Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-14T22:12:11.732Z Has data issue: false hasContentIssue false

22 - Mycosis fungoides and Sézary syndrome

Published online by Cambridge University Press:  10 January 2011

Christiane Querfeld
Affiliation:
Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL, USA
Steven T. Rosen
Affiliation:
Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

Cutaneous T-cell lymphomas (CTCL) represent a clinically and biologically heterogeneous group of non-Hodgkin lymphomas with clonal proliferation of malignant T lymphocytes homing into the skin according to the new revised World Health Organization and European Organization for Research and Treatment of Cancer (WHO–EORTC) consensus classification for cutaneous lymphomas. Mycosis fungoides (MF) and the aggressive and leukemic variant Sézary syndrome (SS), collectively referred to as CTCL, are the most common and best studied entities. CTCL include other entities such as lymphomatoid papulosis (LyP) and primary cutaneous anaplastic large T-cell lymphoma (ALCL), which belong to the CD30+ lymphoproliferative disorders and other rare diseases with distinct clinical features (Table 22.1).

MF disease is characterized by a chronic, slowly progressing course. The clinical manifestations typically include erythematous patches, evolving into plaques and/or tumors (Figure 22.1a–c). Patients usually present with a prolonged history of a skin rash in sun-protected areas such as lower abdomen, upper thighs, buttocks, and breasts in women. Patients with cutaneous patch/plaque disease have an excellent prognosis and a normal life expectancy compared with age-matched individuals. However, 20% of patients progress into more aggressive and advanced disease with either cutaneous or extracutaneous tumor manifestations. Three major variants have been recognized in the new WHO–EORTC classification including granulomatous slack skin, clinically characterized by the development of erythematous lax skin folds and histologically by a granulomatous T-cell infiltrate and loss of elastic fibers, folliculotropic MF, characterized by involvement of hair follicles with or without mucin deposition often leading to alopecia, and pagetoid reticulosis (Woringer–Kolopp disease), presenting as a slowly enlarging, solitary psoriasiform patch with intraepidermal involvement of atypical (pagetoid) T cells expressing a CD4−CD8+ phenotype.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Willemze, R, Jaffe, ES, Burg, C, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005;105(10):3768–85.CrossRefGoogle ScholarPubMed
Querfeld, C, Guitart, J, Kuzel, TM, et al. Primary cutaneous lymphomas: a review with current treatment options. Blood Rev 2003;17(3):131–42.CrossRefGoogle ScholarPubMed
Vonderheid, EC, Bernengo, MG, Burg, G, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol 2002;46(1):95–106.CrossRefGoogle ScholarPubMed
Criscione, VD, Weinstock, MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol 2007;143(7):854–9.CrossRefGoogle ScholarPubMed
Weinstock, MA, Gardstein, B.Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. Am J Public Health 1999;89(8):1240–4.CrossRefGoogle ScholarPubMed
Huang, KP, Weinstock, MA, Clarke, CA, et al. Second lymphomas and other malignant neoplasms in patients with mycosis fungoides and Sezary syndrome: evidence from population-based and clinical cohorts. Arch Dermatol 2007;143(1):45–50.CrossRefGoogle ScholarPubMed
