Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T18:37:15.039Z Has data issue: false hasContentIssue false

Chapter 18 - Reproduction and the origin of the sporophyte

Published online by Cambridge University Press:  05 June 2012

Charles B. Beck
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Perspective: the plant life cycle

Reproduction in higher plants is relatively complex, involving a life cycle consisting of two phases, a diploid sporophyte phase and a haploid gametophyte phase, comprising what is called an alternation of generations. The prominent bodies of angiosperm trees, shrubs, perennials, and annuals as well as those of gymnosperms, ferns, sphenophytes, and lycophytes are sporophytes, having developed from fertilized egg cells (zygotes). The gametes which fused to form the zygotes, however, were produced by gametophytes, very small plant bodies, parasitic on the sporophytes in seed plants, but somewhat larger and free-living in pteridophytes (except in heterosporous species in which gametophytes when mature remain, at least in part, within the the walls of the spores from which they develop).

The sporophyte in pteridophytes is dominant, and although dependent initially for its nutrition on the gametophyte, soon becomes independent. The gametophyte is much reduced in size but is free-living and either autotrophic or saprophytic. In seed plants, the sporophyte is also dominant and initially dependent on the gametophyte, but soon becomes independent. The gametophyte is greatly reduced, however, and parasitic on the sporophyte. In angiosperms it is exceptionally small, consisting in many taxa of only seven cells and eight nuclei, and can be observed only with a microscope.

The life cycle of a vascular plant can be summarized as follows. The sporophyte produces specialized cells called sporocytes that undergo meiosis producing haploid spores. The spores germinate to form the gametophytes in which gametes are produced.

Type
Chapter
Information
An Introduction to Plant Structure and Development
Plant Anatomy for the Twenty-First Century
, pp. 350 - 386
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderhag, P., Hepler, P. K., and Lazzaro, M. D.. 2000. Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214: 141–157CrossRefGoogle Scholar
Araki, T. 2001. Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol. 4: 63–68CrossRefGoogle ScholarPubMed
Boesewinkel, F. D. and F. Bouman. 1984. The seed: structure. In Johri, B. M., ed., Embryology of Angiosperms. Berlin: Springer-Verlag, pp. 567–610CrossRefGoogle Scholar
Bouman, F. 1984. The ovule. In Johri, B. M., ed., Embryology of Angiosperms. Berlin: Springer-Verlag, pp. 123–157CrossRefGoogle Scholar
Bradley, D., Vincent, C., Carpenter, R., and Coen, E.. 1996. Pathways for inflorescence and floral induction in Antirrhinum. Development 122: 1535–1544Google ScholarPubMed
Brownlee, C. 1994. Signal transduction during fertilization in algae and vascular plants. New Phytol. 127: 399–423CrossRefGoogle Scholar
Bruns, D. and , J. N. Owens. 2000. Western white pine (Pinus monticola Dougl.) reproduction. II. Fertilization and cytoplasmic inheritance. Sex. Plant Reprod. 13: 75–84CrossRefGoogle Scholar
