Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T14:37:56.539Z Has data issue: false hasContentIssue false

11 - Amyloidosis and other rare plasma cell dyscrasias

Published online by Cambridge University Press:  10 January 2011

Angela Dispenzieri
Affiliation:
Mayo Clinic College of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
Suzanne R. Hayman
Affiliation:
Mayo Clinic College of Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

The spectrum of plasma cell disorders is vast. From a proliferation standpoint, the spectrum extends from the premalignant monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma, to plasma cell leukemia. The picture, however, is much more complex because there are also low tumor burden and low proliferation plasma cell diseases responsible for a clinical phenotype ranging from troublesome to fatal. These conditions are rare, but must be recognized in order to reduce morbidity and mortality. For most of these diseases, the pathogenesis is not well understood.

The discussion will begin with the three more common and potentially life-threatening disorders, light chain amyloidosis (AL), POEMS syndrome (polyradiculoneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes), and cryoglobulinemia. Subsequently, the monoclonal gammopathy-associated disease entities will be parsed according to their dominant clinical feature – neuropathy, dermopathy, and nephropathy – and will include: MGUS-associated peripheral neuropathy, scleromyxedema, xanthogranulosum necrobiotica, and Schnitzler's syndrome.

Immunoglobulin light chain amyloidosis

Immunoglobulin light chain amyloidosis (AL) is a low tumor burden plasma cell disorder characterized by deposition of insoluble fibrils composed of immunoglobulin light chains. Without treatment, it has an inexorable progressive course due to uncontrolled tissue damage. Not all amyloidosis is related to a plasma cell dyscrasia. Although AL is the most common form of systemic amyloidosis, with an incidence of approximately 1 case per 100,000 person-years in Western countries, there are other forms of systemic amyloidosis as well (Table 11.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kyle, RA, Linos, A, Beard, CM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992;79:1817–22.Google ScholarPubMed
Rajkumar, SV, Dispenzieri, A, Kyle, RA.Monoclonal gammopathy of undetermined significance, Waldenstrom macroglobulinemia, AL amyloidosis, and related plasma cell disorders: diagnosis and treatment. Mayo Clin Proc 2006;81:693–703.CrossRefGoogle ScholarPubMed
Palladini, G, Kyle, RA, Larson, DR, et al. Multicentre versus single centre approach to rare diseases: the model of systemic light chain amyloidosis. Amyloid 2005;12:120–6.CrossRefGoogle ScholarPubMed
Lachmann, HJ, Booth, DR, Booth, SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N Engl J Med 2002;346:1786–91.CrossRefGoogle ScholarPubMed
Comenzo, RL, Zhou, P, Fleisher, M, et al. Seeking confidence in the diagnosis of systemic AL (Ig light-chain) amyloidosis: patients can have both monoclonal gammopathies and hereditary amyloid proteins. Blood 2006;107:3489–91.CrossRefGoogle Scholar
Gertz, MA, Lacy, MQ, Dispenzieri, A, et al. Amyloidosis: diagnosis and management. Clin Lymphoma Myeloma 2005;6:208–19.CrossRefGoogle ScholarPubMed
Hamidi Asl, K, Liepnieks, JJ, Nakamura, M, et al. Organ-specific (localized) synthesis of Ig light chain amyloid. J Immunol 1999;162:5556–60.Google ScholarPubMed
Gertz, MA, Comenzo, R, Falk, RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol 2005;79:319–28.CrossRefGoogle ScholarPubMed
Trinkaus-Randall, V, Walsh, MT, Steeves, S, et al. Cellular response of cardiac fibroblasts to amyloidogenic light chains. Am J Pathol 2005;166:197–208.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Dispenzieri, A, et al. Effect of hematologic response on outcome of patients undergoing transplantation for primary amyloidosis: importance of achieving a complete response. Haematologica 2007;92:1415–18.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Dispenzieri, A, et al. Risk-adjusted manipulation of melphalan dose before stem cell transplantation in patients with amyloidosis is associated with a lower response rate. Bone Marrow Transplant 2004;34:1025–31.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Gertz, MA, Kyle, RA, et al. Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2004;104:1881–7.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Dispenzieri, A, et al. Transplantation for amyloidosis. Curr Opin Oncol 2007;19:136–41.CrossRefGoogle ScholarPubMed
Moreau, P, Milpied, N, Faucal, P, et al. High-dose melphalan and autologous bone marrow transplantation for systemic AL amyloidosis with cardiac involvement. Blood 1996;87:3063–4.Google ScholarPubMed