Koh, HK, Charif, M, Weinstock, MA. Epidemiology and clinical manifestations of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 1995;9(5):943–60.CrossRefGoogle ScholarPubMed
Morales-Suarez-Varela, MM, Olsen, J, Johansen, P, et al. Occupational exposures and mycosis fungoides. A European multicentre case-control study (Europe). Cancer Causes Control 2005;16(10):1253–9.CrossRefGoogle Scholar
Wood, GS, Schaffer, JM, Boni, R, et al. No evidence of HTLV-I proviral integration in lymphoproliferative disorders associated with cutaneous T-cell lymphoma. Am J Pathol 1997;150(2):667–73.Google ScholarPubMed
Herne, KL, Talpur, R, Breuer-McHam, J, et al. Cytomegalovirus seropositivity is significantly associated with mycosis fungoides and Sezary syndrome. Blood 2003;101(6):2132–6.CrossRefGoogle ScholarPubMed
Gupta, RK, Ramble, J, Tong, CY, et al. Cytomegalovirus seroprevalence is not higher in patients with mycosis fungoides/Sezary syndrome. Blood 2006;107(3):1241–2.Google Scholar
Ravat, FE, Spittle, MF, Russell-Jones, R.Primary cutaneous T-cell lymphoma occurring after organ transplantation. J Am Acad Dermatol 2006;54(4):668–75.CrossRefGoogle ScholarPubMed
Kaufman, D, Gordon, LI, Variakojis, D, et al. Successfully treated Hodgkin's disease followed by mycosis fungoides: case report and review of the literature. Cutis 1987;39(4):291–6.Google ScholarPubMed
Wilkins, K, Turner, R, Dolev, JC, et al. Cutaneous malignancy and human immunodeficiency virus disease. J Am Acad Dermatol 2006;54(2):189–206; quiz 207–10.CrossRefGoogle ScholarPubMed
Whittaker, S.Biological insights into the pathogenesis of cutaneous T-cell lymphomas (CTCL). Semin Oncol 2006;33(1 Suppl 3):S3–6.CrossRefGoogle Scholar
Sokolowska-Wojdylo, M, Wenzel, J, Gaffal, E, et al. Absence of CD26 expression on skin-homing CLA+ CD4+ T lymphocytes in peripheral blood is a highly sensitive marker for early diagnosis and therapeutic monitoring of patients with Sezary syndrome. Clin Exp Dermatol 2005;30(6):702–6.CrossRefGoogle ScholarPubMed
Wood, GS, Tung, RM, Haeffrer, AC, et al. Detection of clonal T-cell receptor gamma gene rearrangements in early mycosis fungoides/Sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J Invest Dermatol 1994;103(1):34–41.CrossRefGoogle Scholar
Eriksen, KW, Kaltoft, K, Mikkelsen, G, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 2001;15(5):787–93.CrossRefGoogle ScholarPubMed
Saleh, MN, LeMaistre, CF, Kuzel, TM, et al. Antitumor activity of DAB389IL-2 fusion toxin in mycosis fungoides. J Am Acad Dermatol 1998;39(1):63–73.CrossRefGoogle ScholarPubMed
Tracey, L, Villuendas, R, Dotor, AM, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood 2003;102(3):1042–50.CrossRefGoogle ScholarPubMed
Doorn, R, Dijkman, R, Vermeer, MH, et al. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res 2004;64(16):5578–86.CrossRefGoogle ScholarPubMed
Booken, N, Gratchev, A, Utikal, J, et al. Sezary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3. Leukemia 2008;22(2):393–9.CrossRefGoogle ScholarPubMed
Karenko, L, Hahtola, S, Ranki, A.Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res 2007;118(2–4):353–61.CrossRefGoogle Scholar
