Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T13:37:25.737Z Has data issue: false hasContentIssue false

Chapter 16 - The root

Published online by Cambridge University Press:  05 June 2012

Charles B. Beck
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Perspective: evolution of the root

The anatomy of the root reflects its origin, its subterranean environment, and its function. The first vascular plants (Rhyniophyta) lacked roots, and absorption of water and nutrients was facilitated by rhizoids. Roots evolved in the seed plant clade (rhyniophytes, trimerophytes, progymnosperms, seed plants) as well as in lycophytes, sphenophytes, and ferns in response to the pressures of a land environment, enhanced by increasing plant size. During their evolution important functions such as anchorage, absorption and transport of minerals and water, and storage of photosynthate were established. In some ways, however, roots changed relatively little through time. This is the result of the subterranean environment in which they evolved, and the fact that roots were, thus, not exposed to the same intense selection pressures as stems.

The seed plant root (Fig. 16.1a, b) is considered by most researchers to be an evolutionarily modified stem although it has also been suggested that it might be an entirely new organ that evolved independently of the stem. The predominant view is supported by the fact that the structure of the root of extant plants is remarkably similar to the anatomy of the stem of their ancestors. Even in many plants with stems that feature specialized siphonostelic or eustelic structure, the roots are protostelic (Fig. 16.1b), also a feature of the stems of very primitive plants. Roots with central piths have an alternate arrangement of xylem and phloem that may reflect a protostelic origin.

Type
Chapter
Information
An Introduction to Plant Structure and Development
Plant Anatomy for the Twenty-First Century
, pp. 272 - 315
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeysekera, R. M. and McCully, M. E.. 1993a. The epidermal surface of the maize root tip. I. Development in normal roots. New Phytol. 125: 413–429CrossRefGoogle Scholar
Abeysekera, R. M. and McCully, M. E. 1993b. The epidermal surface of the maize root tip. II. Abnormalities in a mutant which grows crookedly through soil. New Phytol. 125: 801–811CrossRefGoogle Scholar
Abeysekera, R. M. and McCully, M. E. 1994. The epidermal surface of the maize root tip. III. Isolation of the surface and characterization of some of its structural and mechanical properties. New Phytol. 127: 321–333CrossRefGoogle Scholar
Armstrong, L. and Peterson, R. L.. 2002. The interface between the arbuscular mycorrhizal fungus Glomus intraradices and root cells of Panax quinquefolius: a Paris-type mycorrhizal association. Mycologia 94: 587–595CrossRefGoogle ScholarPubMed
Baluska, F., Kubica, S., and Hauskrecht, M.. 1990. Postmitotic “isodiametric” cell growth in the maize root apex. Planta 181: 269–274CrossRefGoogle ScholarPubMed
Baluska, F., Parker, J. S., and Barlow, P. W.. 1993. A role for gibberellic acid in orienting microtubules and regulating cell growth polarity in the maize root cortex. Planta 191: 149–157CrossRefGoogle Scholar
Baluska, F., Salaj, J., Mathur, J.et al. 2000. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Devel. Biol. 227: 618–632CrossRefGoogle ScholarPubMed
Barlow, P. W. 1975. The root cap. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 21–54Google Scholar
Barlow, P. W. 1992. The meristem and quiescent centre in cultured root apices of the gib-l mutant of tomato (Lycopersicon esculentum Mill.). Ann. Bot. 69: 533–543CrossRefGoogle Scholar
Barlow, P. W. 2002. The root cap: cell dynamics, cell differentiation and cap function. J. Plant Growth Regul. 212: 261–286CrossRefGoogle Scholar