Comenzo, RL, Vosburgh, E, Falk, RH, et al. Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients. Blood 1998;91:3662–70.Google ScholarPubMed
Skinner, M, Sanchorawala, V, Seldin, DC, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Ann Intern Med 2004;140:85–93.CrossRefGoogle ScholarPubMed
Jaccard, A, Moreau, P, Leblond, V, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med 2007;357:1083–93.CrossRefGoogle ScholarPubMed
Vesole, DH, Perez, WS, Akasheh, M, et al. High-dose therapy and autologous hematopoietic stem cell transplantation for patients with primary systemic amyloidosis: a Center for International Blood and Marrow Transplant Research Study. Mayo Clin Proc 2006;81:880–8.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Kyle, RA, Lacy, MQ, et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 2004;103:3960–3.CrossRefGoogle ScholarPubMed
Schonland, SO, Lokhorst, H, Buzyn, A, et al. Allogeneic and syngeneic hematopoietic cell transplantation in patients with amyloid light-chain amyloidosis: a report from the European Group for Blood and Marrow Transplantation. Blood 2006;107:2578–84.CrossRefGoogle ScholarPubMed
Jones, NF, Hilton, PJ, Tighe, JR, et al. Treatment of “primary” renal amyloidosis with melphalan. Lancet 1972;2:616–19.CrossRefGoogle ScholarPubMed
Cohen, HJ, Lessin, LS, Hallal, J, et al. Resolution of primary amyloidosis during chemotherapy. Studies in a patient with nephrotic syndrome. Ann Intern Med 1975;82:466–73.CrossRefGoogle Scholar
Kyle, RA, Greipp, PR, Garton, JP, et al. Primary systemic amyloidosis. Comparison of melphalan/prednisone versus colchicine. Am J Med 1985;79:708–16.CrossRefGoogle ScholarPubMed
Kyle, RA, Greipp, PR. Primary systemic amyloidosis: comparison of melphalan and prednisone versus placebo. Blood 1978;52:818–27.Google ScholarPubMed
Kyle, RA, Gertz, MA, Greipp, PR, et al. A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, and melphalan, prednisone, and colchicine. N Engl J Med 1997;336:1202–7.CrossRefGoogle ScholarPubMed
Skinner, M, Anderson, J, Simms, R, et al. Treatment of 100 patients with primary amyloidosis: a randomized trial of melphalan, prednisone, and colchicine versus colchicine only. Am J Med 1996;100:290–8.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Lust, JA, et al. Prospective randomized trial of melphalan and prednisone versus vincristine, carmustine, melphalan, cyclophosphamide, and prednisone in the treatment of primary systemic amyloidosis. J Clin Oncol 1999;17:262–7.CrossRefGoogle ScholarPubMed
Lachmann, HJ, Gallimore, R, Gillmore, JD, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol 2003;122:78–84.CrossRefGoogle ScholarPubMed
Palladini, G, Perfetti, V, Obici, L, et al. Association of melphalan and high-dose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation. Blood 2004;103:2936–8.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Lust, JA, et al. Phase II trial of high-dose dexamethasone for previously treated immunoglobulin light-chain amyloidosis. Am J Hematol 1999;61:115–19.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Lust, JA, et al. Phase II trial of high-dose dexamethasone for untreated patients with primary systemic amyloidosis. Med Oncol 1999;16:104–9.CrossRefGoogle ScholarPubMed
Dhodapkar, MV, Hussein, MA, Rasmussen, E, et al. Clinical efficacy of high-dose dexamethasone with maintenance dexamethasone/alpha interferon in patients with primary systemic amyloidosis: results of United States Intergroup Trial Southwest Oncology Group (SWOG) S9628. Blood 2004;104:3520–6.CrossRefGoogle Scholar
Levy, Y, Belghiti-Deprez, D, Sobel, A.Treatment of AL amyloidosis without myeloma. Ann Med Interne (Paris) 1988;139:190–3.Google ScholarPubMed
Wardley, AM, Jayson, GC, Goldsmith, DJ, et al. The treatment of nephrotic syndrome caused by primary (light chain) amyloid with vincristine, doxorubicin and dexamethasone. Br J Cancer 1998;78:774–6.CrossRefGoogle ScholarPubMed
Gameren, I, Hazenberg, BP, Jager, PL, et al. AL amyloidosis treated with induction chemotherapy with VAD followed by high dose melphalan and autologous stem cell transplantation. Amyloid 2002;9:165–74.CrossRefGoogle ScholarPubMed
Ichida, M, Imagawa, S, Ohmine, K, et al. Successful treatment of multiple myeloma–associated amyloidosis by interferon-alpha, dimethyl sulfoxide, and VAD (vincristine, adriamycin, and dexamethasone). Int J Hematol 2000;72:491–3.Google Scholar
Gono, T, Matsuda, M, Shimojima, Y, et al. VAD with or without subsequent high-dose melphalan followed by autologous stem cell support in AL amyloidosis: Japanese experience and criteria for patient selection. Amyloid 2004;11:245–56.CrossRefGoogle ScholarPubMed
