Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-14T14:58:24.333Z Has data issue: false hasContentIssue false

14 - Molecular pathology of lymphoma

Published online by Cambridge University Press:  10 January 2011

David J. Good
Affiliation:
Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver, BC, Canada
Randy D. Gascoyne
Affiliation:
Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver, BC, Canada
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

The non-Hodgkin lymphomas (NHLs) encompass a wide spectrum of disorders with varying clinical and biologic features. The appropriate diagnosis and classification forms the basis of clinical patient management and the choice of treatment protocol. The diagnosis of lymphoma begins by a thorough evaluation of the histologic and cytologic features. However, this is often inadequate for accurate classification as there is often significant overlap between these entities. Immunophenotyping studies, either by flow cytometry or immunohistochemical staining, are often initially done to determine lineage and possibly clonality. Molecular techniques are of increasing practical importance as they provide an additional level of testing. This is particularly useful in cases where the histologic features or the immunophenotypic findings are not conclusive, or the biopsy is small, hampering an accurate assessment. As well, molecular testing can detect specific lymphomas that have distinctive molecular abnormalities. Figure 14.1 describes an algorithm, outlining how ancillary testing can be utilized in the diagnosis of lymphoma.

This chapter attempts to summarize the basic molecular biology, principles of the molecular techniques, common molecular aberrations, and the application of molecular diagnostics as a key ancillary tool in the diagnosis and classification of lymphoma.

IG and TCR gene rearrangements

Human lymphocytes have the ability to specifically recognize millions of different antigens and antigenic epitopes. This is based on the enormous diversity of their antigen-specific receptors, known as immunoglobulin (IG) and T-cell receptor (TCR) molecules. Each single B or T lymphocyte has a distinct IG or TCR and expresses approximately 105 molecules with identical antigen specificity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davis, MM, Bjorkman, PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988;334(6181):395–402.CrossRefGoogle ScholarPubMed
Borst, J, Brouns, GS, Vries, E, et al. Antigen receptors on T and B lymphocytes: parallels in organization and function. Immunol Rev 1993;132:49–84.CrossRefGoogle Scholar
Lefranc, MP. IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis, http://imgt.cines.fr. Leukemia 2003;17(1):260–6.CrossRefGoogle Scholar
Desiderio, SV, Yancopoulos, GD, Paskind, M, et al. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 1984;311(5988):752–5.CrossRefGoogle Scholar
Berek, C, Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 1987;96:23–41.CrossRefGoogle ScholarPubMed
Rajewsky, K, Forster, I, Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 1987;238(4830):1088–94.CrossRefGoogle ScholarPubMed
Greaves, MF. Differentiation-linked leukemogenesis in lymphocytes. Science 1986;234(4777):697–704.CrossRefGoogle ScholarPubMed
Dongen, JJ, Wolvers-Tettero, IL. Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 1991;198(1–2):93–174.CrossRefGoogle Scholar
Campbell, LJ. Cytogenetics of lymphomas. Pathology 2005;37(6):493–507.CrossRefGoogle ScholarPubMed
Juneja, S, Lukeis, R, Tan, L, et al. Cytogenetic analysis of 147 cases of non-Hodgkin's lymphoma: non-random chromosomal abnormalities and histological correlations. Br J Haematol 1990;76(2):231–7.CrossRefGoogle ScholarPubMed
Cleary, ML, Chao, J, Warnke, R, et al. Immunoglobulin gene rearrangement as a diagnostic criterion of B-cell lymphoma. Proc Natl Acad Sci U S A 1984;81(2):593–7.CrossRefGoogle ScholarPubMed
Korsmeyer, SJ, Waldmann, TA. Immunoglobulin genes: rearrangement and translocation in human lymphoid malignancy. J Clin Immunol 1984;4(1):1–11.CrossRefGoogle ScholarPubMed
Toyonaga, B, Mak, TW. Genes of the T-cell antigen receptor in normal and malignant T cells. Annu Rev Immunol 1987;5:585–620.CrossRefGoogle ScholarPubMed
Spagnolo, DV, Ellis, DW, Juneja, S, et al. The role of molecular studies in lymphoma diagnosis: a review. Pathology 2004;36(1):19–44.CrossRefGoogle ScholarPubMed