Bell, J. K. and McCully, M.. 1970. A histological study of lateral root initiation and development in Zea mays. Protoplasma 70: 179–205CrossRefGoogle Scholar
Benkova, E., Michniewicz, M., Sauer, M.et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602CrossRefGoogle ScholarPubMed
Berger, T., Haseloff, J., Schiefelbein, J., and Dolan, L.. 1998. Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr. Biol. 8: 421–430CrossRefGoogle ScholarPubMed
Blancaflor, E. R., Zhao, L., and Harrison, M. J.. 2001. Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217: 154–165CrossRefGoogle ScholarPubMed
Bonfante, P. and Perotto, S.. 1995. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. 130: 3–21CrossRefGoogle Scholar
Bowman, J. 1994. Arabidopsis: An Atlas of Morphology and Development. Heidelberg: Springer-VerlagGoogle Scholar
Brundrett, M. and Kendrick, B.. 1990. The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114: 469–479CrossRefGoogle Scholar
Busse, J. S. and Evert, R. F.. 1999. Vascular differentiation and transition in the seedling of Arabidopsis thaliana (Brassicaceae). Int. J. Plant Sci. 160: 241–251CrossRefGoogle Scholar
Casero, P. J., Casimiro, I., and Lloret, P. G.. 1996. Pericycle proliferation pattern during the lateral root initiation in adventitious roots of Allium cepa. Protoplasma 191: 136–147CrossRefGoogle Scholar
Cho, H. T. and Cosgrove, D. J.. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237–3253CrossRefGoogle ScholarPubMed
Clarkson, D. T. 1991. Root structure and sites of ion uptake. In Waisel, Y. and Eshel, A., eds., Plant Roots. New York: Marcel Dekker, pp. 417–455Google Scholar
Clarkson, D. T. and A. W. Robards. 1975. The endodermis, its structural development and physiological role. In Torrey, J. G. and Clarkson, D. T., eds., Development and Function of Roots. London: Academic Press, pp. 415–437Google Scholar
Clowes, F. A. L. 1959. Apical meristems of roots. Biol. Rev. Cambridge Phil. Soc. 34: 501–529CrossRefGoogle Scholar
Clowes, F. A. L. 196l. Apical Meristems. Oxford, UK: BlackwellGoogle Scholar
Clowes, F. A. L. 1976. The root apex. In Yeoman, M. M.Cell Division in Higher Plants. London: Academic Press, pp. 253–284Google Scholar
Clowes, F. A. L. 1994. Origin of the epidermis in root meristems. New Phytol. 127: 335–347CrossRefGoogle Scholar
Cosgrove, D. J. 1993. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int. J. Plant Sci. 154: 10–21CrossRefGoogle ScholarPubMed
Coutts, M. P. and Nicoll, B. C.. 1991. Orientation of the lateral roots of trees. I. Upward growth of surface roots and deflection near the soil surface. New Phytol. 119: 227–234CrossRefGoogle Scholar
Damus, M., Peterson, R. L., Enstone, D. E., and Peterson, C. A.. 1997. Modifications of cortical cell walls in roots of seedless vascular plants. Bot. Acta 110: 190–195CrossRefGoogle Scholar
Dolan, L., Duckett, C., Grierson, C.et al. 1994. Clonal relations and patterning in the root epidermis of Arabidopsis. Development 120: 2465–2474Google Scholar
Eames, A. J. and , L. H. MacDaniels. 1925 An Introduction to Plant Anatomy. New York: McGraw-HillGoogle Scholar
Eleftheriou, E. P. 1990. Monocotyledons. In , H. D. Behnke and , R. D. SjölundSieve Elements: Comparative Structure, Induction and Development.Berlin: Springer-Verlag, pp. 139–159Google Scholar
Enstone, D. E. and Peterson, C. A.. 1997. Suberin deposition and band plasmolysis in the corn (Zea mays L.) root exodermis. Can. J. Bot. 75: 1188–1199CrossRefGoogle Scholar
Esau, K.. Plant Anatomy, 2nd edn. New York: John Wiley and SonsCrossRef
Evans, M. L. 1991. Gravitropism: interaction of sensitivity modulation and effector distribution. Plant Physiol. 95: 1–5CrossRefGoogle Scholar