Chang, S. T., Chen, W. S., Koshioka, M., et al. 2001. Gibberellins in relation to flowering in Polianthes tuberosa. Physiol. Plant. 112: 429–432CrossRefGoogle ScholarPubMed
Cheung, A. Y. 1995. Pollen–pistil interactions in compatible pollen. Proc. Natl Acad. Sci. USA 92: 3077–3080CrossRefGoogle Scholar
Coulter, J. M. and Chamberlain, C. J.. 1917. Morphology of Gymnosperms. Chicago, IL: University of Chicago PressCrossRefGoogle Scholar
Darwin, C. 1877. The Different Forms of Flowers on Plants of the Same Species. London: John MurrayCrossRefGoogle Scholar
Nettancourt, D. 2001. Incompatibility and Incongruity in Wild and Cultivated Plants, 2nd edn. Berlin: Springer-VerlagCrossRefGoogle Scholar
Dixit, R. and Nasrallah, J. B.. 2001. Recognizing self in the self-incompatibility response. Plant Physiol. 125: 105–108CrossRefGoogle ScholarPubMed
Doyle, J. 1963. Proembryogeny in Pinus in relation to that in other conifers: a survey. Proc. Roy. Irish Acad. 62B: 181–216Google Scholar
Elleman, C. J., and Dickinson, H. G.. 1990. The role of the exine coating in pollen-stigma interactions in Brassica oleracea L. New Phytol. 114: 511–518CrossRefGoogle Scholar
Elleman, C. J., and Dickinson, H. G. 1996. Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea. New Phytol. 133: 197–205CrossRefGoogle ScholarPubMed
Elleman, C. J., Frankin-Tong, V., and Dickinson, H. G.. 1992. Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol. 121: 413–424CrossRefGoogle Scholar
Endress, P. K. 1994. Diversity and Evolutionary Biology of Tropical Flowers. Cambridge, UK: Cambridge University PressGoogle Scholar
Endress, P. K. and Igersheim, A.. 2000. Gynoecium structure and evolution in basal angiosperms. Int. J. Plant Sci. 161: S211–S223CrossRefGoogle Scholar
Faure, J.-E. and Dumas, C.. 2001. Fertilization in flowering plants: new approaches for an old story. Plant Physiol. 125: 102–104CrossRefGoogle ScholarPubMed
Friedman, W. E. 1990. Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science 247: 951–954CrossRefGoogle ScholarPubMed
Friedman, W. E. 1994. The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. Am. J. Bot. 81: 1468–1486CrossRefGoogle Scholar
Friedman, W. E. 1998. The evolution of double fertilization and endosperm: an “historical” perspective. Sex. Plant Reprod. 11: 6–16CrossRefGoogle Scholar
Friedman, W. E. and Carmichael, J. S.. 1998. Heterochrony and developmental innovation: evolution of female gametophyte ontogeny in Gnetum, a highly apomorphic seed plant. Evolution 52: 1016–1030Google ScholarPubMed
Friedman, W. E. and E. M. Gifford. 1997. Development of the male gametophyte of Ginkgo biloba: a window into the reproductive biology of early seed plants. In Hori, T., , R. W. Ridge, , W. Tuleke, et al., eds., Ginkgo biloba: A Global Treasure. Berlin: Springer-Verlag, pp. 29–49CrossRefGoogle Scholar
Frolich, M. W. and Meyerowitz, E. M.. 1997. The search for flower homeotic gene homologs in basal angiosperms and Gnetales: a potential new source of data on the evolutionary origin of flowers. Int. J. Plant Sci. 158: S131–S142CrossRefGoogle Scholar
Hamano, M., Yamato, Y., Yamazaki, H., and Miura, H.. 2002. Endogenous gibberellins and their effects on flowering and stem elongation in cabbage (Brassica oleracea var. capitata). J. Hort. Sci. Biotech. 77: 220–225CrossRefGoogle Scholar
Hererro, M. 2000. Changes in the ovary related to pollen tube guidance. Ann. Bot. 85: 79–87CrossRefGoogle Scholar