Prochazkova, M, Chevret, E, Beylot-Barry, M, et al. Large cell transformation of mycosis fungoides: tetraploidization within skin tumor large cells. Cancer Genet Cytogenet 2005;163(1):1–6.CrossRefGoogle ScholarPubMed
Doorn, R, Zoutman, WH, Dijkman, R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2005;23(17):3886–96.CrossRefGoogle ScholarPubMed
Rubben, A, Kempf, W, Kadin, ME, et al. Multilineage progression of genetically unstable tumor subclones in cutaneous T-cell lymphoma. Exp Dermatol 2004;13(8):472–83.CrossRefGoogle ScholarPubMed
Kupper, TS, Fuhlbrigge, RC.Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004;4(3):211–22.CrossRefGoogle ScholarPubMed
Narducci, MG, Scala, E, Bresin, A, et al. Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 2006;107(3):1108–15.CrossRefGoogle ScholarPubMed
Vowels, BR, Lessin, SR, Cassin, M, et al. Th-2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol 1994;103(5):669–73.CrossRefGoogle Scholar
Goteri, G, Filosa, A, Mannello, B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol 2003;56(6):453–8.CrossRefGoogle ScholarPubMed
Lee, BN, Duvic, M, Tang, CK, et al. Dysregulated synthesis of intracellular type 1 and type 2 cytokines by T cells of patients with cutaneous T-cell lymphoma. Clin Diagn Lab Immunol 1999;6(1):79–84.Google Scholar
Guitart, J, Kennedy, J, Ronan, S, et al. Histologic criteria for the diagnosis of mycosis fungoides: proposal for a grading system to standardize pathology reporting. J Cutan Pathol 2001;28(4):174–83.CrossRefGoogle Scholar
Costa, C, Gallardo, F, Pujol, RM, et al. Comparative analysis of TCR-gamma gene rearrangements by Genescan and polyacrylamide gel-electrophoresis in cutaneous T-cell lymphoma. Acta Derm Venereol 2004;84(1):6–11.CrossRefGoogle ScholarPubMed
Costa, C, Gallardo, F, Bellosillo, B, et al. Analysis of T-cell receptor gamma gene rearrangements by PCR-Genescan and PCR-polyacrylamide gel electrophoresis in early-stage mycosis fungoides/large-plaque parapsoriasis. Dermatology 2003;207(4):418–19.CrossRefGoogle ScholarPubMed
Murphy, M, Signoretti, S, Kadin, ME, et al. Detection of TCR-gamma gene rearrangements in early mycosis fungoides by non-radioactive PCR-SSCP. J Cutan Pathol 2000;27(5):228–34.CrossRefGoogle ScholarPubMed
Bunn, PA, Lamberg, SI.Report of the Committee on Staging and Classification of Cutaneous T-Cell Lymphomas. Cancer Treat Rep 1979;63(4):725–8.Google Scholar
Olsen, E, Vonderheid, E, Pimpinelli, N, et al. Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007;110:1713–22.CrossRefGoogle Scholar
Sausville, EA, Eddy, JL, Makuch, RW, et al. Histopathologic staging at initial diagnosis of mycosis fungoides and the Sezary syndrome. Definition of three distinctive prognostic groups. Ann Intern Med 1988;109(5):372–82.CrossRefGoogle ScholarPubMed
Sausville, EA, Warsham, GF, Matthews, MJ, et al. Histologic assessment of lymph nodes in mycosis fungoides/Sezary syndrome (cutaneous T-cell lymphoma): clinical correlations and prognostic import of a new classification system. Hum Pathol 1985;16(11):1098–109.CrossRefGoogle ScholarPubMed
Kern, , Kidd, PG, Moe, R, et al. Analysis of T-cell receptor gene rearrangement in lymph nodes of patients with mycosis fungoides. Prognostic implications. Arch Dermatol 1998;134(2):158–64.CrossRefGoogle ScholarPubMed
Kim, YH, Liu, HL, Mraz-Gernhard, S, et al. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol 2003;139(7):857–66.CrossRefGoogle ScholarPubMed