Gertz, MA, Kyle, RA, Greipp, PR. Response rates and survival in primary systemic amyloidosis. Blood 1991;77:257–62.Google ScholarPubMed
Palladini, G, Russo, P, Nuvolone, M, et al. Treatment with oral melphalan plus dexamethasone produces long-term remissions in AL amyloidosis. Blood 2007;110:787–8.CrossRefGoogle ScholarPubMed
Gertz, MA, Kyle, RA. Acute leukemia and cytogenetic abnormalities complicating melphalan treatment of primary systemic amyloidosis. Arch Intern Med 1990;150:629–33.CrossRefGoogle ScholarPubMed
Seldin, DC, Choufani, EB, Dember, LM, et al. Tolerability and efficacy of thalidomide for the treatment of patients with light chain-associated (AL) amyloidosis. Clin Lymphoma 2003;3:241–6.CrossRefGoogle ScholarPubMed
Palladini, G, Perfetti, V, Perlini, S, et al. The combination of thalidomide and intermediate-dose dexamethasone is an effective but toxic treatment for patients with primary amyloidosis (AL). Blood 2005;105:2949–51.CrossRefGoogle Scholar
Dispenzieri, A, Lacy, MQ, Rajkumar, SV, et al. Poor tolerance to high doses of thalidomide in patients with primary systemic amyloidosis. Amyloid 2003;10:257–61.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Lacy, MQ, Geyer, SM, et al. Low dose single agent thalidomide is tolerated in patients with primary systemic amyloidosis, but responses are limited. ASH Annual Meeting Abstracts 2004;104:4920.Google Scholar
Wechalekar, AD, Goodman, HJ, Lachmann, HJ, et al. Safety and efficacy of risk-adapted cyclophosphamide, thalidomide, and dexamethasone in systemic AL amyloidosis. Blood 2007;109:457–64.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Lacy, MQ, Zeldenrust, SR, et al. The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis. Blood 2007;109:465–70.CrossRefGoogle ScholarPubMed
Sanchorawala, V, Wright, DG, Rosenzweig, M, et al. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 2 trial. Blood 2007;109:492–6.CrossRefGoogle ScholarPubMed
Kastritis, E, Anagnostopoulos, A, Roussou, M, et al. Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone. Haematologica 2007;92:1351–8.CrossRefGoogle ScholarPubMed
Wechalekar, AD, Lachmann, HJ, Offer, M, et al. Efficacy of bortezomib in systemic AL amyloidosis with relapsed/refractory clonal disease. Haematologica 2008;93:295–8.CrossRefGoogle ScholarPubMed
Reece, , Sanchorawala, V, Hegenbart, U, et al. Weekly and twice-weekly bortezomib in patients with systemic AL amyloidosis: results of a phase 1 dose-escalation study. Blood 2009;114(8):1489–97.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Kyle, RA, Lacy, MQ, et al. POEMS syndrome: definitions and long-term outcome. Blood 2003;101:2496–506.CrossRefGoogle ScholarPubMed
Gertz, MA, Kyle, RA, Greipp, PR, et al. Beta 2-microglobulin predicts survival in primary systemic amyloidosis. Am J Med 1990;89:609–14.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Lacy, MQ, Katzmann, JA, et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2006;107:3378–83.CrossRefGoogle ScholarPubMed
Moreau, P, Leblond, V, Bourquelot, P, et al. Prognostic factors for survival and response after high-dose therapy and autologous stem cell transplantation in systemic AL amyloidosis: a report on 21 patients. Br J Haematol 1998;101:766–9.CrossRefGoogle ScholarPubMed
Gertz, MA, Lacy, MQ, Dispenzieri, A, et al. Amyloidosis. Best Pract Res Clin Haematol 2005;18:709–27.CrossRefGoogle ScholarPubMed
Cueto-Garcia, L, Reeder, GS, Kyle, RA, et al. Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival. J Am Coll Cardiol 1985;6:737–43.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Kyle, RA, Gertz, MA, et al. Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 2003;361:1787–9.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Gertz, MA, Kyle, RA, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 2004;22:3751–7.CrossRefGoogle ScholarPubMed
Palladini, G, Campana, C, Klersy, C, et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 2003;107:2440–5.CrossRefGoogle ScholarPubMed
Gertz, M, Lacy, M, Dispenzieri, A, et al. Troponin T level as an exclusion criterion for stem cell transplantation in light-chain amyloidosis. Leuk Lymphoma 2008;49:36–41.CrossRefGoogle ScholarPubMed
Sanchorawala, V, Seldin, DC, Magnani, B, et al. Serum free light-chain responses after high-dose intravenous melphalan and autologous stem cell transplantation for AL (primary) amyloidosis. Bone Marrow Transplant 2005;36:597–600.CrossRefGoogle ScholarPubMed
Cohen, AD, Zhou, P, Chou, J, et al. Risk-adapted autologous stem cell transplantation with adjuvant dexamethasone +/— thalidomide for systemic light-chain amyloidosis: results of a phase II trial. Br J Haematol 2007;139:224–33.CrossRefGoogle Scholar