Heslop-Harrison, J. 1979. An interpretation of the hydrodynamics of pollen. Am. J. Bot. 66: 737–741CrossRefGoogle Scholar
Heslop-Harrison, J. 1987. Pollen germination and pollen-tube growth. Int. Rev. Cytol. 107: 1–78CrossRefGoogle Scholar
Heslop-Harrison, J. and Heslop-Harrison, Y.. 1991. The actin cytoskeleton in unfixed pollen tubes following microwave-accelerated DMSO-permeabilization and TRITC-phalloidin staining. Sex. Plant Reprod. 4: 6–11CrossRefGoogle Scholar
Heslop-Harrison, J. and Heslop-Harrison, Y. 1997. Intracellular motility and the evolution of the actin cytoskeleton during development of the male gametophyte of wheat (Triticum aestivum L.). Phil. Trans. Roy. Soc. London B352: 1985–1993CrossRefGoogle Scholar
Heslop-Harrison, Y. 2000. Control gates and micro-ecology: the pollen-stigma interaction in perspective. Ann. Bot. (Suppl. A) 85: 5–13Google Scholar
Heslop-Harrison, Y. and , B. J. Reger. 1988. Tissue organization, pollen receptivity and pollen tube guidance in normal and mutant stigmas of the grass Pennisetum pyphoides (Burm) Stap. et Hubb. Sex. Plant Reprod. 1: 182–183CrossRefGoogle Scholar
Huang, B.-Q. and , S. D. Russell. 1994. Fertilization in Nicotiana tabacum: cytoskeletal modifications in the embryo sac during synergid degeneration. Planta 194: 200–214CrossRefGoogle Scholar
Ikeda, S., Nasrallah, J. B., Dixit, R., Preiss, S., and Nasrallah, M. E.. 1997. An aquaporin-like gene required for the Brassica self-incompatibility response. Science 276: 1564–1566CrossRefGoogle ScholarPubMed
Jaeger, P. 1961. The Wonderful Life of Flowers. New York: E. P. DuttonGoogle Scholar
Jensen, W. A. 1965. The ultrastructure and histochemistry of the synergids of cotton. Amer. J. Bot. 52: 238–256CrossRefGoogle ScholarPubMed
Jensen, W. A. 1998. Double fertilization: a personal view. Sex. Plant Reprod. 11: 1–5CrossRefGoogle Scholar
Jensen, W. A. and Fisher, D.. 1968. Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78: 158–183CrossRefGoogle Scholar
Johansson, M. and Walles, B.. 1993a. Functional anatomy of the ovule in broad bean (Vicia faba L.). I. Histogenesis prior to and after pollination. Int. J. Plant Sci. 154: 80–89CrossRefGoogle Scholar
Johansson, M. and Walles, B. 1993b. Functional anatomy of the ovule in broad bean, Vicia faba L. II. Ultrastructural development up to early embryogenesis. Int. J. Plant Sci. 154: 535–549CrossRefGoogle Scholar
Knox, R. B., Zee, S. Y., Blomstedt, C., and Singh, M. B.. 1993. Male gametes and fertilization in angiosperms. New Phytol. 125: 679–694CrossRefGoogle Scholar
Krasowski, M. J. and Owens, J. N.. 1993. Ultrastructural and histochemical postfertilization megagametophyte and zygotic embryo development of white spruce (Picea glauca) emphasizing the deposition of seed storage products. Can. J. Bot. 71: 98–112CrossRefGoogle Scholar
Lawrence, G. H. M. 1951. Taxonomy of Vascular Plants.New York: MacmillanGoogle Scholar
Lejeune, P., Bernier, G., Requier, M. C., and Kinet, J. M.. 1993. Sucrose increase during floral induction in the phloem sap collected at the apical part of the shoot of the long-day plant Sinapis alba L. Planta 190: 71–74CrossRefGoogle Scholar