Rockman, SP. Determination of clonality in patients who present with diagnostic dilemmas: a laboratory experience and review of the literature. Leukemia 1997;11(6):852–62.CrossRefGoogle ScholarPubMed
Kamat, D, Laszewski, MJ, Kemp, JD, et al. The diagnostic utility of immunophenotyping and immunogenotyping in the pathologic evaluation of lymphoid proliferations. Mod Pathol 1990;3(2):105–12.Google ScholarPubMed
Kearney, L. The impact of the new FISH technologies on the cytogenetics of haematological malignancies. Br J Haematol 1999;104(4):648–58.CrossRefGoogle ScholarPubMed
Vaandrager, JW, Schuuring, E, Raap, T, et al. Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes. Genes Chromosomes Cancer 2000;27(1):85–94.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Frater, JL, Tsiftsakis, EK, Hsi, ED, et al. Use of novel t(11;14) and t(14;18) dual-fusion fluorescence in situ hybridization probes in the differential diagnosis of lymphomas of small lymphocytes. Diagn Mol Pathol 2001;10(4):214–22.CrossRefGoogle Scholar
Haralambieva, E, Kleiverda, K, Mason, DY, et al. Detection of three common translocation breakpoints in non-Hodgkin's lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue sections. J Pathol 2002;198(2):163–70.CrossRefGoogle ScholarPubMed
Paternoster, SF, Brockman, SR, McClure, RF, et al. A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase fluorescence in situ hybridization. Am J Pathol 2002;160(6):1967–72.CrossRefGoogle ScholarPubMed
Martin-Subero, JI, Harder, L, Gesk, S, et al. Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. Int J Cancer 2002;98(3):470–4.CrossRefGoogle ScholarPubMed
Sanchez-Izquierdo, D, Siebert, R, Harder, L, et al. Detection of translocations affecting the BCL6 locus in B cell non-Hodgkin's lymphoma by interphase fluorescence in situ hybridization. Leukemia 2001;15(9):1475–84.CrossRefGoogle Scholar
Arber, DA. Molecular diagnostic approach to non-Hodgkin's lymphoma. J Mol Diagn 2000;2(4):178–90.CrossRefGoogle ScholarPubMed
Pan, LX, Diss, TC, Isaacson, PG. The polymerase chain reaction in histopathology. Histopathology 1995;26(3):201–17.CrossRefGoogle ScholarPubMed
Segal, GH, Hussey, CE, Wittwer CT. PCR for T-cell rearrangements. Diagn Mol Pathol 1996;5(4):297–8.CrossRefGoogle ScholarPubMed
Cairns, SM, Taylor, JM, Gould, PR, et al. Comparative evaluation of PCR-based methods for the assessment of T cell clonality in the diagnosis of T cell lymphoma. Pathology 2002;34(4):320–5.CrossRefGoogle Scholar
Dongen, JJ, Langerak, AW, Bruggemann, M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98–3936. Leukemia 2003;17(12):2257–317.CrossRefGoogle ScholarPubMed
Theriault, C, Galoin, S, Valmary, S, et al. PCR analysis of immunoglobulin heavy chain (IgH) and TcR-gamma chain gene rearrangements in the diagnosis of lymphoproliferative disorders: results of a study of 525 cases. Mod Pathol 2000;13(12):1269–79.CrossRefGoogle Scholar
Krafft, AE, Taubenberger, JK, Sheng, ZM, et al. Enhanced sensitivity with a novel TCRgamma PCR assay for clonality studies in 569 formalin-fixed, paraffin-embedded (FFPE) cases. Mol Diagn 1999;4(2):119–33.CrossRefGoogle ScholarPubMed
Hoeve, MA, Krol, AD, Philippo, K, et al. Limitations of clonality analysis of B cell proliferations using CDR3 polymerase chain reaction. Mol Pathol 2000;53(4):194–200.CrossRefGoogle ScholarPubMed
Inagaki, H, Nonaka, M, Nagaya, S, et al. Monoclonality in gastric lymphoma detected in formalin-fixed, paraffin-embedded endoscopic biopsy specimens using immunohistochemistry, in situ hybridization, and polymerase chain reaction. Diagn Mol Pathol 1995;4(1):32–8.CrossRefGoogle ScholarPubMed
Wan, JH, Sykes, PJ, Orell, SR, et al. Rapid method for detecting monoclonality in B cell lymphoma in lymph node aspirates using the polymerase chain reaction. J Clin Pathol 1992;45(5):420–3.CrossRefGoogle Scholar
Chen, YT, Mercer, GO, Chen, Y. Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens. Arch Pathol Lab Med 1993;117(11):1099–103.Google ScholarPubMed
Sukpanichnant, S, Vnencak-Jones, CL, McCurley, TL. Detection of clonal immunoglobulin heavy chain gene rearrangements by polymerase chain reaction in scrapings from archival hematoxylin and eosin-stained histologic sections: implications for molecular genetic studies of focal pathologic lesions. Diagn Mol Pathol 1993;2(3):168–76.CrossRefGoogle ScholarPubMed
