring Harb Symp Quant Biol. 57: 661–71.CrossRefGoogle ScholarPubMed
Ridley, A. J., and Hall, A.. 1992b. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 70: 389–99.CrossRefGoogle ScholarPubMed
Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R.. 2003. Cell migration: Integrating signals from front to back. Science. 302: 1704–9.CrossRefGoogle ScholarPubMed
Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., and Bershadsky, A. D.. 2001. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 153: 1175–86.CrossRefGoogle Scholar
Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 12: 697–715.CrossRefGoogle Scholar
Ruoslahti, E., Hayman, E. G., and Pierschbacher, M. D.. 1985. Extracellular matrices and cell adhesion. Arteriosclerosis. 5: 581–94.CrossRefGoogle ScholarPubMed
Sabeh, F., Ota, I., Holmbeck, K., Birkedal-Hansen, H., Soloway, P., Balbin, M., Lopez-Otin, C., Shapiro, S., Inada, M., Krane, S., Allen, E., Chung, D., and Weiss, S. J.. 2004. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol. 167: 769–81.CrossRefGoogle ScholarPubMed
Sabeh, F., Shimizu-Hirota, R., and Weiss, S. J.. 2009. Protease-dependent versus -independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited. J Cell Biol. 185: 11–19.CrossRefGoogle ScholarPubMed
Sampath, R., Gallagher, P. J., and Pavalko, F. M.. 1998. Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin. J Biol Chem. 273: 33588–94.CrossRefGoogle ScholarPubMed
Sandquist, J. C., Swenson, K. I., Demali, K. A., Burridge, K., and Means, A. R.. 2006. Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration. J Biol Chem. 281: 35873–83.CrossRefGoogle Scholar
Sawada, Y., and Sheetz, M. P.. 2002. Force transduction by triton cytoskeletons. J Cell Biol. 156: 609–15.CrossRefGoogle ScholarPubMed
Schaller, M. D., Borgman, C. A., and Parsons, J. T.. 1993. Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK. Mol Cell Biol. 13: 785–91.CrossRefGoogle Scholar
Schmidt, C. E., Horwitz, A. F., Lauffenburger, D. A., and Sheetz, M. P.. 1993. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 123: 977–91.CrossRefGoogle ScholarPubMed
Schoenwaelder, S. M., and Burridge, K.. 1999. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol. 11: 274–86.CrossRefGoogle ScholarPubMed
Schwartz, M. A., and Ginsberg, M. H.. 2002. Networks and crosstalk: Integrin signalling spreads. Nat Cell Biol. 4: E65–8.CrossRefGoogle ScholarPubMed
Schwarz, U. S., and Bischofs, I. B.. 2005. Physical determinants of cell organization in soft media. Med Eng Phys. 27: 763–72.CrossRefGoogle Scholar
Schwarz, U. S., Erdmann, T., and Bischofs, I. B.. 2006. Focal adhesions as mechanosensors: The two-spring model. Biosystems. 83: 225–32.CrossRefGoogle Scholar
Sechler, J. L., Rao, H., Cumiskey, A. M., Vega-Colon, I., Smith, M. S., Murata, T., and Schwarzbauer, J. E.. 2001. A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly. J Cell Biol. 154: 1081–8.CrossRefGoogle ScholarPubMed
Shimaoka, M., Takagi, J., and Springer, T. A.. 2002. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 31: 485–516.CrossRefGoogle ScholarPubMed
Sidani, M., Wyckoff, J., Xue, C., Segall, J. E., and Condeelis, J.. 2006. Probing the microenvironment of mammary tumors using multiphoton microscopy. J Mammary Gland Biol Neoplasia. 11: 151–63.CrossRefGoogle ScholarPubMed
Springer, T. A. 1997. Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci USA. 94: 65–72.CrossRefGoogle ScholarPubMed
Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., Ginsberg, M. H., and Calderwood, D. A.. 2003. Talin binding to integrin beta tails: A final common step in integrin activation. Science. 302: 103–6.CrossRefGoogle ScholarPubMed
Takagi, J., Petre, B. M., Walz, T., and Springer, T. A.. 2002. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 110: 599–11.CrossRefGoogle ScholarPubMed
Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., and Chen, C. S.. 2003. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Natl Acad Sci USA. 100: 1484–9.CrossRefGoogle ScholarPubMed
Tysseling-Mattiace, V. M., Sahni, V., Niece, K. L., Birch, D., Czeisler, C., Fehlings, M. G., Stupp, S. I., and Kessler, J. A.. 2008. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 28: 3814–23.CrossRefGoogle ScholarPubMed
Ussar, S., Moser, M., Widmaier, M., Rognoni, E., Harrer, C., Genzel-Boroviczeny, O., and Fassler, R.. 2008. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4:e1000289.CrossRefGoogle ScholarPubMed
Vicente-Manzanares, M., Koach, M. A., Whitmore, L., Lamers, M. L., and Horwitz, A. F.. 2008. Segregation and activation of myosin IIB creates a rear in migrating cells. J Cell Biol. 183: 543–54.CrossRefGoogle ScholarPubMed
Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K., and Horwitz, A. F.. 2007. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J Cell Biol. 176: 573–80.CrossRefGoogle ScholarPubMed
Vogel, V. 2006. Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu Rev Biophys Biomol Struct. 35: 459–88.CrossRefGoogle ScholarPubMed
Vogel, V., and Sheetz, M.. 2006. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 7: 265–75.CrossRefGoogle ScholarPubMed