Linskens, H. F. 1988. Present status and future prospects of sexual reproduction research in higher plants. In Cresti, M., Gori, P., and Pacini, E., eds., Sexual Reproduction in Higher Plants. Berlin: Springer-Verlag, pp. 451–458CrossRefGoogle Scholar
Lloyd, D. G. and Schoen, D. J.. 1992. Self- and cross-fertilization in plants. I. Functional dimensions. Int. J. Plant Sci. 153:358–369CrossRefGoogle Scholar
Lush, W. M., Grieser, F., and , M. Wolters-Arts. 1998. Directional guidance of Nicotiana alata pollen tubes in vitro and on the stigma. Plant Physiol. 118: 733–741CrossRefGoogle ScholarPubMed
Lush, W. M.Spurck, T., and , R. Joosten. 2000. Pollen tube guidance by the pistil of a solanaceous plant. Ann. Bot. (Suppl. A) 85: 39–47Google Scholar
Maheshwari, P. 1950. An Introduction to the Embryology of Angiosperms. New York: McGraw-HillCrossRefGoogle Scholar
Miller, D. D., Lancelle, S. A., and Hepler, P. K.. 1996. Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma 195: 123–132CrossRefGoogle Scholar
Nguyen, H., Brown, R. C., and Lemmon, B. E.. 2001. Patterns of cytoskeletal organization reflect distinct developmental domains in endosperm of Coronopus didymus (Brassicaceae). Int. J. Plant Sci. 162: 1–14CrossRefGoogle Scholar
O'Neill, S. D. 1992. The photoperiodic control of flowering: progress toward understanding the mechanism of induction. Photochem. Photobiol. 56: 789–801CrossRefGoogle Scholar
O'Neill, S. D., Zhang, X. S., and Zheng, C. C.. 1994. Dark and circadian regulation of messenger-RNA accumulation in the short-day plant Pharbitis-nil. Plant Physiol. 104: 569–580CrossRefGoogle Scholar
Owens, J. N. and , D. Bruns. 2000. Western white pine (Pinus monticola Dongl.) reproduction. I. Gametophyte development. Sex. Plant Reprod. 13: 61–74CrossRefGoogle Scholar
Owens, J. N. and Morris, S. J.. 1991. Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. II. Fertilization and proembryo development. Am. J. Bot. 78: 1515–1427CrossRefGoogle Scholar
Owens, J. N., Takaso, T., and , C. J. Runions. 1998. Pollination in conifers. Trends Plant Sci. 3: 479–485CrossRefGoogle Scholar
Palser, B. F., Rouse, J. L., and , E. G. William. 1992. A scanning electron microscope study of the pollen tube pathway in pistils of Rhododendron. Can. J. Bot. 70: 1039–1060CrossRefGoogle Scholar
Perdue, T. D. and Parthasarathy, M. V.. 1985. In situ localization of F-actin in pollen tubes. Eur. J. Cell Biol. 39: 13–20Google Scholar
Pettitt, J. M. 1985. Pollen tube development and characteristics of the protein emission in conifers. Ann. Bot. 56: 379–397CrossRefGoogle Scholar
Pierson, E. S. 1988. Rhodamine-phalloidin staining of F-actin in pollen after dimethyl sulphoxide permeabilization: a comparison with the conventional formaldehyde preparation. Sex. Plant Reprod. 1: 83–87CrossRefGoogle Scholar
Polowick, P. L. and , V. K. Sawhney. 1993. An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). II. Pollen maturation. Can. J. Bot. 71: 1048–1055CrossRefGoogle Scholar
Ray, S., Park, S.-S., and Ray, A.. 1997. Pollen tube guidance by the female gametophyte. Development 124: 2489–2498Google ScholarPubMed
Romberger, J. A., Hejnowicz, Z., and Hill, J. F.. 1993. Plant Structure: Function and Development. Berlin: Springer-VerlagCrossRefGoogle Scholar
Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W. J.. 2001. The phloem as a conduit for inter-organ communication. Curr. Opin. Plant Biol. 4: 202–209CrossRefGoogle ScholarPubMed