Biewend, ML, Menke, DM, Calamia, KT. The spectrum of localized amyloidosis: a case series of 20 patients and review of the literature. Amyloid 2006;13:135–42.CrossRefGoogle ScholarPubMed
Utz, JP, Gertz, MA, Kalra, S. External-beam radiation therapy in the treatment of diffuse tracheobronchial amyloidosis. Chest 2001;120:1735–8.Google Scholar
Pitz, MW, Gibson, IW, Johnston, JB. Isolated pulmonary amyloidosis: case report and review of the literature. Am J Hematol 2006;81:212–13.CrossRefGoogle ScholarPubMed
Dundore, PA, Aisner, SC, Templeton, PA, et al. Nodular pulmonary amyloidosis: diagnosis by fine-needle aspiration cytology and a review of the literature. Diagn Cytopathol 1993;9:562–4.CrossRefGoogle Scholar
Neben-Wittich, MA, Foote, RL, Kalra, S. Electron beam radiation therapy for tracheobronchial amyloidosis. Chest 2007;132:262–7.CrossRefGoogle Scholar
Mariani, AJ, Barrett, DM, Kurtz, SB, et al. Bilateral localized amyloidosis of the ureter presenting with anuria. J Urol 1978;120:757–9.CrossRefGoogle ScholarPubMed
Shittu, OB, Weston, PM. Localised amyloidosis of the urinary bladder: a case report and review of treatment. West Afr J Med 1994;13:252–3.Google ScholarPubMed
Malek, RS, Wahner-Roedler, DL, et al. Primary localized amyloidosis of the bladder: experience with dimethyl sulfoxide therapy. J Urol 2002;168:1018–20.CrossRefGoogle ScholarPubMed
Bardwick, PA, Zvaifler, NJ, Gill, GN, et al. Plasma cell dyscrasia with polyneuropathy, organomegaly, endocrinopathy, M protein, and skin changes: the POEMS syndrome. Report on two cases and a review of the literature. Medicine 1980;59:311–22.CrossRefGoogle Scholar
Dispenzieri, A, Kyle, RA, Lacy, MQ, et al. POEMS syndrome: definitions and long-term outcome. Blood 2003;101:2496–506.CrossRefGoogle ScholarPubMed
Takatsuki, K, Sanada, I. Plasma cell dyscrasia with polyneuropathy and endocrine disorder: clinical and laboratory features of 109 reported cases. Jpn J Clin Oncol 1983;13:543–55.Google ScholarPubMed
Nakanishi, T, Sobue, I, Toyokura, Y, et al. The Crow-Fukase syndrome: a study of 102 cases in Japan. Neurology 1984;34:712–20.CrossRefGoogle ScholarPubMed
Dispenzieri, A. POEMS syndrome. Blood Reviews 2007;21:285–99.CrossRefGoogle ScholarPubMed
Watanabe, O, Arimura, K, Kitajima, I, et al. Greatly raised vascular endothelial growth factor (VEGF) in POEMS syndrome [letter]. Lancet 1996;347:702.CrossRefGoogle Scholar
Soubrier, M, Dubost, JJ, Serre, AF, et al. Growth factors in POEMS syndrome: evidence for a marked increase in circulating vascular endothelial growth factor. Arthritis Rheum 1997;40:786–7.CrossRefGoogle ScholarPubMed
Hashiguchi, T, Arimura, K, Matsumuro, K, et al. Highly concentrated vascular endothelial growth factor in platelets in Crow-Fukase syndrome. Muscle Nerve 2000;23:1051–6.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Watanabe, O, Maruyama, I, Arimura, K, et al. Overproduction of vascular endothelial growth factor/vascular permeability factor is causative in Crow-Fukase (POEMS) syndrome. Muscle Nerve 1998;21:1390–7.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Scarlato, M, Previtali, SC, Carpo, M, et al. Polyneuropathy in POEMS syndrome: role of angiogenic factors in the pathogenesis. Brain 2005;128:1911–20.CrossRefGoogle ScholarPubMed
Kelly, JJ, Kyle, RA, Miles, JM, et al. Osteosclerotic myeloma and peripheral neuropathy. Neurology 1983;33:202–10.CrossRefGoogle ScholarPubMed
Ghandi, GY, Basu, R, Dispenzieri, A, et al. Endocrinopathy in POEMS syndrome: the Mayo Clinic experience. Mayo Clin Proc 2007;82:836–42.Google Scholar
Sanada, S, Ookawara, S, Karube, H, et al. Marked recovery of severe renal lesions in POEMS syndrome with high-dose melphalan therapy supported by autologous blood stem cell transplantation. Am J Kidney Dis 2006;47:672–9.CrossRefGoogle ScholarPubMed
Soubrier, MJ, Dubost, JJ, Sauvezie, BJ. POEMS syndrome: a study of 25 cases and a review of the literature. French Study Group on POEMS Syndrome. Am J Med 1994;97:543–53.CrossRefGoogle Scholar
Lesprit, P, Authier, FJ, Gherardi, R, et al. Acute arterial obliteration: a new feature of the POEMS syndrome?Medicine 1996;75:226–32.CrossRefGoogle ScholarPubMed
Zenone, T, Bastion, Y, Salles, G, et al. POEMS syndrome, arterial thrombosis and thrombocythaemia. J Intern Med 1996;240:107–9.CrossRefGoogle ScholarPubMed
Soubrier, M, Guillon, R, Dubost, JJ, et al. Arterial obliteration in POEMS syndrome: possible role of vascular endothelial growth factor. J Rheumatol 1998;25:813–15.Google ScholarPubMed
Bova, G, Pasqui, AL, Saletti, M, et al. POEMS syndrome with vascular lesions: a role for interleukin-1beta and interleukin-6 increase–a case report. Angiology 1998;49:937–40.CrossRefGoogle ScholarPubMed
Kang, K, Chu, K, Kim, , et al. POEMS syndrome associated with ischemic stroke. Arch Neurol 2003;60:745–9.CrossRefGoogle ScholarPubMed