Evans, M. L. and , H. Ishikawa. 1997. Cellular specificity of the gravitropic motor response in plants. Planta 203: S115–S122CrossRefGoogle Scholar
Evert, R. F. 1990. Seedless vascular plants. In , H. D. Behnke and , R. D. Sjölund, Sieve Elements: Comparative Structure, Induction and Development. Berlin: Springer-Verlag, pp. 35–64Google Scholar
Friml, J. and Palme, K.. 2002. Polar auxin transport: old questions and new concepts?Plant Mol. Biol. 49: 273–284CrossRefGoogle ScholarPubMed
Friml, J., Benková, E., Blilou, I.et al. 2002. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661–673CrossRefGoogle ScholarPubMed
Galway, M. E., Masucci, J. D., Lloyd, A. M.et al. 1994. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Devel. Biol. 166: 740–754CrossRefGoogle ScholarPubMed
Halevy, A. H. 1986. The induction of contractile roots in Gladiolus grandiflorus. Planta 167: 94–100CrossRefGoogle ScholarPubMed
Hirsch, A. M. 1992. Developmental biology of legume nodulation. New Phytol. 122: 211–237CrossRefGoogle Scholar
Hose, E., Clarkson, D. T., Steudle, E., Schreiber, L., and Hartung, W.. 2001. The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52: 2245–2264CrossRefGoogle ScholarPubMed
Javot, H. and Maurel, C.. 2002. The role of aquaporins in root water uptake. Ann. Bot. 90: 301–313CrossRefGoogle ScholarPubMed
Jensen, W. A. and Kalvaljian, L. G.. 1958. An analysis of cell morphology and the periodicity of division in the root tip of Allium cepa. Am. J. Bot. 45: 365–372CrossRefGoogle Scholar
Jernstedt, J. A. 1984a. Seedling growth and root contraction in the soap plant, Chlorogalum pomeridianum (Liliaceae). Am. J. Bot. 71: 69–75CrossRefGoogle Scholar
Jernstedt, J. A. 1984b. Root contraction in hyacinth. I. Effects of IAA on differential cell expansion. Am. J. Bot. 71: 1080–1089CrossRefGoogle Scholar
Kerk, N. and Feldman, L.. 1994. The quiescent center in roots of maize: initiation, maintenance and role in organization of the root apical meristem. Protoplasma 183: 100–106CrossRefGoogle Scholar
Knoll, A. H. and Niklas, K. J.. 1987. Adaptation, plant evolution, and the fossil record. Rev. Palaeobot. Palynol. 50: 127–149CrossRefGoogle ScholarPubMed
Konings, H. 1995. Gravitropism of roots: an evaluation of progress during the last three decades. Acta Bot. Neerl. 44: 195–223CrossRefGoogle ScholarPubMed
Lersten, N. R. 1997. Occurrence of endodermis with a Casparian strip in stem and leaf. Bot. Rev. 63: 265–272CrossRefGoogle Scholar
Luxova, M. 1990. Effect of lateral root formation on the vascular pattern of barley roots. Bot. Acta 103: 305–310CrossRefGoogle Scholar
Ma, F. S. and Peterson, C. A.. 2001a. Development of cell wall modifications in the endodermis and exodermis of Allium cepa roots. Can. J. Bot. 79: 621–634Google Scholar
Ma, F. S. and Peterson, C. A. 2001b. Frequencies of plasmodesmata in Allium cepa L. roots: implications for solute transport pathways. J. Exp. Bot. 52: 1051–1061CrossRefGoogle Scholar
Massicotte, H. B., Melville, L. H., Peterson, R. L., and , T. Unestam. 1999. Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa withPaxillus involutus. Mycorrhiza 8: 229–240CrossRefGoogle Scholar
Masucci, J. D. and Schiefelbein, J. W.. 1996. Hormones act downstrean of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505–1517CrossRefGoogle Scholar
McCully, M. E. and Mallett, J. E.. 1993. The branch roots of Zea. III. Vascular connections and bridges for nutrient recycling. Ann. Bot. 71: 327–341CrossRefGoogle Scholar
Mosiniak, M., Rouic, I., and Roland, J.-C.. 1995. Croissance pluridirectionnelle des parois hélicoïdales: le raccourcissement cellulaire des raciness tractrices. Acta Bot. Gallica 142: 191–207CrossRefGoogle Scholar
Ottenschläger, I., Wolff, P., Wolverton, C.et al. 2003. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100: 2987–2991CrossRefGoogle ScholarPubMed