Alkan, S, Lehman, C, Sarago, C, et al. Polymerase chain reaction detection of immunoglobulin gene rearrangement and bcl-2 translocation in archival glass slides of cytologic material. Diagn Mol Pathol 1995;4(1):25–31.CrossRefGoogle ScholarPubMed
Pan, LX, Diss, TC, Peng, HZ, et al. Clonality analysis of defined B-cell populations in archival tissue sections using microdissection and the polymerase chain reaction. Histopathology 1994;24(4):323–7.CrossRefGoogle ScholarPubMed
Wan, JH, Trainor, KJ, Brisco, MJ, et al. Monoclonality in B cell lymphoma detected in paraffin wax embedded sections using the polymerase chain reaction. J Clin Pathol 1990;43(11):888–90.CrossRefGoogle Scholar
Reed, TJ, Reid, A, Wallberg, K, et al. Determination of B-cell clonality in paraffin-embedded lymph nodes using the polymerase chain reaction. Diagn Mol Pathol 1993;2(1):42–9.CrossRefGoogle ScholarPubMed
Chen, YT, Whitney, KD, Chen, Y. Clonality analysis of B-cell lymphoma in fresh-frozen and paraffin-embedded tissues: the effects of variable polymerase chain reaction parameters. Mod Pathol 1994;7(4):429–34.Google ScholarPubMed
Greer, CE, Lund, JK, Manos, MM. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl 1991;1(1):46–50.CrossRefGoogle ScholarPubMed
Greer, CE, Peterson, SL, Kiviat, NB, et al. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am J Clin Pathol 1991;95(2):117–24.CrossRefGoogle ScholarPubMed
Speicher, MR, Gwyn Ballard, S, Ward, DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996;12(4):368–75.CrossRefGoogle ScholarPubMed
Schrock, E, du Manoir, S, Veldman, T, et al. Multicolor spectral karyotyping of human chromosomes. Science 1996;273(5274):494–7.CrossRefGoogle ScholarPubMed
Bayani, JM, Squire, JA. Applications of SKY in cancer cytogenetics. Cancer Invest 2002;20(3):373–86.CrossRefGoogle ScholarPubMed
Nordgren, A, Sorensen, AG, Tinggaard-Pedersen, N, et al. New chromosomal breakpoints in non-Hodgkin's lymphomas revealed by spectral karyotyping and G-banding. Int J Mol Med 2000;5(5):485–92.Google ScholarPubMed
Houldsworth, J, Chaganti, RS. Comparative genomic hybridization: an overview. Am J Pathol 1994;145(6):1253–60.Google ScholarPubMed
Pinkel, D, Segraves, R, Sudar, D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20(2):207–11.CrossRefGoogle ScholarPubMed
Wessendorf, S, Schwaenen, C, Kohlhammer, H, et al. Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization. Oncogene 2003;22(9):1425–9.CrossRefGoogle ScholarPubMed
Wessendorf, S, Fritz, B, Wrobel, G, et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization. Lab Invest 2002;82(1):47–60.CrossRefGoogle ScholarPubMed
Leeuw, RJ, Davies, JJ, Rosenwald, A, et al. Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes. Hum Mol Genet 2004;13(17):1827–37.CrossRefGoogle ScholarPubMed
Deleeuw, RJ, Zettl, A, Klinker, E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 2007;132(5):1902–11.CrossRefGoogle ScholarPubMed
Golub, TR, Slonim, DK, Tamayo, P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286(5439):531–7.CrossRefGoogle ScholarPubMed
Staudt, LM. Molecular diagnosis of the hematologic cancers. N Engl J Med 2003;348(18):1777–85.CrossRefGoogle ScholarPubMed
Wiestner, A, Staudt, LM. Towards molecular diagnosis and targeted therapy of lymphoid malignancies. Semin Hematol 2003;40(4):296–307.CrossRefGoogle ScholarPubMed
Tsujimoto, Y, Finger, LR, Yunis, J, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984;226(4678):1097–9.CrossRefGoogle Scholar
Bakhshi, A, Jensen, JP, Goldman, P, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985;41(3):899–906.CrossRefGoogle Scholar
Cleary, ML, Sklar, J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A 1985;82(21):7439–43.CrossRefGoogle Scholar
Tsujimoto, Y, Cossman, J, Jaffe, E, et al. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985;228(4706):1440–3.CrossRefGoogle ScholarPubMed
Bende, RJ, Smit, , Noesel, CJ. Molecular pathways in follicular lymphoma. Leukemia 2007;21(1):18–29.CrossRefGoogle ScholarPubMed
Weiss, LM, Warnke, RA, Sklar, J, et al. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 1987;317(19):1185–9.CrossRefGoogle Scholar
Aisenberg, AC, Wilkes, BM, Jacobson, JO. The bcl-2 gene is rearranged in many diffuse B-cell lymphomas. Blood 1988;71(4):969–72.Google ScholarPubMed