Mufti, GJ, Hamblin, TJ, Gordon, J. Melphalan-induced pulmonary fibrosis in osteosclerotic myeloma [letter]. Acta Haematologica 1983;69:140–1.CrossRefGoogle Scholar
Iwasaki, H, Ogawa, K, Yoshida, H, et al. Crow-Fukase syndrome associated with pulmonary hypertension. Intern Med 1993;32:556–60.CrossRefGoogle ScholarPubMed
Lesprit, P, Godeau, B, Authier, FJ, et al. Pulmonary hypertension in POEMS syndrome: a new feature mediated by cytokines. Am J Respir Crit Care Med 1998;157:907–11.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Moreno-Aspitia, A, Suarez, GA, et al. Peripheral blood stem cell transplantation in 16 patients with POEMS syndrome, and a review of the literature. Blood 2004;104:3400–7.CrossRefGoogle Scholar
Allam, JS, Kennedy, CC, Aksamit, TR, et al. Pulmonary manifestations in patients with POEMS syndrome: a retrospective review of 137 patients. Chest 2008;133:969–74.CrossRefGoogle ScholarPubMed
Barrier, JH, Noan, H, Mussini, JM, et al. Stabilisation of a severe case of P.O.E.M.S. syndrome after tamoxifen administration [letter]. J Neurol Neurosurg Psychiatry 1989;52:286.CrossRefGoogle Scholar
Matsui, H, Udaka, F, Kubori, T, et al. POEMS syndrome demonstrating VEGF decrease by ticlopidine. Intern Med 2004;43:1082–3.CrossRefGoogle ScholarPubMed
Tokashiki, T, Hashiguchi, T, Arimura, K, et al. Predictive value of serial platelet count and VEGF determination for the management of DIC in the Crow-Fukase (POEMS) syndrome. Intern Med 2003;42:1240–3.CrossRefGoogle ScholarPubMed
Saida, K, Kawakami, H, Ohta, M, et al. Coagulation and vascular abnormalities in Crow-Fukase syndrome. Muscle Nerve 1997;20:486–92.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Coto, V, Auletta, M, Oliviero, U, et al. POEMS syndrome: an Italian case with diagnostic and therapeutic implications. Ann Ital Med Int 1991;6:416–19.Google ScholarPubMed
Authier, FJ, Belec, L, Levy, Y, et al. All-trans-retinoic acid in POEMS syndrome. Therapeutic effect associated with decreased circulating levels of proinflammatory cytokines. Arthritis Rheum 1996;39:1423–6.CrossRefGoogle ScholarPubMed
Sternberg, AJ, Davies, P, Macmillan, C, et al. Strontium-89: a novel treatment for a case of osteosclerotic myeloma associated with life-threatening neuropathy. Br J Haematol 2002;118:821–4.CrossRefGoogle ScholarPubMed
Kim, SY, Lee, SA, Ryoo, HM, et al. Thalidomide for POEMS syndrome. Ann Hematol 2006;85:545–6.CrossRefGoogle ScholarPubMed
Sinisalo, M, Hietaharju, A, Sauranen, J, et al. Thalidomide in POEMS syndrome: case report. Am J Hematol 2004;76:66–8.CrossRefGoogle ScholarPubMed
Badros, A, Porter, N, Zimrin, A. Bevacizumab therapy for POEMS syndrome. Blood 2005;106:1135.CrossRefGoogle ScholarPubMed
Straume, O, Bergheim, J, Ernst, P. Bevacizumab therapy for POEMS syndrome. Blood 2006;107:4972–3; author reply 4973–4.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Klein, CJ, Mauermann, ML. Lenalidomide therapy in a patient with POEMS syndrome. Blood 2007;110:1075–6.CrossRefGoogle Scholar
Dispenzieri, A, Lacy, MQ, Hayman, SR, et al. Peripheral blood stem cell transplant for POEMS syndrome is associated with high rates of engraftment syndrome. Eur J Haematol 2008;80:397–406.CrossRefGoogle ScholarPubMed
Nakano, A, Mitsui, T, Endo, I, et al. Solitary plasmacytoma with VEGF overproduction: report of a patient with polyneuropathy. Neurology 2001;56:818–19.CrossRefGoogle ScholarPubMed
Mineta, M, Hatori, M, Sano, H, et al. Recurrent Crow-Fukase syndrome associated with increased serum levels of vascular endothelial growth factor: a case report and review of the literature. Tohoku J Exp Med 2006;210:269–77.CrossRefGoogle ScholarPubMed
Soubrier, M, Ruivard, M, Dubost, JJ, et al. Successful use of autologous bone marrow transplantation in treating a patient with POEMS syndrome. Bone Marrow Transplant 2002;30:61–2.CrossRefGoogle ScholarPubMed
Jaccard, A, Royer, B, Bordessoule, D, et al. High-dose therapy and autologous blood stem cell transplantation in POEMS syndrome. Blood 2002;99:3057–9.CrossRefGoogle ScholarPubMed
Singhal, S, Mehta, J, Desikan, R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999;341:1565–71.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Gorevic, PD. Cryoglobulinemia. Hematol Oncol Clin North Am 1999;13:1315–49.CrossRefGoogle ScholarPubMed
Meltzer, M, Franklin, EC, Elias, K, et al. Cryoglobulinemia–a clinical and laboratory study. II. Cryoglobulins with rheumatoid factor activity. Am J Med 1966;40:837–56.CrossRefGoogle ScholarPubMed
Brouet, J, Clauvel, J, Danon, F, et al. Biological and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 1974;57:775–88.CrossRefGoogle Scholar