Pate, J. S., Gunning, B. E. S., and Briarty, L. G.. 1969. Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta 85: 11–34CrossRefGoogle ScholarPubMed
Peterson, C. A. 1988. Exodermal Casparian bands: their significance for ion uptake by roots. Physio. Plant. 72: 204–208CrossRefGoogle Scholar
Peterson, C. A. and Enstone, D. E.. 1996. Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97: 592–598CrossRefGoogle Scholar
Peterson, C. A., Murrmann, M., and Steudle, E.. 1993. Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190: 127–136CrossRefGoogle Scholar
Peterson, R. L. 1992. Adaptations of root structure in relation to biotic and abiotic factors. Can. J. Bot. 70: 661–675CrossRefGoogle Scholar
Ponce, G., Lujan, R., Campos, M. E.et al. 2000. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center. Planta 211: 23–33CrossRefGoogle Scholar
Pritchard, J. 1994. The control of cell expansion in roots. New Phytol. 127: 3–26CrossRefGoogle Scholar
Pütz, N. 1991. Measurement of the pulling force of a single contractile root. Can. J. Bot. 70: 1433–1439CrossRefGoogle Scholar
Ridge, R. W. and Sack, F. D.. 1992. Cortical and cap sedimentation in gravitropic Equisetum roots. Am. J. Bot. 79: 328–334CrossRefGoogle ScholarPubMed
Sabatini, S., Beis, D., Wolkenfelt, H.et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472CrossRefGoogle ScholarPubMed
Scales, P. F. and Peterson, R. L.. 199l. Structure and development of Pinus banksiana–Wilcoxina ectendomycorrhizae. Can. J. Bot. 69: 2135–2148CrossRefGoogle Scholar
Scheres, B., McKhann, H., Berg, C.et al. 1996. Experimental and genetic analysis of root development in Arabidopsis thaliana. Plant Soil 187: 97–105CrossRefGoogle Scholar
Schiefelbein, J. W. 2000. Constructing a plant cell: the genetic control of root hair development. Plant Physiol. 124: 1525–1531CrossRefGoogle ScholarPubMed
Schiefelbein, J. W. and Somerville, C.. 1990. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2: 235–243CrossRefGoogle ScholarPubMed
Schiefelbein, J. W., Masucci, J. D., and , H. Wang. 1997. Building a root: the control of patterning and morphogenesis during root development. Plant cell 9: 1089–1098CrossRefGoogle ScholarPubMed
Schnepf, E. 1993. Golgi apparatus and slime secretion in plants: the early implications and recent models of membrane traffic. Protoplasma 172: 3–11CrossRefGoogle Scholar
Schreiber, L. 1996. Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin. Planta 199: 596–601CrossRefGoogle Scholar
Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J.. 1999. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 50: 1267–1280Google Scholar
Seago, J. L., Peterson, C. A., Instone, D. E., and Scholey, C. A.. 1999. Development of the endodermis and hypodermis of Typha glauca Godr. and Typha angustifolia L. roots. Can. J. Bot. 77: 122–134Google Scholar
Seago, J. S., Peterson, C. A., and Enstone, D. E.. 2000a. Cortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae). Am. J. Bot. 87: 1116–1127CrossRefGoogle Scholar
Seago, J. L., Peterson, C. A., Kinsley, L. J., and Broderick, J.. 2000b. Development and structure of the root cortex in Caltha palustris L. and Nymphaea oderato Ait. Ann. Bot. 86: 631–640CrossRefGoogle Scholar
Shane, M. W., McCully, M. E., and Canny, M. J.. 2000. Architecture of branch–root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann. Bot. 85: 613–624CrossRefGoogle Scholar
Skene, K. R. 1998. Cluster roots: some ecological considerations. J. Ecol. 86: 1062–1066CrossRefGoogle Scholar
Skene, K. R. 2000. Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann. Bot. 85: 901–908CrossRefGoogle Scholar
Smith, F. A. and Smith, S. E.. 1997. Structural diversity in (vesicular)– arbuscular mycorrhizal symbioses. New Phytol. 137: 373–388CrossRefGoogle Scholar