Offit, K, Koduru, PR, Hollis, R, et al. 18q21 rearrangement in diffuse large cell lymphoma: incidence and clinical significance. Br J Haematol 1989;72(2):178–83.CrossRefGoogle ScholarPubMed
Gascoyne, RD, Adomat, SA, Krajewski, S, et al. Prognostic significance of BCL2 protein expression and BCL2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. Blood 1997;90(1):244–51.Google Scholar
Iqbal, J, Neppalli, VT, Wright, G, et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol 2006;24(6):961–8.CrossRefGoogle ScholarPubMed
Jong, D. Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol 2005;23(26):6358–63.CrossRefGoogle ScholarPubMed
Zutter, M, Hockenbery, D, Silverman, G, et al. Immunolocalization of the BCL2 protein within hematopoietic neoplasms. Blood 1991;78(4):1062–8.Google Scholar
Cleary, ML, Galili, N, Sklar, J. Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med 1986;164(1):315–20.CrossRefGoogle Scholar
Albinger-Hegyi, A, Hochreutener, B, Abdou, MT, et al. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol 2002;160(3):823–32.CrossRefGoogle Scholar
Weinberg, OK, Ai, WZ, Mariappan, MR, et al. ‘Minor’ BCL2 breakpoints in follicular lymphoma: frequency and correlation with grade and disease presentation in 236 cases. J Mol Diagn 2007;9(4):530–7.CrossRefGoogle ScholarPubMed
Liu, J, Johnson, RM, Traweek, ST. Rearrangement of the BCL-2 gene in follicular lymphoma. Detection by PCR in both fresh and fixed tissue samples. Diagn Mol Pathol 1993;2(4):241–7.CrossRefGoogle ScholarPubMed
Horsman, , Gascoyne, RD, Coupland, RW, et al. Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14;18) in follicular lymphoma. Am J Clin Pathol 1995;103(4):472–8.CrossRefGoogle Scholar
Barrans, SL, Evans, PA, O'Connor, SJ, et al. The detection of t(14;18) in archival lymph nodes: development of a fluorescence in situ hybridization (FISH)-based method and evaluation by comparison with polymerase chain reaction. J Mol Diagn 2003;5(3):168–75.CrossRefGoogle Scholar
Jiang, F, Lin, F, Price, R, et al. Rapid detection of IgH/BCL2 rearrangement in follicular lymphoma by interphase fluorescence in situ hybridization with bacterial artificial chromosome probes. J Mol Diagn 2002;4(3):144–9.CrossRefGoogle ScholarPubMed
Matsumoto, Y, Nomura, K, Matsumoto, S, et al. Detection of t(14;18) in follicular lymphoma by dual-color fluorescence in situ hybridization on paraffin-embedded tissue sections. Cancer Genet Cytogenet 2004;150(1):22–6.CrossRefGoogle Scholar
Baron, BW, Nucifora, G, McCabe, N, et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc Natl Acad Sci U S A 1993;90(11):5262–6.CrossRefGoogle Scholar
Kerckaert, JP, Deweindt, C, Tilly, H, et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 1993;5(1):66–70.CrossRefGoogle ScholarPubMed
Bajalica-Lagercrantz, S, Piehl, F, Lagercrantz, J, et al. Expression of LAZ3/BCL6 in follicular center (FC) B cells of reactive lymph nodes and FC-derived non-Hodgkin lymphomas. Leukemia 1997;11(4):594–8.CrossRefGoogle ScholarPubMed
Fukuda, T, Miki, T, Yoshida, T, et al. The murine BCL6 gene is induced in activated lymphocytes as an immediate early gene. Oncogene 1995;11(8):1657–63.Google ScholarPubMed
Ye, BH, Cattoretti, G, Shen, Q, et al. The BCL-6 proto-oncogene controls germinal-center formation and Th2-type inflammation. Nat Genet 1997;16(2):161–70.CrossRefGoogle ScholarPubMed
Onizuka, T, Moriyama, M, Yamochi, T, et al. BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood 1995;86(1):28–37.Google ScholarPubMed
Flenghi, L, Bigerna, B, Fizzotti, M, et al. Monoclonal antibodies PG-B6a and PG-B6p recognize, respectively, a highly conserved and a formol-resistant epitope on the human BCL-6 protein amino-terminal region. Am J Pathol 1996;148(5):1543–55.Google Scholar
Dogan, A, Bagdi, E, Munson, P, et al. CD10 and BCL-6 expression in paraffin sections of normal lymphoid tissue and B-cell lymphomas. Am J Surg Pathol 2000;24(6):846–52.CrossRefGoogle ScholarPubMed
Diaz-Alderete, A, Doval, A, Camacho, F, et al. Frequency of BCL2 and BCL6 translocations in follicular lymphoma: relation with histological and clinical features. Leuk Lymphoma 2008;49(1):95–101.CrossRefGoogle ScholarPubMed
Tsang, P, Cesarman, E, Chadburn, A, et al. Molecular characterization of primary mediastinal B cell lymphoma. Am J Pathol 1996;148(6):2017–25.Google ScholarPubMed