Runions, C. J. and Owens, J. N.. 1999a. Sexual reproduction of interior spruce (Pinaceae). I. Pollen germination to archegonial maturation. Int. J. Plant Sci. 160: 631–640CrossRefGoogle Scholar
Runions, C. J. and Owens, J. N. 1999b. Sexual reproduction of interior spruce (Pinaceae). II. Fertilization to early embryo formation. Int. J. Plant Sci. 160: 641–652CrossRefGoogle Scholar
Running, M. P. and Hake, S.. 2001. The role of floral meristems in patterning. Curr. Opin. Plant Biol. 4: 69–74CrossRefGoogle ScholarPubMed
Russell, S. D. 1984. Ultrastructure of the sperm of Plumbago zeylanica. II. Quantitative cytology and three-dimensional organization. Planta 162: 385–391CrossRefGoogle ScholarPubMed
Russell, S. D. 1985. Preferential fertilization in Plumbago: ultrastructural evidence for gamete-level recognition in an angiosperm. Proc. Natl Acad. Sci. USA 82: 6129–6132CrossRefGoogle Scholar
Siegel, B. A. and , J. A. Verbeke. 1989. Diffusible factors essential for epidermal cell redifferentiation in Catharanthus roseus. Science 244: 580–582CrossRefGoogle ScholarPubMed
Singh, H. 1978. Encyclopedia of Plant Anatomy, vol. 10, part 2, Embryology of Gymnosperms. Berlin: Gebruder BorntraegerGoogle Scholar
Stephenson, A. G., Doughty, J., Dixon, S., et al. 1997. The male determinant of self-incompatibility in Brassica oleracea is located in the pollen coating. Plant J. 12: 1351–1359CrossRefGoogle Scholar
Steward, W. N. and Rothwell, G. W.. 1993. Paleobotany and the Evolution of Plants. Cambridge, UK: Cambridge University PressGoogle Scholar
Troughton, J. and , L. A. Donaldson. 1972. Probing Plant Structure.Wellington, NZ: New Zealand Ministry of Research, Science and TechnologyGoogle Scholar
Tucker, S. C. 1997. Floral evolution, development, and convergence: the hierarchical-significance hypothesis. Int. J. Plant Sci. 158: S143–S161CrossRefGoogle Scholar
Tucker, S. C. and Kantz, K. E.. 2001. Open carpels with ovules in Fabaceae. Int. J. Plant Sci. 162: 1065–1073CrossRefGoogle Scholar
Schoot, C., Dietrich, M. A., Storms, M., Verbeke, J. A., and Lucas, W. J.. 1995. Establishement of a cell-to-cell communication pathway between separate carpels during gynoecium development. Planta 195: 450–455CrossRefGoogle Scholar
Vidali, L. and Hepler, P. K.. 2001. Actin and pollen tube growth. Protoplasma 215: 64–76CrossRefGoogle ScholarPubMed
Wang, H., Wu, H.-M., and Cheung, A. Y.. 1993. Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5: 1639–1650CrossRefGoogle ScholarPubMed
Weber, M. 1994. Stigma, style, and pollen tube pathway in Smyrnium perfoliatum (Apiaceae). Int. J. Plant Sci. 155: 437–444CrossRefGoogle Scholar
Weberling, F. 1989. Morphology of Flowers and Inflorescences. Cambridge, UK: Cambridge University PressGoogle Scholar
Weigel, D. 1995. The genetics of flower development: from floral induction to ovule morphogenesis. Annu. Rev. Genet. 29: 19–39CrossRefGoogle ScholarPubMed
Wheeler, M. J., Franklin-Tong, V. E., and Franklin, F. C. H.. 2001. The molecular and genetic basis of pollen-pistil interactions. New Phytol. 151: 565–584CrossRefGoogle Scholar
Wolters-Arts, M., Lush, W. M., and Mariani, C.. 1998. Lipids are required for directional pollen tube growth. Nature 392: 818–821CrossRefGoogle ScholarPubMed