Gorevic, PD, Kassab, HJ, Levo, Y, et al. Mixed cryoglobulinemia: clinical aspects and long-term follow-up of 40 patients. Am J Med 1980;69:287–308.CrossRefGoogle ScholarPubMed
Monti, G, Galli, M, Invernizzi, F, et al. Cryoglobulinaemias: a multi-centre study of the early clinical and laboratory manifestations of primary and secondary disease. GISC. Italian Group for the Study of Cryoglobulinaemias. QJM 1995;88:115–26.Google Scholar
Pascual, M, Perrin, L, Giostra, E, et al. Hepatitis C virus in patients with cryoglobulinemia type II. J Infect Dis 1990;162:569–70.CrossRefGoogle ScholarPubMed
Ferri, C, Greco, F, Longombardo, G, et al. Antibodies to hepatitis C virus in patients with mixed cryoglobulinemia. Arthritis Rheum 1991;34:1606–10.CrossRefGoogle ScholarPubMed
Mendez, P, Saeian, K, Reddy, KR, et al. Hepatitis C, cryoglobulinemia, and cutaneous vasculitis associated with unusual and serious manifestations. Am J Gastroenterol 2001;96:2489–93.CrossRefGoogle ScholarPubMed
Donada, C, Crucitti, A, Donadon, V, et al. Systemic manifestations and liver disease in patients with chronic hepatitis C and type II or III mixed cryoglobulinaemia. J Viral Hepat 1998;5:179–85.CrossRefGoogle ScholarPubMed
Montagnino, G. Reappraisal of the clinical expression of mixed cryoglobulinemia. Springer Semin Immunopathol 1988;10:1–19.CrossRefGoogle ScholarPubMed
Cohen, SJ, Pittelkow, MR, Su, WP. Cutaneous manifestations of cryoglobulinemia: clinical and histopathologic study of seventy-two patients. J Am Acad Dermatol 1991;25:21–7.CrossRefGoogle ScholarPubMed
Ferri, C, Civita, L, Longombardo, G, et al. Mixed cryoglobulinaemia: a cross-road between autoimmune and lymphoproliferative disorders. Lupus 1998;7:275–9.CrossRefGoogle ScholarPubMed
Trejo, O, Ramos-Casals, M, Garcia-Carrasco, M, et al. Cryoglobulinemia: study of etiologic factors and clinical and immunologic features in 443 patients from a single center. Medicine (Baltimore) 2001;80:252–62.CrossRefGoogle ScholarPubMed
Cordonnier, D, Vialtel, P, Renversez, JC, et al. Renal diseases in 18 patients with mixed type II IgM-IgG cryoglobulinemia: monoclonal lymphoid infiltration (2 cases) and membranoproliferative glomerulonephritis (14 cases). Adv Nephrol Necker Hosp 1983;12:177–204.Google Scholar
Invernizzi, F, Galli, M, Serino, G, et al. Secondary and essential cryoglobulinemias. Frequency, nosological classification, and long-term follow-up. Acta Haematol 1983;70:73–82.CrossRefGoogle ScholarPubMed
Tarantino, A, Campise, M, Banfi, G, et al. Long-term predictors of survival in essential mixed cryoglobulinemic glomerulonephritis. Kidney Int 1995;47:618–23.CrossRefGoogle ScholarPubMed
Gorevic, PD, Frangione, B. Mixed cryoglobulinemia cross-reactive idiotypes: implications for the relationship of MC to rheumatic and lymphoproliferative diseases. Semin Hematol 1991;28:79–94.Google Scholar
Singer, DR, Venning, MC, Lockwood, CM, et al. Cryoglobulinaemia: clinical features and response to treatment. Ann Med Interne (Paris) 1986;137:251–3.Google ScholarPubMed
Gemignani, F, Brindani, F, Alfieri, S, et al. Clinical spectrum of cryoglobulinaemic neuropathy. J Neurol Neurosurg Psychiatry 2005;76:1410–14.CrossRefGoogle ScholarPubMed
Chad, D, Pariser, K, Bradley, WG, et al. The pathogenesis of cryoglobulinemic neuropathy. Neurology 1982;32:725–9.CrossRefGoogle ScholarPubMed
Nemni, R, Corbo, M, Fazio, R, et al. Cryoglobulinaemic neuropathy. A clinical, morphological and immunocytochemical study of 8 cases. Brain 1988;111:541–52.CrossRefGoogle ScholarPubMed
Cavaletti, G, Petruccioli, MG, Crespi, V, et al. A clinico-pathological and follow up study of 10 cases of essential type II cryoglobulinaemic neuropathy. J NeurolNeurosurg Psychiatry 1990;53:886–9.CrossRefGoogle Scholar
Ammendola, A, Sampaolo, S, Ambrosone, L, et al. Peripheral neuropathy in hepatitis-related mixed cryoglobulinemia: electrophysiologic follow-up study. Muscle Nerve 2005;31:382–5.CrossRefGoogle ScholarPubMed
Bryce, AH, Kyle, RA, Dispenzieri, A, et al. Natural history and therapy of 66 patients with mixed cryoglobulinemia. Am J Hematol 2006;81:511–18.CrossRefGoogle ScholarPubMed
Tarantino, A, Anelli, A, Costantino, A, et al. Serum complement pattern in essential mixed cryoglobulinaemia. Clin Exp Immunol 1978;32:77–85.Google ScholarPubMed
Ferri, C, Moriconi, L, Gremignai, G, et al. Treatment of the renal involvement in mixed cryoglobulinemia with prolonged plasma exchange. Nephron 1986;43:246–53.CrossRefGoogle ScholarPubMed
Frankel, AH, Singer, DR, Winearls, CG, et al. Type II essential mixed cryoglobulinaemia: presentation, treatment and outcome in 13 patients. Q J Med 1992;82:101–24.Google ScholarPubMed