Ueda, C, Uchiyama, T, Ohno, H. Immunoglobulin (Ig)/BCL6 versus non-Ig/BCL6 gene fusion in diffuse large B-cell lymphoma corresponds to a high- versus low-level expression of BCL6 mRNA. Blood 2002;99(7):2624–5.CrossRefGoogle ScholarPubMed
Migliazza, A, Martinotti, S, Chen, W, et al. Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci U S A 1995;92(26):12 520–4.CrossRefGoogle ScholarPubMed
Vitolo, U, Botto, B, Capello, D, et al. Point mutations of the BCL-6 gene: clinical and prognostic correlation in B-diffuse large cell lymphoma. Leukemia 2002;16(2):268–75.CrossRefGoogle ScholarPubMed
Pasqualucci, L, Migliazza, A, Fracchiolla, N, et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A 1998;95(20):11 816–21.CrossRefGoogle ScholarPubMed
Capello, D, Vitolo, U, Pasqualucci, L, et al. Distribution and pattern of BCL-6 mutations throughout the spectrum of B-cell neoplasia. Blood 2000;95(2):651–9.Google ScholarPubMed
Artiga, MJ, Saez, AI, Romero, C, et al. A short mutational hot spot in the first intron of BCL-6 is associated with increased BCL-6 expression and with longer overall survival in large B-cell lymphomas. Am J Pathol 2002;160(4):1371–80.CrossRefGoogle Scholar
Pasqualucci, L, Migliazza, A, Basso, K, et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 2003;101(8):2914–23.CrossRefGoogle ScholarPubMed
Iqbal, J, Greiner, TC, Patel, K, et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 2007;21(11):2332–43.CrossRefGoogle ScholarPubMed
Hunter, T, Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994;79(4):573–82.CrossRefGoogle ScholarPubMed
Jares, P, Colomer, D, Campo, E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007;7(10):750–62.CrossRefGoogle ScholarPubMed
Fu, M, Wang, C, Li, Z, et al. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 2004;145(12):5439–47.CrossRefGoogle ScholarPubMed
Coqueret, O. Linking cyclins to transcriptional control. Gene 2002;299(1–2):35–55.CrossRefGoogle ScholarPubMed
Wong, KF, So, CC, Chan, JK. Nucleolated variant of mantle cell lymphoma with leukemic manifestations mimicking prolymphocytic leukemia. Am J Clin Pathol 2002;117(2):246–51.CrossRefGoogle ScholarPubMed
Schlette, E, Bueso-Ramos, C, Giles, F, et al. Mature B-cell leukemias with more than 55% prolymphocytes. A heterogeneous group that includes an unusual variant of mantle cell lymphoma. Am J Clin Pathol 2001;115(4):571–81.CrossRefGoogle ScholarPubMed
Ruchlemer, R, Parry-Jones, N, Brito-Babapulle, V, et al. B-prolymphocytic leukaemia with t(11;14) revisited: a splenomegalic form of mantle cell lymphoma evolving with leukaemia. Br J Haematol 2004;125(3):330–6.CrossRefGoogle Scholar
Horsman, D, Gascoyne, R, Klasa, R, et al. t(11;18)(q21;q21.1): a recurring translocation in lymphomas of mucosa-associated lymphoid tissue (MALT)?Genes Chromosomes Cancer 1992;4(2):183–7.CrossRefGoogle Scholar
Ott, G, Katzenberger, T, Greiner, A, et al. The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin's lymphomas of the mucosa-associated lymphoid tissue (MALT-) type. Cancer Res 1997;57(18):3944–8.Google Scholar
Auer, IA, Gascoyne, RD, Connors, JM, et al. t(11;18)(q21;q21) is the most common translocation in MALT lymphomas. Ann Oncol 1997;8(10):979–85.CrossRefGoogle Scholar
Rosenwald, A, Ott, G, Stilgenbauer, S, et al. Exclusive detection of the t(11;18)(q21;q21) in extranodal marginal zone B cell lymphomas (MZBL) of MALT type in contrast to other MZBL and extranodal large B cell lymphomas. Am J Pathol 1999;155(6):1817–21.CrossRefGoogle Scholar
Remstein, ED, James, CD, Kurtin, PJ. Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol 2000;156(4):1183–8.CrossRefGoogle ScholarPubMed
Liu, H, Ye, H, Dogan, A, et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 2001;98(4):1182–7.CrossRefGoogle Scholar
Chuang, SS, Lee, C, Hamoudi, RA, et al. High frequency of t(11;18) in gastric mucosa-associated lymphoid tissue lymphomas in Taiwan, including one patient with high-grade transformation. Br J Haematol 2003;120(1):97–100.CrossRefGoogle Scholar
Tan, SY, Ye, H, Liu, H, et al. t(11;18)(q21;q21)-positive transformed MALT lymphoma. Histopathology 2008;52(6):777–80.CrossRefGoogle Scholar
Ye, H, Liu, H, Attygalle, A, et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H. pylori in gastric MALT lymphoma. Blood 2003;102(3):1012–18.CrossRefGoogle Scholar
Streubel, B, Simonitsch-Klupp, I, Mullauer, L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 2004;18(10):1722–6.CrossRefGoogle ScholarPubMed