von Wichert, G., Jiang, G., Kostic, A., De Vos, K., Sap, J., and Sheetz, M. P.. 2003. RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages. J Cell Biol. 161: 143–53.CrossRefGoogle ScholarPubMed
Walpita, D., and Hay, E.. 2002. Studying actin-dependent processes in tissue culture. Nat Rev Mol Cell Biol. 3: 137–41.CrossRefGoogle ScholarPubMed
Wang, F., Weaver, V. M., Petersen, O. W., Larabell, C. A., Dedhar, S., Briand, P., Lupu, R., and Bissell, M. J.. 1998. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology. Proc Natl Acad Sci USA. 95: 14821–6.CrossRefGoogle ScholarPubMed
Wang, H. B., Dembo, M., Hanks, S. K., and Wang, Y.. 2001. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA. 98: 11295–300.CrossRefGoogle Scholar
Wang, Y. K., Wang, Y. H., Wang, C. Z., Sung, J. M., Chiu, W. T., Lin, S. H., Chang, Y. H., and Tang, M. J.. 2003. Rigidity of collagen fibrils controls collagen gel-induced down-regulation of focal adhesion complex proteins mediated by alpha2beta1 integrin. J Biol Chem. 278: 21886–92.CrossRefGoogle ScholarPubMed
Wang, Y. L., and Pelham, Jr R. J.. 1998. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298: 489–96.CrossRefGoogle ScholarPubMed
Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., and Horwitz, A. F.. 2004. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 6: 154–61.CrossRefGoogle Scholar
Wegener, K. L., Partridge, A. W., Han, J., Pickford, A. R., Liddington, R. C., Ginsberg, M. H., and Campbell, I. D.. 2007. Structural basis of integrin activation by talin. Cell. 128: 171–82.CrossRefGoogle ScholarPubMed
Weiss, P., and Garber, B.. 1952. Shape and movement of mesenchyme cells as functions of the physical structure of the medium: Contributions to a quantitative morphology. Proc Natl Acad Sci USA. 38: 264–80.CrossRefGoogle ScholarPubMed
Wells, A., Huttenlocher, A., and Lauffenburger, D. A.. 2005. Calpain proteases in cell adhesion and motility. Int Rev Cytol. 245: 1–16.CrossRefGoogle ScholarPubMed
Wessels, D., Vawter-Hugart, H., Murray, J., and Soll, D. R.. 1994. Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell Motil Cytoskeleton. 27: 1–12.CrossRefGoogle ScholarPubMed
Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., Patel, Y., Suda, Y., Humphries, M. J., and Sobel, M.. 2006. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: Enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res. 99: 853–60.CrossRefGoogle ScholarPubMed
Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., Strongin, A. Y., Brocker, E. B., and Friedl, P.. 2003. Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 160: 267–77.CrossRefGoogle ScholarPubMed
Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., and Keely, P. J.. 2003. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol. 163: 583–95.CrossRefGoogle ScholarPubMed
Wozniak, M. A., Modzelewska, K., Kwong, L., and Keely, P. J.. 2004. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 1692: 103–19.CrossRefGoogle ScholarPubMed
Xiao, T., Takagi, J., Coller, B. S., Wang, J. H., and Springer, T. A.. 2004. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 432: 59–67.CrossRefGoogle Scholar
Xiao, Z., Zhang, N., Murphy, D. B., and Devreotes, P. N.. 1997. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J Cell Biol. 139: 365–74.CrossRefGoogle Scholar
Yamada, K., and Geiger, B.. 1997. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 9: 76–85.CrossRefGoogle ScholarPubMed
Yamada, K. M. 1991. Adhesive recognition sequences. J Biol Chem. 266: 12809–12.Google ScholarPubMed
Yan, B., Calderwood, D. A., Yaspan, B., and Ginsberg, M. H.. 2001. Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain. J Biol Chem. 276: 28164–70.CrossRefGoogle ScholarPubMed
Ylanne, J., Chen, Y., O’Toole, T. E., Loftus, J. C., Takada, Y., and Ginsberg, M. H.. 1993. Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol. 122: 223–33.CrossRefGoogle ScholarPubMed
Zaidel-Bar, R., Ballestrem, C., Kam, Z., and Geiger, B.. 2003. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci. 116: 4605–13.CrossRefGoogle Scholar
Zaman, M. H., Kamm, R. D., Matsudaira, P., and Lauffenburger, D. A.. 2005. Computational model for cell migration in three-dimensional matrices. Biophys J. 89: 1389–97.CrossRefGoogle ScholarPubMed
Zaman, M. H., Trapani, L. M., Sieminski, A. L., Mackellar, D., Gong, H., Kamm, R. D., Wells, A., Lauffenburger, D. A., and Matsudaira, P.. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA. 103: 10889–94.CrossRefGoogle ScholarPubMed
Zamir, E., Katz, B. Z., Aota, S., Yamada, K. M., Geiger, B., and Kam, Z.. 1999. Molecular diversity of cell-matrix adhesions. J Cell Sci. 112(Pt 11):1655–69.Google ScholarPubMed
Zhao, Z. S., and Manser, E.. 2005. PAK and other Rho-associated kinases–effectors with surprisingly diverse mechanisms of regulation. Biochem J. 386: 201–14.CrossRefGoogle Scholar
Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A. M., and Burridge, K.. 1998. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol. 141: 539–51.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×