Steudle, E. and Peterson, C. A.. 1998. How does water get through roots?J. Exp. Bot. 49: 775–788Google Scholar
Stewart, W. N. and Rothwell, G. W.. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge, UK: Cambridge University PressGoogle Scholar
Subba-Rao, N. S., Mateos, P. F., Baker, D . et al., 1995. The unique root-nodule symbiosis betweeen Rhizobium and the aquatic legume, Neptunia natans (L. f.) Druce. Planta 196: 311–320CrossRefGoogle Scholar
Taleisnik, E., Peyrano, G., Cordoba, A., and Arias, C.. 1999. Water retention capacity in root segments differing in the degree of exodermis development. Ann. Bot. 83: 19–27CrossRefGoogle Scholar
Torrey, J. G. 1953. The effect of certain metabolic inhibitors on vascular tissue differentiation in isolated pea roots. Am. J. Bot. 40: 525–533CrossRefGoogle Scholar
Troughton, J. and , L. A. Donaldson. 1972. Probing Plant Structure. Wellington, NZ: New Zealand Ministry of Research, Science and TechnologyGoogle Scholar
Berg, C., Willimsen, V., Hendricks, G., Weisbeck, P. and , B. Scheres. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289Google ScholarPubMed
Verdaguer, D. and Molinas, M.. 1997. Development and ultrastructure of the endodermis in the primary root of cork oak (Quercus suber). Can. J. Bot. 75: 769–780CrossRefGoogle Scholar
Wang, X.-L., Canny, M. J., and McCully, M. E.. 1991. The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant. 82: 157–162CrossRefGoogle Scholar
Wang, X.-L., McCully, M. E. and Canny, M. J.. 1995. Branch roots of Zea. V. Structural features related to water and nutrient transport. Bot. Acta 108: 209–219CrossRefGoogle Scholar
Watt, M. and Evans, J. R.. 1999. Proteoid roots: physiology and development. Plant Physiol. 121: 317–323CrossRefGoogle ScholarPubMed
Wilder, G. J. and Johansen, J. R.. 1992. Comparative anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae). Can. J. Bot. 70: 2384–2404CrossRefGoogle Scholar
Willemsen, V., Wolkenfelt, H., Vrieze, G., Weisbeek, P. and Scheres, B.. 1998. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125: 521–531Google ScholarPubMed
Wilson, K. and , J. N. Honey. 1966. Root contraction in Hyacinthus orientalis. Ann. Bot. 30: 47–61CrossRefGoogle Scholar
Yawney, W. J. and Schultz, R. C.. 1990. Anatomy of a vesicular–arbuscular endomycorrhizal symbiosis between sugar maple (Acer saccharum Marsh) and Glomus etunicatum Becker & Gerdemann. New Phytol. 114: 47–57CrossRefGoogle Scholar
Yu, T. E. J. C., Egger, K. N. and , R. L. Peterson. 2001. Ectendomycorrhizal associations: characteristics and functions. Mycorrhiza 11: 167–177CrossRefGoogle Scholar
Zhu, T., Lucas, W. J., and Rost, T. L.. 1998. Directional cell-to-cell communication in the Arabidopsis root apical meristem. I. An ultrastructural and functional analysis. Protoplasma 203: 35–47CrossRefGoogle Scholar
Barlow, P. W. 1974. Regeneration of the cap of primary roots of Zea mays. New Phytol. 73: 937–954CrossRefGoogle Scholar
Barlow, P. W. 1976. Towards an understanding of the behaviour of root meristems. J. Theor. Biol. 57: 433–451CrossRefGoogle ScholarPubMed
Barlow, P. W. and Baluska, F.. 2000. Cytoskeletal perspectives on root growth and morphogenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51: 289–322CrossRefGoogle ScholarPubMed
Barlow, P. W. and Parker, J. S.. 1996. Microtubular cytoskeleton and root morphogenesis. Plant Soil 187: 23–36CrossRefGoogle Scholar
Barlow, P. W., Luck, H. B. and Luck, J.. 2001. Autoreproductive cells and plant meristem construction: the case of the tomato cap meristem. Protoplasma 215: 50–63CrossRefGoogle ScholarPubMed
Baum, S. F. and Rost, T. L.. 1996. Root apical organization in Arabidopsis thaliana. I. Root cap and protoderm. Protoplasma 192: 178–188CrossRefGoogle Scholar