Monti, G, Saccardo, F, Pioltelli, P, et al. The natural history of cryoglobulinemia: symptoms at onset and during follow-up. A report by the Italian Group for the Study of Cryoglobulinemias (GISC). Clin Exp Rheumatol 1995;13:S129–33.Google Scholar
Ferri, C, Marzo, E, Longombardo, G, et al. Interferon-alpha in mixed cryoglobulinemia patients: a randomized, crossover-controlled trial. Blood 1993;81:1132–6.Google ScholarPubMed
Ferri, C, Sebastiani, M, Giuggioli, D, et al. Mixed cryoglobulinemia: demographic, clinical, and serologic features and survival in 231 patients. Semin Arthritis Rheum 2004;33:355–74.CrossRefGoogle ScholarPubMed
Rieu, V, Cohen, P, Andre, MH, et al. Characteristics and outcome of 49 patients with symptomatic cryoglobulinaemia. Rheumatology (Oxford) 2002;41:290–300.CrossRefGoogle ScholarPubMed
Ferri, C, Marzo, E, Longombardo, G, et al. Interferon alfa-2b in mixed cryoglobulinaemia: a controlled crossover trial. Gut 1993;34:S144–5.CrossRefGoogle ScholarPubMed
Misiani, R, Bellavita, P, Fenili, D, et al. Interferon alfa-2a therapy in cryoglobulinemia associated with hepatitis C virus. N Engl J Med 1994;330:751–6.CrossRefGoogle ScholarPubMed
Dammacco, F, Sansonno, D, Han, JH, et al. Natural interferon-alpha versus its combination with 6-methyl-prednisolone in the therapy of type II mixed cryoglobulinemia: a long-term, randomized, controlled study. Blood 1994;84:3336–43.Google ScholarPubMed
Lauta, VM, Sangro, MA. Long-term results regarding the use of recombinant interferon alpha-2b in the treatment of II type mixed essential cryoglobulinemia. Med Oncol 1995;12:223–30.CrossRefGoogle ScholarPubMed
Mazzaro, C, Lacchin, T, Moretti, M, et al. Effects of two different alpha-interferon regimens on clinical and virological findings in mixed cryoglobulinemia. Clin Exp Rheumatol 1995;13:S181–5.Google ScholarPubMed
Ferri, C, Pietrogrande, M, Cecchetti, R, et al. Low-antigen-content diet in the treatment of patients with mixed cryoglobulinemia. Am J Med 1989;87:519–24.CrossRefGoogle ScholarPubMed
D'Amico, G. Renal involvement in hepatitis C infection: cryoglobulinemic glomerulonephritis. Kidney Int 1998;54:650–71.CrossRefGoogle ScholarPubMed
Alric, L, Plaisier, E, Thebault, S, et al. Influence of antiviral therapy in hepatitis C virus-associated cryoglobulinemic MPGN. Am J Kidney Dis 2004;43:617–23.CrossRefGoogle ScholarPubMed
Zignego, AL, Ferri, C, Pileri, SA, et al. Extrahepatic manifestations of Hepatitis C Virus infection: a general overview and guidelines for a clinical approach. Dig Liver Dis 2007;39:2–17.CrossRefGoogle ScholarPubMed
Geltner, D, Kohn, RW, Gorevic, P, et al. The effect of combination therapy (steroids, immunosuppressives, and plasmapheresis) on 5 mixed cryoglobulinemia patients with renal, neurologic, and vascular involvement. Arthritis Rheum 1981;24:1121–7.CrossRefGoogle ScholarPubMed
Valbonesi, M, Montani, F, Mosconi, L, et al. Plasmapheresis and cytotoxic drugs for mixed cryoglobulinemia. Haematologia 1984;17:341–51.Google ScholarPubMed
Sinico, RA, Fornasieri, A, Fiorini, G, et al. Plasma exchange in the treatment of essential mixed cryoglobulinemia nephropathy. Long-term follow up. Int J Artif Organs 1985;2:15–18.Google Scholar
Migliaresi, S, Tirri, G. Interferon in the treatment of mixed cryoglobulinemia. Clin Exp Rheumatol 1995;13:S175–80.Google ScholarPubMed
Bruchfeld, A, Lindahl, K, Stahle, L, et al. Interferon and ribavirin treatment in patients with hepatitis C-associated renal disease and renal insufficiency. Nephrol Dial Transplant 2003;18:1573–80.CrossRefGoogle ScholarPubMed
Casato, M, Lagana, B, Antonelli, G, et al. Long-term results of therapy with interferon-alpha for type II essential mixed cryoglobulinemia. Blood 1991;78:3142–7.Google ScholarPubMed
Ohta, S, Yokoyama, H, Wada, T, et al. Exacerbation of glomerulonephritis in subjects with chronic hepatitis C virus infection after interferon therapy. Am J Kidney Dis 1999;33:1040–8.CrossRefGoogle ScholarPubMed
Beuthien, W, Mellinghoff, HU, Kempis, J. Vasculitic complications of interferon-alpha treatment for chronic hepatitis C virus infection: case report and review of the literature. Clin Rheumatol 2005;24:507–15.CrossRefGoogle ScholarPubMed
Cid, MC, Hernandez-Rodriguez, J, Robert, J, et al. Interferon-alpha may exacerbate cryoglobulinemia-related ischemic manifestations: an adverse effect potentially related to its anti-angiogenic activity. Arthritis Rheum 1999;42:1051–5.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Zaja, F, Vita, S, Mazzaro, C, et al. Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 2003;101:3827–34.CrossRefGoogle ScholarPubMed
Sansonno, D, Re, V, Lauletta, G, et al. Monoclonal antibody treatment of mixed cryoglobulinemia resistant to interferon alpha with an anti-CD20. Blood 2003;101:3818–26.CrossRefGoogle ScholarPubMed