Yu, H.-S, Hu, S.-Y, and Russell, S. D.. 1992. Sperm cells in pollen tubes of Nicotiana tabacum L.: three-dimensional reconstruction, cytoplasmic diminution, and quantitative cytology. Protoplasma 168: 172–183CrossRefGoogle Scholar
Zhang, Z. and Russell, S. D.. 1999. Sperm cell surface characteristics of Plumbago zeylanica L. in relation to transport in the embryo sac. Planta 208: 539–544CrossRefGoogle Scholar
Barnard, C. 1957a. Floral histogenesis in the monocotyledons. I. The Gramineae. Austral. J. Bot. 5: 1–20CrossRefGoogle Scholar
Barnard, C. 1957b. Floral histogenesis in the monocotyledons. II. The Cyperaceae. Austral. J. Bot. 5: 115–128CrossRefGoogle Scholar
Barton, L. V. 1965. Dormancy in seeds imposed by the seed coat. Handb. Pflanzenphysiol. 15: 727–745Google Scholar
Bernier, G. 1971. Structural and metabolic changes in the shoot apex in transition to flowering. Can. J. Bot. 49: 803–819CrossRefGoogle Scholar
Brown, R. C. and Mogensen, H. L.. 1972. Late ovule and early embryo development in Quercus gambelii. Am. J. Bot. 59: 311–316CrossRefGoogle Scholar
Brown, W. V. 1960. The morphology of the grass embryo. Phytomorphology 10: 215–223Google Scholar
Brown, W. V. 1965. The grass embryo: a rebuttal. Phytomorphology 15: 274–284Google Scholar
Camefort, H. 1969. Fécondation et proembryogenese chez les Abietacées (notion de néocytoplasme). Rev. Cytol. Biol. Vég. 32: 253–271Google Scholar
Carlquist, S. 1969. Toward acceptable evolutionary interpretations of floral anatomy. Phytomorphology 19: 332–352Google Scholar
Chesnoy, L. and Thomas, M. J.. 1971. Electron microscopy studies on gametogenesis and fertilization in gymnosperms. Phytomorphology 21: 50–63Google Scholar
Davis, G. L. 1966. Systematic Embryology of the Angiosperms. New York: John Wiley and SonsGoogle Scholar
Dickinson, H. G., Elleman, C. J., and Doughty, J.. 2000. Pollen coatings: chimaeric genetics and new functions. Sex. Plant Reprod. 12: 302–309CrossRefGoogle Scholar
Dunbar, A. 1973. Pollen ontogeny in some species of Campanulaceae: a study by electron microscopy. Bot. Notiser 126: 277–315Google Scholar
Edwards, M. M. 1968. Dormancy in seeds of charlock. III. Occurrence and mode of action of an inhibitor associated with dormancy. Ann. Bot. 19: 601–610Google Scholar
Elleman, C. J. and Dickinson, H. G.. 1999. Commonalities between pollen/stigma and host/pathogen interactions: calcium accumulation during stigmatic penetration by Brassica oleracea pollen tubes. Sex. Plant Reprod. 12: 194–202CrossRefGoogle Scholar
Esau, K. 1977. Anatomy of Seed Plants, 2nd. edn. New York: John Wiley and SonsGoogle Scholar
Foster, A. S. and Gifford, Jr, E. M.. 1974. Comparative Morphology of Vascular Plants, 2nd edn. San Francisco, CA: W. H. FreemanGoogle Scholar
Greyson, R. I. 1994. The Development of Flowers. New York: Oxford University PressGoogle Scholar
Hayward, H. E. 1938. The Structure of Economic Plants. New York: MacmillanGoogle Scholar
Hepler, P. K., Vivaldi, L., and Cheung, A. Y.. 2001. Polarized cell growth in higher plants. Annu. Rev. Cell Devel. Biol. 17: 159–187CrossRefGoogle ScholarPubMed
Heslop-Harrison, J. (ed.) 1971. Pollen Development and Physiology. London: ButterworthGoogle Scholar
Hoefert, L. L. 1969. Fine structure of sperm cells in pollen grains in Beta. Protoplasma 68: 237–240CrossRefGoogle Scholar