Bergersen, F. J., Kennedy, G. S., and Wittmann, W.. 1965. Nitrogen fixation in the coralloid roots of Macrozamia communis L. Johnson.. Austral J. Biol. Sci. 18: 1135–1142CrossRefGoogle Scholar
Bonnett, H. T. Jr. 1968. The root endodermis: fine structure and function. J. Cell Biol. 37: 109–205CrossRefGoogle ScholarPubMed
Bonnett, H. T. Jr. and Torrey, J. G.. 1966. Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis roots cultured in vitro. Am. J. Bot. 53: 496–507CrossRefGoogle Scholar
Byrne, J. M. 1973. The root apex of Malva sylvestris. III. Lateral root development and the quiescent center. Am. J. Bot. 60: 657–662CrossRefGoogle Scholar
Carlson, M. C. 1950. Nodal adventitious roots in willow stems of different ages. Am. J. Bot. 37: 555–561CrossRefGoogle Scholar
Chapman, K., Groot, E. P., Nichol, S. A., and Rost, T. L.. 2002. Primary root growth and the pattern of root apical meristem organization are coupled. J. Plant Growth Regul. 21: 287–295CrossRefGoogle Scholar
Clowes, F. A. L. 1975. The quiescent centre. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 3–19Google Scholar
Clowes, F. A. L. 1981. The difference between open and closed meristems. Ann. Bot. 48: 761–767CrossRefGoogle Scholar
Clowes, F. A. L. 1984. Size and activity of quiescent centres of roots. New Phytol. 96: 13–21CrossRefGoogle Scholar
Erickson, R. O. and Sax, K. B.. 1956. Rates of cell division and cell elongation in the growth of the primary root of Zea mays. Proc. Am. Phil. Soc. 100: 499–514Google Scholar
Esau, K. 1940. Developmental anatomy of the fleshy storage organ of Daucus carota. Hilgardia 13: 175–226CrossRefGoogle Scholar
Esau, K. 1943. Vascular differentiation in the pear root. Hilgardia 15: 299–311CrossRefGoogle Scholar
Esau, K. 1965 Vascular Differentiation in Plants. New York: Holt, Rinehart and WinstonGoogle Scholar
Fayle, D. C. F. 1975. Distribution of radial growth during the development of red pine root systems. Can. J. For. Res. 5: 608–625CrossRefGoogle Scholar
Feldman, L. J. 1984. The development and dynamics of the root apical meristem. Am. J. Bot. 71: 1308–1314CrossRefGoogle ScholarPubMed
Fogel, R. 1983. Root turnover and productivity of coniferous forests. Plant Soil 71: 75–85CrossRefGoogle Scholar
Fontana, A. 1985. Vesicular–arbuscular mycorrhizas of Ginkgo biloba L. in natural and controlled conditions. New Phytol. 99: 441–447CrossRefGoogle Scholar
Foster, R. C. and Marks, G. C.. 1966. The fine structure of the mycorrhizas of Pinus radiata D. Don. Austral. J. Biol. Sci. 19: 1027–1038Google Scholar
Groot, E. P., Doyle, J. A., Nichol, S. A., and Rost, T. L.. 2004. Phylogenetic distribution and evolution of root apical meristem organization in dicotyledonous angiosperms. Int. J. Plant Sci. 165: 97–105CrossRefGoogle Scholar
Haas, D. L. and Carothers, Z. B.. 1975. Some ultrastructural observations on endodermal cell development in Zea mays roots. Am. J. Bot. 62: 336–348CrossRefGoogle Scholar
Haissig, B. E. 1974. Origins of adventitious roots. N. Z. J. For. Sci. 4: 299–310Google Scholar
Harley, J. L. and Smith, S. E.. 1983. Mycorrhizal Symbiosis. London: Academic PressGoogle Scholar
Hawes, M. C., Bengough, G., Cassab, G., and Ponce, G.. 2002. Root caps and rhizosphere. J. Plant Growth Regul. 21: 352–367CrossRefGoogle Scholar
Hayward, H. E. 1938. The Structure of Economic Plants. New York: MacmillanGoogle Scholar
Head, G. C. 1973. Shedding of roots. In Kozlowski, T. T., ed., Shedding of Plant Parts. New York: Academic Press, pp. 237–293Google Scholar
Heimsch, C. 1960. A new aspect of cortical development in roots. Am. J. Bot. 47: 195–201CrossRefGoogle Scholar
Iversen, T.-H. and Larsen, P.. 1973. Movement of amyloplasts in the statocytes of geotropically stimulated roots: the pre-inversion effect. Physiol. Plant. 28: 172–181CrossRefGoogle Scholar