Baens, M, Maes, B, Steyls, A, et al. The product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am J Pathol 2000;156(4):1433–9.CrossRefGoogle Scholar
Liu, H, Ruskon-Fourmestraux, A, Lavergne-Slove, A, et al. Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 2001;357(9249):39–40.CrossRefGoogle Scholar
Sugiyama, T, Asaka, M, Nakamura, T, et al. API2-MALT1 chimeric transcript is a predictive marker for the responsiveness of H. pylori eradication treatment in low-grade gastric MALT lymphoma. Gastroenterology 2001;120(7):1884–5.CrossRefGoogle ScholarPubMed
Liu, H, Ye, H, Ruskone-Fourmestraux, A, et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002;122(5):1286–94.CrossRefGoogle Scholar
Lucas, PC, Yonezumi, M, Inohara, N, et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-κB signaling pathway. J Biol Chem 2001;276(22):19 012–19.CrossRefGoogle Scholar
Taub, R, Kirsch, I, Morton, C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 1982;79(24):7837–41.CrossRefGoogle ScholarPubMed
Hamlyn, PH, Rabbitts, TH. Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 1983;304(5922):135–9.CrossRefGoogle Scholar
Battey, J, Moulding, C, Taub, R, et al. The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 1983;34(3):779–87.CrossRefGoogle ScholarPubMed
Emanuel, BS, Selden, JR, Chaganti, RS, et al. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc Natl Acad Sci U S A 1984;81(8):2444–6.CrossRefGoogle ScholarPubMed
Hollis, GF, Mitchell, KF, Battey, J, et al. A variant translocation places the lambda immunoglobulin genes 3' to the c-myc oncogene in Burkitt's lymphoma. Nature 1984;307(5953):752–5.CrossRefGoogle ScholarPubMed
Ladanyi, M, Offit, K, Jhanwar, SC, et al. C-MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood 1991;77(5):1057–63.Google ScholarPubMed
Hummel, M, Bentink, S, Berger, H, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med 2006;354(23):2419–30.CrossRefGoogle ScholarPubMed
Dave, SS, Fu, K, Wright, GW, et al. Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 2006;354(23):2431–42.CrossRefGoogle ScholarPubMed
Pelicci, PG, Knowles DM 2nd, Magrath I, et al. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A 1986;83(9):2984–8.CrossRefGoogle ScholarPubMed
Shiramizu, B, Barriga, F, Neequaye, J, et al. Patterns of chromosomal breakpoint locations in Burkitt's lymphoma: relevance to geography and Epstein-Barr virus association. Blood 1991;77(7):1516–26.Google ScholarPubMed
Adhikary, S, Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005;6(8):635–45.CrossRefGoogle ScholarPubMed
Macpherson, N, Lesack, D, Klasa, R, et al. Small noncleaved, non-Burkitt's (Burkitt-like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol 1999;17(5):1558–67.CrossRefGoogle ScholarPubMed
Gouill, S, Talmant, P, Touzeau, C, et al. The clinical presentation and prognosis of diffuse large B-cell lymphoma with t(14;18) and 8q24/c-C-MYC rearrangement. Haematologica 2007;92(10):1335–42.CrossRefGoogle Scholar
Mufti, GJ, Hamblin, TJ, Oscier, DG, et al. Common ALL with pre-B-cell features showing (8;14) and (14;18) chromosome translocations. Blood 1983;62(5):1142–6.Google ScholarPubMed
Kanungo, A, Medeiros, LJ, Abruzzo, LV, et al. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-C-MYC translocation generally have a poor prognosis. Mod Pathol 2006;19(1):25–33.CrossRefGoogle Scholar
McDonnell, TJ, Korsmeyer, SJ. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 1991;349(6306):254–6.CrossRefGoogle Scholar
Yano, T, Jaffe, ES, Longo, DL, et al. C-MYC rearrangements in histologically progressed follicular lymphomas. Blood 1992;80(3):758–67.Google ScholarPubMed
Alizadeh, AA, Eisen, MB, Davis, RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403(6769):503–11.CrossRefGoogle ScholarPubMed
Rosenwald, A, Wright, G, Chan, WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346(25):1937–47.CrossRefGoogle ScholarPubMed
Shipp, MA, Ross, KN, Tamayo, P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002;8(1):68–74.CrossRefGoogle ScholarPubMed
Savage, KJ, Monti, S, Kutok, JL, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 2003;102(12):3871–9.CrossRefGoogle ScholarPubMed
Wright, G, Tan, B, Rosenwald, A, et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2003;100(17):9991–6.CrossRefGoogle ScholarPubMed