Diamandidou, E, Colome, M, Fayad, L, et al. Prognostic factor analysis in mycosis fungoides/Sezary syndrome. J Am Acad Dermatol 1999;40(6 Pt 1):914–24.CrossRefGoogle ScholarPubMed
Diamandidou, E, Colome-Grimmer, M, Fayad, L, et al. Transformation of mycosis fungoides/Sezary syndrome: clinical characteristics and prognosis. Blood 1998;92(4):1150–9.Google ScholarPubMed
Scarisbrick, JJ, Whittaker, S, Evans, AV, et al. Prognostic significance of tumor burden in the blood of patients with erythrodermic primary cutaneous T-cell lymphoma. Blood 2001;97(3):624–30.CrossRefGoogle ScholarPubMed
Grange, F, Hedelin, G, Joly, P, et al. Prognostic factors in primary cutaneous lymphomas other than mycosis fungoides and the Sezary syndrome. The French Study Group on Cutaneous Lymphomas. Blood 1999;93(11):3637–42.Google Scholar
Meissner, K, Michaelis, K, Rehpenning, W, et al. Epidermal Langerhans' cell densities influence survival in mycosis fungoides and Sezary syndrome. Cancer 1990;65(9):2069–73.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Kaye, FJ, Bunn, PA Jr, Steinberg, SM, et al. A randomized trial comparing combination electron-beam radiation and chemotherapy with topical therapy in the initial treatment of mycosis fungoides. N Engl J Med 1989;321(26):1784–90.CrossRefGoogle ScholarPubMed
Querfeld, C, Rosen, ST, Kuzel, TM.Cutaneous T-cell lymphoma (Mycosis fungoides and Sézary's syndrome). In: Rakel, RE, Bape, ET, eds. Conn's Current Therapy, 58th edn., Section 13: Diseases of the skin. Philadelphia, USA, Saunders Elsevier. 2006; 955–62.Google Scholar
Gilchrest, BA, Parrish, JA, Tanenbaum, L, et al. Oral methoxsalen photochemotherapy of mycosis fungoides. Cancer 1976;38(2):683–9.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Honigsmann, H, Brenner, W, Rauschmeier, W, et al. Photochemotherapy for cutaneous T cell lymphoma. A follow-up study. J Am Acad Dermatol 1984;10(2 Pt 1):238–45.CrossRefGoogle ScholarPubMed
Herrmann, JJ, Roenigk, HH Jr, Hurria, A, et al. Treatment of mycosis fungoides with photochemotherapy (PUVA): long-term follow-up. J Am Acad Dermatol 1995;33(2 Pt 1):234–42.CrossRefGoogle ScholarPubMed
Akaraphanth, R, Douglass, MC, Lim, HW.Hypopigmented mycosis fungoides: treatment and a 6(1/2)-year follow-up of 9 patients. J Am Acad Dermatol 2000;42(1 Pt 1):33–9.CrossRefGoogle Scholar
Querfeld, C, Rosen, ST, Kuzel, TM, et al. Long-term follow-up of patients with early-stage cutaneous T-cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol 2005;141(3):305–11.CrossRefGoogle ScholarPubMed
Ramsay, DL, Lish, KM, Yalowitz, CB, et al. Ultraviolet-B phototherapy for early-stage cutaneous T-cell lymphoma. Arch Dermatol 1992;128(7):931–3.CrossRefGoogle ScholarPubMed
Gambichler, T, Breuckmann, F, Bom, S, et al. Narrowband UVB phototherapy in skin conditions beyond psoriasis. J Am Acad Dermatol 2005;52(4):660–70.CrossRefGoogle ScholarPubMed
Gathers, RC, Scherschun, L, Malick, F, et al. Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol 2002;47(2):191–7.CrossRefGoogle ScholarPubMed
Zackheim, HS, Kashani-Sabet, M, Amin, S.Topical corticosteroids for mycosis fungoides. Experience in 79 patients. Arch Dermatol 1998;134(8):949–54.CrossRefGoogle ScholarPubMed
Zackheim, HS. Treatment of patch-stage mycosis fungoides with topical corticosteroids. Dermatol Ther 2003;16(4):283–7.CrossRefGoogle ScholarPubMed