Ma, F. S. and Peterson, C. A.. 2003. Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Can. J. Bot. 81: 405–421CrossRefGoogle Scholar
McCully, M. E. 1975. The development of lateral roots. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 105–124Google Scholar
Peterson, R. L. 1967. Differentiation and maturation of primary tissues in white mustard root tips. Can. J. Bot. 45: 319–331CrossRefGoogle Scholar
Peterson, R. L. and Massicotte, H. B.. 2004. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82: 1074–1088CrossRefGoogle Scholar
Postgate, J. 1987. Nitrogen Fixation, 2nd edn. London: ArnoldGoogle Scholar
Romberger, J. A., Hejnowicz, Z., and Hill, J. F.. 1993. Plant Structure: Function and Development. Berlin: Springer-VerlagCrossRefGoogle Scholar
Rost, T. L., Baum, S. F., and Nichol, S.. 1996. Root apical organization in Arabidopsis thaliana ecotype ‘WS’ and a comment on root cap structure. Plant Soil 187: 91–95CrossRefGoogle Scholar
Row, H. C. and Reeder, J. R.. 1957. Root hair development as evidence of relationships among genera of Gramineae. Am. J. Bot. 44: 596–601CrossRefGoogle Scholar
Samaj, J., Baluska, F., and Menzel, D.. 2004. New signaling molecules regulating root hair tip growth. Trends Plant Sci. 9: 217–220CrossRefGoogle ScholarPubMed
Shen-Miller, J. and Hinchman, R. R.. 1974. Gravity sensing in plants: a critique of the statolith theory. BioScience 24: 643–651CrossRefGoogle Scholar
Timonen, S. and Peterson, R. L.. 2002. Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244: 199–210CrossRefGoogle Scholar
Tjepkema, J. D. 1983. Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot. 61: 2924–2929CrossRefGoogle Scholar
Tjepkema, J. D. and Yocum, C. S.. 1974. Measurement of oxygen partial pressure within soybean nodules by oxygen microelectodes. Planta 119: 351–360CrossRefGoogle Scholar
Tomlinson, P. B. 1961. Anatomy of the Monocotyledons, vol. 2, Palmae. Oxford, UK: Clarendon PressGoogle Scholar
Torrey, J. G. 1978. Nitrogen fixation by actinomycete-nodulated angiosperms. BioScience 28: 586–592CrossRefGoogle Scholar
Torrey, J. G. and Clarkson, D. T. (eds.) 1975. The Development and Function of Roots. London: Academic PressGoogle Scholar
Wenzel, C. L. and Rost, T. L.. 2001. Cell division patterns of the protoderm and root cap in the “closed” root apical meristem of Arabidopsis thaliana. Protoplasma 218: 203–213CrossRefGoogle ScholarPubMed
Wilcox, H. 1962. Growth studies of the root of incense cedar, Libodedrus decurrens. I. The origin and development of primary tissues. Am. J. Bot. 49: 221–236CrossRefGoogle Scholar
Wilcox, H. 1968. Morphological studies of the roots of red pine, Pinus resinosa. II. Fungal colonization of roots and the development of mycorrhizae. Am. J. Bot. 55: 688–700CrossRefGoogle Scholar
Wilson, B. F. 1975. Distribution of secondary thickening in tree root systems. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 197–219Google Scholar
Ziegler, H. 1964. Storage, mobilization and distribution of reserve material in trees. In Zimmermann, M. H., ed., The Formation of Wood in Forest Trees. New York: Academic Press, pp. 303–320Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The root
  • Charles B. Beck, University of Michigan, Ann Arbor
  • Book: An Introduction to Plant Structure and Development
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165365.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The root
  • Charles B. Beck, University of Michigan, Ann Arbor
  • Book: An Introduction to Plant Structure and Development
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165365.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The root
  • Charles B. Beck, University of Michigan, Ann Arbor
  • Book: An Introduction to Plant Structure and Development
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139165365.017
Available formats
×