Rosenwald, A, Wright, G, Leroy, K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003;198(6):851–62.CrossRefGoogle ScholarPubMed
Davis, RE, Brown, KD, Siebenlist, U, et al. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001;194(12):1861–74.CrossRefGoogle ScholarPubMed
Kuppers, R, Klein, U, Hansmann, ML, et al. Cellular origin of human B-cell lymphomas. N Engl J Med 1999;341(20):1520–9.CrossRefGoogle ScholarPubMed
Damle, RN, Wasil, T, Fais, F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94(6):1840–7.Google ScholarPubMed
Hamblin, TJ, Davis, Z, Gardiner, A, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94(6):1848–54.Google ScholarPubMed
Camacho, FI, Algara, P, Rodriguez, A, et al. Molecular heterogeneity in MCL defined by the use of specific VH genes and the frequency of somatic mutations. Blood 2003;101(10):4042–6.CrossRefGoogle ScholarPubMed
Kienle, D, Krober, A, Katzenberger, T, et al. VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics, and outcome. Blood 2003;102(8):3003–9.CrossRefGoogle Scholar
Lai, R, Lefresne, SV, Franko, B, et al. Immunoglobulin VH somatic hypermutation in mantle cell lymphoma: mutated genotype correlates with better clinical outcome. Mod Pathol 2006;19(11):1498–505.CrossRefGoogle ScholarPubMed
Rimokh, R, Magaud, JP, Berger, F, et al. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma'). Br J Haematol 1989;71(1):31–6.CrossRefGoogle Scholar
Beau, MM, Bitter, MA, Larson, RA, et al. The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia 1989;3(12):866–70.Google Scholar
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263(5151):1281–4.CrossRefGoogle ScholarPubMed
Shiota, M, Fujimoto, J, Semba, T, et al. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene 1994;9(6):1567–74.Google Scholar
Falini, B, Bigerna, B, Fizzotti, M, et al. ALK expression defines a distinct group of T/null lymphomas (“ALK lymphomas”) with a wide morphological spectrum. Am J Pathol 1998;153(3):875–86.CrossRefGoogle Scholar
Salaverria, I, Bea, S, Lopez-Guillermo, A, et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol 2008;140(5):516–26.CrossRefGoogle ScholarPubMed
Medeiros, LJ, Elenitoba-Johnson, KS. Anaplastic large cell lymphoma. Am J Clin Pathol 2007;127(5):707–22.CrossRefGoogle ScholarPubMed
Sarris, AH, Luthra, R, Cabanillas, F, et al. Genomic DNA amplification and the detection of t(2;5)(p23;q35) in lymphoid neoplasms. Leuk Lymphoma 1998;29(5–6):507–14.CrossRefGoogle Scholar
Shiota, M, Fujimoto, J, Takenaga, M, et al. Diagnosis of t(2;5)(p23;q35)-associated Ki-1 lymphoma with immunohistochemistry. Blood 1994;84(11):3648–52.Google Scholar
Bolen, JB, Brugge, JS. Leukocyte protein tyrosine kinases: potential targets for drug discovery. Annu Rev Immunol 1997;15:371–404.CrossRefGoogle ScholarPubMed
Streubel, B, Vinatzer, U, Willheim, M, et al. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 2006;20(2):313–18.CrossRefGoogle Scholar
Rudiger, T, Ichinohasama, R, Ott, MM, et al. Peripheral T-cell lymphoma with distinct perifollicular growth pattern: a distinct subtype of T-cell lymphoma?Am J Surg Pathol 2000;24(1):117–22.CrossRefGoogle ScholarPubMed
Leval, L, Savilo, E, Longtine, J, et al. Peripheral T-cell lymphoma with follicular involvement and a CD4+/bcl-6+ phenotype. Am J Surg Pathol 2001;25(3):395–400.CrossRefGoogle Scholar
Zettl, A, Ott, G, Makulik, A, et al. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol 2002;161(5):1635–45.CrossRefGoogle ScholarPubMed
Zettl, A, Rudiger, T, Konrad, MA, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004;164(5):1837–48.CrossRefGoogle ScholarPubMed
Gaidano, G, Ballerini, P, Gong, JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 1991;88(12):5413–17.CrossRefGoogle ScholarPubMed
Gaidano, G, Newcomb, EW, Gong, JZ, et al. Analysis of alterations of oncogenes and tumor suppressor genes in chronic lymphocytic leukemia. Am J Pathol 1994;144(6):1312–19.Google ScholarPubMed
Louie, DC, Offit, K, Jaslow, R, et al. P53 overexpression as a marker of poor prognosis in mantle cell lymphomas with t(11;14)(q13;q32). Blood 1995;86(8):2892–9.Google Scholar
Hernandez, L, Fest, T, Cazorla, M, et al. P53 gene mutations and protein overexpression are associated with aggressive variants of mantle cell lymphomas. Blood 1996;87(8):3351–9.Google ScholarPubMed
Wlodarska, I, Pittaluga, S, Hagemeijer, A, et al. Secondary chromosome changes in mantle cell lymphoma. Haematologica 1999;84(7):594–9.Google ScholarPubMed