Klein, E, Rosner, D, Holtermann, OA, et al. Nonspecific antigen reactions. Natl Cancer Inst Monogr 1976;44:87–97.Google ScholarPubMed
Vonderheid, EC, Ekbote, SK, Kerrigan, K, et al. The prognostic significance of delayed hypersensitivity to dinitrochlorobenzene and mechlorethamine hydrochloride in cutaneous T cell lymphoma. J Invest Dermatol 1998;110(6):946–50.CrossRefGoogle ScholarPubMed
Vonderheid, EC, Tan, ET, Kantor, AF, et al. Long-term efficacy, curative potential, and carcinogenicity of topical mechlorethamine chemotherapy in cutaneous T cell lymphoma. J Am Acad Dermatol 1989;20(3):416–28.CrossRefGoogle ScholarPubMed
Querfeld, C, Nagelli, LV, Rosen, ST, et al. Bexarotene in the treatment of cutaneous T-cell lymphoma. Expert Opin Pharmacother 2006;7(7):907–15.CrossRefGoogle ScholarPubMed
Zackheim, HS.Topical carmustine (BCNU) in the treatment of mycosis fungoides. Dermatol Ther 2003;16(4):299–302.CrossRefGoogle ScholarPubMed
Zackheim, HS, Epstein, EH, Crain, WR.Topical carmustine (BCNU) for cutaneous T cell lymphoma: a 15-year experience in 143 patients. J Am Acad Dermatol 1990;22(5 Pt 1):802–10.CrossRefGoogle ScholarPubMed
Breneman, D, Duvic, M, Kuzel, T, et al. Phase 1 and 2 trial of bexarotene gel for skin-directed treatment of patients with cutaneous T-cell lymphoma. Arch Dermatol 2002;138(3):325–32.CrossRefGoogle ScholarPubMed
Heald, P, Mehlmaller, M, Martin, AG, et al. Topical bexarotene therapy for patients with refractory or persistent early-stage cutaneous T-cell lymphoma: results of the phase III clinical trial. J Am Acad Dermatol 2003;49(5):801–15.CrossRefGoogle ScholarPubMed
Apisarnthanarax, N, Talpur, R, Ward, S, et al. Tazarotene 0.1% gel for refractory mycosis fungoides lesions: an open-label pilot study. J Am Acad Dermatol 2004;50(4):600–7.CrossRefGoogle ScholarPubMed
Hoppe, RT, Cox, RS, Fuks, Z, et al. Electron-beam therapy for mycosis fungoides: the Stanford University experience. Cancer Treat Rep 1979;63(4):691–700.Google ScholarPubMed
Jones, GW, Hoppe, RT, Glatstein, E.Electron beam treatment for cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 1995;9(5):1057–76.CrossRefGoogle ScholarPubMed
Ysebaert, L, Truc, G, Dalac, S, et al. Ultimate results of radiation therapy for T1-T2 mycosis fungoides (including reirradiation). Int J Radiat Oncol Biol Phys 2004;58(4):1128–34.CrossRefGoogle Scholar
Quiros, PA, Jones, GW, Kacinski, BM, et al. Total skin electron beam therapy followed by adjuvant psoralen/ultraviolet-A light in the management of patients with T1 and T2 cutaneous T-cell lymphoma (mycosis fungoides). Int J Radiat Oncol Biol Phys 1997;38(5):1027–35.CrossRefGoogle Scholar
Bunn, PA, Ihde, DC, Foon, KA. The role of recombinant interferon-alfa-Za in the therapy of cutaneous T-cell lymphomas. Cancer 1986;57:1689–95.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Vonderheid, EC, Thompson, R, Smiles, KA, et al. Recombinant interferon alfa-2b in plaque-phase mycosis fungoides. Intralesional and low-dose intramuscular therapy. Arch Dermatol 1987;123(6):757–63.CrossRefGoogle ScholarPubMed
Kohn, EC, Steiss, RG, Sausville, EA, et al. Phase II trial of intermittent high-dose recombinant interferon alfa-2a in mycosis fungoides and the Sezary syndrome. J Clin Oncol 1990;8(1):155–60.CrossRefGoogle ScholarPubMed