Holdaway-Clarke, T. L. and Hepler, P. K.. 2003. Control of pollen tube growth: role of ion gradients and fluxes. New Phytol. 159: 539–563CrossRefGoogle Scholar
Hori, T., Ridge, R. W., Tulecke, W., et al. (eds.) 1997. Ginkgo biloba: A Global Treasure. Tokyo: Springer-VerlagCrossRefGoogle Scholar
Hulme, A. C. (ed.) 1970. The Biochemistry of Fruits and their Products, vol. 1. London: Academic PressGoogle Scholar
Hyde, B. B. 1970. Mucilage-producing cells in the seed coat of Plantago ovata: developmental fine structure. Am. J. Bot. 57: 1197–1206CrossRefGoogle Scholar
Jensen, W. A. 1965. The ultrastructure and composition of the egg and central cell of cotton. Am. J. Bot. 52: 781–797CrossRefGoogle Scholar
Jensen, W. A. 1968. Cotton embryogenesis: the zygote. Planta 79: 346–366CrossRefGoogle ScholarPubMed
Jensen, W. A. 1969. Cotton embryogenesis: pollen tube development in the nucellus. Can. J. Bot. 47: 383–385CrossRefGoogle Scholar
Jensen, W. A. 1973. Fertilization in flowering plants. BioScience 23: 21–27CrossRefGoogle Scholar
Johri, B. M. (ed.) 1984. Embryology of Angiosperms. Berlin: Springer-VerlagCrossRefGoogle Scholar
Justus, C. D., Anderhag, P., Goins, J. L., and Lazzaro, M. C.. 2004. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta 219: 103–109CrossRefGoogle ScholarPubMed
Kaplan, D. R. 1969. Seed development in Downingia. Phytomorphology 19: 253–278Google Scholar
Kozlowski, T. T. (ed.) 1972. Seed Biology, 2 vols. New York: Academic PressGoogle Scholar
Lloyd, D. G. and Barrett, S. C. H. (eds.) 1996. Floral Biology. New York: Chapman and HallCrossRefGoogle Scholar
Luckwill, L. C. 1959. Factors controlling the growth and form of fruits. J. Linn. Soc. London, Bot. 56: 294–302CrossRefGoogle Scholar
Maheshwari, P. and Singh, H.. 1967. The female gametophyte of gymnosperms. Biol. Rev. 42: 88–130CrossRefGoogle Scholar
Mahlberg, P. G. 1960. Embryogeny and histogenesis in Nerium oleander L. I. Organization of primary meristematic tissues. Phytomorphology 10: 118–131Google Scholar
Netolitzky, F. 1926. Handbuch der Pflanzenanatomie, Anatomie der Angiospermen-Samen, vol. 10, Lief. Berlin: BornträgerGoogle Scholar
Norstog, K. 1972. Early development of the barley embryo: fine structure. Am. J. Bot. 59: 123–132CrossRefGoogle Scholar
O'Brien, T. P. and Thimann, K. V.. 1967. Observations on the fine structure of the oat coleoptile. III. Correlated light and electron microscopy of the vascular tissues. Protoplasma 63: 443–478CrossRefGoogle Scholar
Periasamy, K. 1977. A new approach to the classification of angiosperm embryos. Proc. Indian Acad. Sci. 86B: 1–13Google Scholar
Pijl, L. 1972. Principles of Dispersal in Higher Plants, 2nd edn. Berlin: Springer-VerlagCrossRefGoogle Scholar
Puri, V. 1952. Placentation in angiosperms. Bot. Rev. 18: 603–651CrossRefGoogle Scholar
Raghavan, V. 1976. Experimental Embryogenesis in Vascular Plants. London: Academic PressGoogle Scholar
Raghavan, V. 1986. Embryogenesis in Angiosperms: A Developmental and Experimental Study. Cambridge, UK: Cambridge University PressGoogle Scholar
Rost, T. L. 1975. The morphology of germination in Setaria lutescens (Gramineae): the effects of covering structures and chemical inhibitors on dormant and non-dormant florets. Ann. Bot. 39: 21–30CrossRefGoogle Scholar