Sanchez-Beato, M, Saez, AI, Navas, IC, et al. Overall survival in aggressive B-cell lymphomas is dependent on the accumulation of alterations in p53, p16, and p27. Am J Pathol 2001;159(1):205–13.CrossRefGoogle ScholarPubMed
Moller, MB, Ino, Y, Gerdes, AM, et al. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma. Leukemia 1999;13(3):453–9.CrossRefGoogle ScholarPubMed
Ichikawa, A, Kinoshita, T, Watanabe, T, et al. Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med 1997;337(8):529–34.CrossRefGoogle ScholarPubMed
Koduru, PR, Raju, K, Vadmal, V, et al. Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood 1997;90(10):4078–91.Google ScholarPubMed
Bhatia, KG, Gutierrez, MI, Huppi, K, et al. The pattern of p53 mutations in Burkitt's lymphoma differs from that of solid tumors. Cancer Res 1992;52(15):4273–6.Google ScholarPubMed
Matsushima, AY, Cesarman, E, Chadburn, A, et al. Post-thymic T cell lymphomas frequently overexpress p53 protein but infrequently exhibit p53 gene mutations. Am J Pathol 1994;144(3):573–84.Google ScholarPubMed
Pescarmona, E, Pignoloni, P, Santangelo, C, et al. Expression of p53 and retinoblastoma gene in high-grade nodal peripheral T-cell lymphomas: immunohistochemical and molecular findings suggesting different pathogenetic pathways and possible clinical implications. J Pathol 1999;188(4):400–6.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Petit, B, Leroy, K, Kanavaros, P, et al. Expression of p53 protein in T- and natural killer-cell lymphomas is associated with some clinicopathologic entities but rarely related to p53 mutations. Hum Pathol 2001;32(2):196–204.CrossRefGoogle Scholar
Serrano, M, Hannon, GJ, Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366(6456):704–7.CrossRefGoogle ScholarPubMed
Villuendas, R, Sanchez-Beato, M, Martinez, JC, et al. Loss of p16/INK4A protein expression in non-Hodgkin's lymphomas is a frequent finding associated with tumor progression. Am J Pathol 1998;153(3):887–97.CrossRefGoogle ScholarPubMed
Koduru, PR, Zariwala, M, Soni, M, et al. Deletion of cyclin-dependent kinase 4 inhibitor genes P15 and P16 in non-Hodgkin's lymphoma. Blood 1995;86(8):2900–5.Google ScholarPubMed
Klangby, U, Okan, I, Magnusson, KP, et al. p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma. Blood 1998;91(5):1680–7.Google ScholarPubMed
Elenitoba-Johnson, KS, Gascoyne, RD, Lim, MS, et al. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood 1998;91(12):4677–85.Google ScholarPubMed
Pinyol, M, Hernandez, L, Cazorla, M, et al. Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 1997;89(1):272–80.Google ScholarPubMed
Navas, IC, Ortiz-Romero, PL, Villuendas, R, et al. p16(INK4a) gene alterations are frequent in lesions of mycosis fungoides. Am J Pathol 2000;156(5):1565–72.CrossRefGoogle ScholarPubMed
Scarisbrick, JJ, Woolford, AJ, Calonje, E, et al. Frequent abnormalities of the p15 and p16 genes in mycosis fungoides and sezary syndrome. J Invest Dermatol 2002;118(3):493–9.CrossRefGoogle ScholarPubMed
Zhang, C, Toulev, A, Kamarashev, J, et al. Consequences of p16 tumor suppressor gene inactivation in mycosis fungoides and Sezary syndrome and role of the bmi-1 and ras oncogenes in disease progression. Hum Pathol 2007;38(7):995–1002.CrossRefGoogle ScholarPubMed
Garcia, JF, Villuendas, R, Algara, P, et al. Loss of p16 protein expression associated with methylation of the p16INK4A gene is a frequent finding in Hodgkin's disease. Lab Invest 1999;79(12):1453–9.Google ScholarPubMed
Rosenwald, A, Wright, G, Wiestner, A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003;3(2):185–97.CrossRefGoogle ScholarPubMed
Fu, K, Weisenburger, DD, Greiner, TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood 2005;106(13):4315–21.CrossRefGoogle ScholarPubMed
Streubel, B, Lamprecht, A, Dierlamm, J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003;101(6):2335–9.CrossRefGoogle Scholar
Sanchez-Izquierdo, D, Buchonnet, G, Siebert, R, et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 2003;101(11):4539–46.CrossRefGoogle ScholarPubMed
Limpens, J, Jong, D, Krieken, JH, et al. BCL2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 1991;6(12):2271–6.Google Scholar
Knowles, DM. Immunodeficiency-associated lymphoproliferative disorders. Mod Pathol 1999;12(2):200–17.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×