Olsen, EA, Bunn, PA.Interferon in the treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 1995;9(5):1089–107.CrossRefGoogle ScholarPubMed
Kuzel, TM, Roenigk, HH Jr, Samuelson, E, et al. Effectiveness of interferon alfa-2a combined with phototherapy for mycosis fungoides and the Sezary syndrome. J Clin Oncol 1995;13(1):257–63.CrossRefGoogle ScholarPubMed
Kuzel, TM, Roenigk, HH Jr, Samuelson, E, et al. Suppression of anti-interferon alpha-2a antibody formation in patients with mycosis fungoides by exposure to long-wave UV radiation in the A range and methoxsalen ingestion. J Natl Cancer Inst 1992;84(2):119–21.CrossRefGoogle ScholarPubMed
Zhang, C, Hazarika, P, Ni, X, et al. Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. Clin Cancer Res 2002;8(5):1234–40.Google ScholarPubMed
Duvic, M, Martin, AG, Kim, Y, et al. Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch Dermatol 2001;137(5):581–93.Google ScholarPubMed
Duvic, M, Hymes, K, Heald, P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol 2001;19(9):2456–71.CrossRefGoogle ScholarPubMed
Querfeld, C, Rosen, ST, Guitart, J, et al. Comparison of selective retinoic acid receptor- and retinoic X receptor-mediated efficacy, tolerance, and survival in cutaneous t-cell lymphoma. J Am Acad Dermatol 2004;51(1):25–32.CrossRefGoogle ScholarPubMed
Talpur, R, Ward, S, Aspisarnthanarax, N, et al. Optimizing bexarotene therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol 2002;47(5):672–84.CrossRefGoogle ScholarPubMed
Gorgun, G, Foss, F.Immunomodulatory effects of RXR rexinoids: modulation of high-affinity IL-2R expression enhances susceptibility to denileukin diftitox. Blood 2002;100(4):1399–403.CrossRefGoogle ScholarPubMed
Foss, F, Demierre, MF, DiVenuti, G.A phase-1 trial of bexarotene and denileukin diftitox in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood 2005;106(2):454–7.CrossRefGoogle ScholarPubMed
Maeda, A, Schwarz, A, Kernebeck, K, et al. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells. J Immunol 2005;174(10):5968–76.CrossRefGoogle ScholarPubMed
Edelson, R, Berger, C, Gasparro, F, et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med 1987;316(6):297–303.CrossRefGoogle ScholarPubMed
Zic, JA.The treatment of cutaneous T-cell lymphoma with photopheresis. Dermatol Ther 2003;16(4):337–46.CrossRefGoogle ScholarPubMed
Child, FJ, Mitchell, TJ, Whittaker, SJ, et al. A randomized cross-over study to compare PUVA and extracorporeal photopheresis in the treatment of plaque stage (T2) mycosis fungoides. Clin Exp Dermatol 2004;29(3):231–6.CrossRefGoogle ScholarPubMed
Wilson, LD, Jones, GW, Kim, D, et al. Experience with total skin electron beam therapy in combination with extracorporeal photopheresis in the management of patients with erythrodermic (T4) mycosis fungoides. J Am Acad Dermatol 2000;43(1 Pt 1):54–60.CrossRefGoogle ScholarPubMed
Suchin, KR, Cucthiara, AJ, Gottleib, SL, et al. Treatment of cutaneous T-cell lymphoma with combined immunomodulatory therapy: a 14-year experience at a single institution. Arch Dermatol 2002;138(8):1054–60.CrossRefGoogle Scholar
Quaglino, P, Fierro, MT, Rossotto, GL, et al. Treatment of advanced mycosis fungoides/Sezary syndrome with fludarabine and potential adjunctive benefit to subsequent extracorporeal photochemotherapy. Br J Dermatol 2004;150(2):327–36.CrossRefGoogle ScholarPubMed