Russell, S. D. 1991. Isolation and characterization of sperm cells in flowering plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42: 189–204CrossRefGoogle Scholar
Russell, S. D. 1994. Fertilization in higher plants. In Stephenson, A. B. and Kao, T. H., eds., Pollen–Pistil Interactions and Pollen Tube Growth. Rockville, MD: American Society of Plant Physiology, pp. 140–152Google Scholar
Russell, S. D. 1996. Attraction and transport of male gametes for fertilization. Sex. Plant Reprod. 9: 337–342CrossRefGoogle Scholar
Schulz, P. and Jensen, W. A.. 1977. Cotton embryogenesis: the early development of the free nuclear endosperm. Am. J. Bot. 64: 384–394CrossRefGoogle Scholar
Schulz, P. and Jensen, W. A. 1968. Capsella embryogenesis: the egg, zygote, and young embryo. Am. J. Bot. 55: 807–819CrossRefGoogle Scholar
Schulz, P. and Jensen, W. A. 1969. Capsella embryogenesis: the suspensor and the basal cell. Protoplasma 67: 138–163CrossRefGoogle Scholar
Singh, D. and Dathan, A. S. R.. 1972. Structure and development of seed coat in Cucurbitaceae. VI. Seeds of Cucurbita. Phytomorphology 22: 29–45Google Scholar
Sporne, K. R. 1958. Some aspects of floral vascular systems. Proc. Linn. Soc. London B 169: 75–84CrossRefGoogle Scholar
Srivastava, L. M. and Paulson, R. E.. 1968. The fine structure of the embryo of Lactuca sativa. II. Changes during germination. Can. J. Bot. 46: 1447–1453CrossRefGoogle Scholar
Steeves, T. A. and Sussex, I. M.. 1989. Patterns in Plant Development, 2nd edn. Cambridge, UK: Cambridge University PressCrossRefGoogle Scholar
Tepfer, S. S. 1953. Floral anatomy and ontogeny in Aquilegia formosa var. truncata and Ranunculus repens. Univ. Calif. Publ. Bot. 25: 513–648Google Scholar
Thimann, K. V. and O'Brien, T. P.. 1965. Histological studies of the coleoptile. II. Comparative vascular anatomy of coleoptiles of Avena and Triticum. Am. J. Bot. 52: 918–923CrossRefGoogle Scholar
Tian, H. Q., Zhang, Z. J., and Russell, S. D.. 2001. Sperm dimorphism in Nicotiana tabacum L. Sex. Plant Reprod. 14: 123–125CrossRefGoogle Scholar
Tucker, S. C. 1959. Ontogeny of the inflorescence and the flower of Drimys winteri var. chilensis. Univ. Calif. Publ. Bot. 30: 257–336Google Scholar
Tucker, S. C. 1999. Evolutionary lability of symmetry in early floral development. Int. J. Plant Sci. 160: S25–S39CrossRefGoogle ScholarPubMed
Tucker, S. C. 2003. Floral development in legumes. Plant Physiol. 131: 911–926CrossRefGoogle ScholarPubMed
Tucker, S. C. and Grimes, J.. 1999. The inflorescence: introduction. Bot. Rev. 65: 303–316CrossRefGoogle Scholar
Wardlaw, C. W. 1955. Embryogenesis in Plants. New York: John Wiley and SonsCrossRefGoogle Scholar
Webb, M. C. and Gunning, B. E. S.. 1991. The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184:187–195CrossRefGoogle ScholarPubMed
Weterings, K. and Russell, S. D.. 2004. Experimental analysis of the fertilization process. Plant Cell 16: S107–S118CrossRefGoogle ScholarPubMed
Yeung, E. C. 1980. Embryogeny of Phaseolus: the role of the suspensor. Z. Pflanzenphysiol. 96: 17–28CrossRefGoogle Scholar
Zhang, Z., Tian, H. Q., and Russell, S. D.. 1999. Localization of myosin on sperm-cell-associated membranes of tobacco (Nicotiana tabacum L.). Protoplasma 208: 123–128CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×