Dearden, CE, Matutes, E, Catovsky, D.Alemtuzumab in T-cell malignancies. Med Oncol 2002;19 Suppl:S27–32.CrossRefGoogle ScholarPubMed
Talpur, R, Jones, DM, Alencar, AJ, et al. CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol 2006;126(3):575–83.CrossRefGoogle ScholarPubMed
Zhang, C, Richon, V, Ni, X, et al. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 2005;125(5):1045–52.CrossRefGoogle ScholarPubMed
Piekarz, RL, Robey, RW, Zhan, Z, et al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood 2004;103(12):4636–43.CrossRefGoogle ScholarPubMed
Prince, HM, George, DJ, Johnstone, R, et al. LBH589, a novel histone deacetylase inhibitor (HDACi), treatment of patients with cutaneous T-cell lymphoma (CTCL). Changes in skin gene expression profiles related to clinical response following therapy. J Clin Oncol (2006 ASCO Annual Meeting Proceedings Part I) 2006;24(185):Abstract 7501.Google Scholar
Olsen, E, Kim, Y, Kuzel, T, et al. Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): results of a phase IIB trial. J Clin Oncol (2006 ASCO Annual Meeting Proceedings Part I) 2006;24(185):Abstract 7500.Google Scholar
Duvic, M, Talpur, R, Nix, , et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007;109(1):31–9.CrossRefGoogle Scholar
Querfeld, CR, Rosen, ST.Epigenetic modulation of gene transcription: a new therapeutic modality in CTCL?Am J Hematol Oncol 2007;6(5 Suppl 7):23–5.Google Scholar
Sandor, V, Bakke, S, Robey, RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002;8(3):718–28.Google Scholar
Piekarz, RL, Robey, R, Sandor, V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 2001;98(9):2865–8.CrossRefGoogle ScholarPubMed
Wollina, U, Graefe, T, Kaatz, M. Pegylated doxorubicin for primary cutaneous T cell lymphoma: a report on ten patients with follow-up. Ann N Y Acad Sci 2001;941:214–16.CrossRefGoogle ScholarPubMed
Wollina, U, Dummer, R, Brockmeyer, NH, et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 2003;98(5):993–1001.CrossRefGoogle ScholarPubMed
Zinzani, PL, Baliva, G, Magagnoli, M, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol 2000;18(13):2603–6.CrossRefGoogle ScholarPubMed
Marchi, E, Alinari, L, Tani, M, et al. Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer 2005;104(11):2437–41.CrossRefGoogle ScholarPubMed
Tsimberidou, AM, Giles, F, Duvic, M, et al. Phase II study of pentostatin in advanced T-cell lymphoid malignancies: update of an M.D. Anderson Cancer Center Series. Cancer 2004;100(2):342–9.CrossRefGoogle Scholar
Bunn, PA, Hoffman, S J, Norris, D, et al. Systemic therapy of cutaneous T-cell lymphomas (mycosis fungoides and the Sezary syndrome). Ann Intern Med 1994;121(8):592–602.CrossRefGoogle Scholar
Hoff, DD, Dohlberg, S, Hartstock, R J, et al. Activity of fludarabine monophosphate in patients with advanced mycosis fungoides: a Southwest Oncology Group study. J Natl Cancer Inst 1990;82(16):1353–5.CrossRefGoogle Scholar
Kuzel, TM, Hurria, A, Samuelson, E, et al. Phase II trial of 2-chlorodeoxyadenosine for the treatment of cutaneous T-cell lymphoma. Blood 1996;87(3):906–11.Google ScholarPubMed
Saven, A, Carrera, C J, Carson, DA, et al. 2-Chlorodeoxyadenosine: an active agent in the treatment of cutaneous T-cell lymphoma. Blood 1992;80(3):587–92.Google ScholarPubMed
Foss, FM, Ihde, DC, Breneman, DL, et al. Phase II study of pentostatin and intermittent high-dose recombinant interferon alfa-2a in advanced mycosis fungoides/Sezary syndrome. J Clin Oncol 1992;10(12):1907–13.CrossRefGoogle ScholarPubMed
Tani, M, Fina, M, Alinari, L, et al. Phase II trial of temozolomide in patients with pretreated cutaneous T-cell lymphoma. Haematologica 2005;90(9):1283–4.Google ScholarPubMed
Rosen, ST, Guitart, J, Martone, B, et al. Phase II trial of temozolomide for treatment of mycosis fungoides/Sézary syndrome (MF/SS). Proc Am Soc Clin Oncol 2002;21:140.Google Scholar
Dolan, ME, McRae, BL, Ferries-Rowe, E, et al. O6-alkylguanine-DNA alkyltransferase in cutaneous T-cell lymphoma: implications for treatment with alkylating agents. Clin Cancer Res 1999;5(8):2059–64.Google ScholarPubMed
Fierro, MT, Quaglino, P, Savoia, P, et al. Systemic polychemotherapy in the treatment of primary cutaneous lymphomas: a clinical follow-up study of 81 patients treated with COP or CHOP. Leuk Lymphoma 1998;31(5–6):583–8.CrossRefGoogle ScholarPubMed
Akpek, G, Keh, HK, Bogen, S, et al. Chemotherapy with etoposide, vincristine, doxorubicin, bolus cyclophosphamide, and oral prednisone in patients with refractory cutaneous T-cell lymphoma. Cancer 1999;86(7):1368–76.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Bigler, RD, Crilley, P, Micaily, B, et al. Autologous bone marrow transplantation for advanced stage mycosis fungoides. Bone Marrow Transplant 1991;7(2):133–7.Google ScholarPubMed
Russell-Jones, R, Child, F, Olavaria, E, et al. Autologous peripheral blood stem cell transplantation in tumor-stage mycosis fungoides: predictors of disease-free survival. Ann N Y Acad Sci 2001;941:147–54.CrossRefGoogle ScholarPubMed
Oyama, Y, Guitart, J, Kuzel, TM, et al. High-dose therapy and bone marrow transplantation in cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 2003;17(6):1475–83, xi.CrossRefGoogle ScholarPubMed
Herbert, KE, Spencer, A, Gigg, A, et al. Graft-versus-lymphoma effect in refractory cutaneous T-cell lymphoma after reduced-intensity HLA-matched sibling allogeneic stem cell transplantation. Bone Marrow Transplant 2004;34(6):521–5.CrossRefGoogle ScholarPubMed
Kim, YH, Duvic, M, Obitz, E, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood 2007;109(11):4655–62.CrossRefGoogle ScholarPubMed
Querfeld, C, Rosen, ST, Guitart, J, et al. Phase II trial of subcutaneous injections of human recombinant interleukin-2 for the treatment of mycosis fungoides and Sezary syndrome. J Am Acad Dermatol 2007;56(4):580–3.CrossRefGoogle ScholarPubMed
Rook, AH, Zaki, MH, Wysocka, M, et al. The role for interleukin-12 therapy of cutaneous T cell lymphoma. Ann N Y Acad Sci 2001;941:177–84.CrossRefGoogle ScholarPubMed
Wysocka, M, Benoit, BM, Newton, S, et al. Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15. Blood 2004;104(13):4142–9.CrossRefGoogle ScholarPubMed
Querfeld, C, Kuzel, TM, Guitart, J, et al. Preliminary results of a phase II study of CC-5013 (Lenalidomide, Revlimid™) in patients with cutaneous T-cell lymphoma. Blood 2005;106(11):936a–7a.Google Scholar
Zinzani, PL, Musuraca, G, Tani, M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol 2007;25(27):4293–7.CrossRefGoogle ScholarPubMed
Demierre, MF, Tien, A, Miller, D.Health-related quality-of-life assessment in patients with cutaneous T-cell lymphoma. Arch Dermatol 2005;141(3):325–30.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×