Bryce, AH, Dispenzieri, A, Kyle, RA, et al. Response to rituximab in patients with type II cryoglobulinemia. Clin Lymphoma Myeloma 2006;7:140–4.CrossRefGoogle ScholarPubMed
Roccatello, D, Baldovino, S, Rossi, D, et al. Long-term effects of anti-CD20 monoclonal antibody treatment of cryoglobulinaemic glomerulonephritis. Nephrol Dial Transplant 2004;19:3054–61.CrossRefGoogle ScholarPubMed
Basse, G, Ribes, D, Kamar, N, et al. Rituximab therapy for mixed cryoglobulinemia in seven renal transplant patients. Transplant Proc 2006;38:2308–10.CrossRefGoogle ScholarPubMed
Ghobrial, IM, Uslan, DZ, Call, TG, et al. Initial increase in the cryoglobulin level after rituximab therapy for type II cryoglobulinemia secondary to Waldenstrom macroglobulinemia does not indicate failure of response. Am J Hematol 2004;77:329–30.CrossRefGoogle ScholarPubMed
Frickhofen, N, Wiesneth, M, Jainta, C, et al. Hepatitis C virus infection is a risk factor for liver failure from veno-occlusive disease after bone marrow transplantation. Blood 1994;83:1998–2004.Google ScholarPubMed
Mathison, DA, Condemi, JJ, Leddy, JP, et al. Purpura, arthralgia, and IgM-IgM cryoglobulinemia with rheumatoid factor activity. Response to cyclophosphamide and splenectomy. Ann Intern Med 1971;74:383–90.CrossRefGoogle Scholar
Ubara, Y, Hara, S, Katori, H, et al. Splenectomy may improve the glomerulopathy of type II mixed cryoglobulinemia. Am J Kidney Dis 2000;35:1186–92.CrossRefGoogle ScholarPubMed
Meltzer, M, Franklin, EC. Cryoglobulinemia–a study of twenty-nine patients. I. IgG and IgM cryoglobulins and factors affecting cryoprecipitability. Am J Med 1966;40:828–56.CrossRefGoogle ScholarPubMed
Kyle, RA, Therneau, TM, Rajkumar, SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002;346:564–9.CrossRefGoogle ScholarPubMed
Kahn, SN, Riches, PG, Kohn, J. Paraproteinaemia in neurological disease: incidence, associations, and classification of monoclonal immunoglobulins. J Clin Pathol 1980;33:617–21.CrossRefGoogle ScholarPubMed
Kelly, JJ, Kyle, RA, O'Brien, PC, et al. Prevalence of monoclonal protein in peripheral neuropathy. Neurology 1981;31:1480–3.CrossRefGoogle ScholarPubMed
Dispenzieri, A, Kyle, RA. Neurological aspects of multiple myeloma and related disorders. Best Pract Res Clin Haematol 2005;18:673–88.CrossRefGoogle ScholarPubMed
Latov, N, Sherman, WH, Nemni, R, et al. Plasma-cell dyscrasia and peripheral neuropathy with a monoclonal antibody to peripheral-nerve myelin. N Engl J Med 1980;303:618–21.CrossRefGoogle ScholarPubMed
Quarles, RH, Weiss, MD. Autoantibodies associated with peripheral neuropathy. Muscle Nerve 1999;22:800–22.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nobile-Orazio, E, Meucci, N, Baldini, L, et al. Long-term prognosis of neuropathy associated with anti-MAG IgM M-proteins and its relationship to immune therapies. Brain 2000;123:710–17.CrossRefGoogle ScholarPubMed
Dyck, PJ, Low, PA, Windebank, AJ, et al. Plasma exchange in polyneuropathy associated with monoclonal gammopathy of undetermined significance. N Engl J Med 1991;325:1482–6.CrossRefGoogle ScholarPubMed
Oksenhendler, E, Chevret, S, Leger, JM, et al. Plasma exchange and chlorambucil in polyneuropathy associated with monoclonal IgM gammopathy. IgM-associated Polyneuropathy Study Group. J Neurol Neurosurg Psychiatry 1995;59:243–7.CrossRefGoogle ScholarPubMed
Mariette, X, Chastang, C, Clavelou, P, et al. A randomised clinical trial comparing interferon-alpha and intravenous immunoglobulin in polyneuropathy associated with monoclonal IgM. The IgM-associated Polyneuropathy Study Group. J Neurol Neurosurg Psychiatry 1997;63:28–34.CrossRefGoogle ScholarPubMed
Comi, G, Roveri, L, Swan, A, et al. A randomised controlled trial of intravenous immunoglobulin in IgM paraprotein associated demyelinating neuropathy. J Neurol 2002;249:1370–7.CrossRefGoogle ScholarPubMed
Mariette, X, Brouet, JC, Chevret, S, et al. A randomised double blind trial versus placebo does not confirm the benefit of alpha-interferon in polyneuropathy associated with monoclonal IgM [letter]. J Neurol Neurosurg Psychiatry 2000;69:279–80.CrossRefGoogle Scholar
Dalakas, MC, Quarles, RH, Farrer, RG, et al. A controlled study of intravenous immunoglobulin in demyelinating neuropathy with IgM gammopathy. Ann Neurol 1996;40:792–5.CrossRefGoogle ScholarPubMed
Gorson, KC, Allam, G, Ropper, AH. Chronic inflammatory demyelinating polyneuropathy: clinical features and response to treatment in 67 consecutive patients with and without a monoclonal gammopathy. Neurology 1997;48:321–8.CrossRefGoogle ScholarPubMed
Sherman, WH, Olarte, MR, McKiernan, G, et al. Plasma exchange treatment of peripheral neuropathy associated with plasma cell dyscrasia. J Neurol Neurosurg Psychiatry 1984;47:813–19.CrossRefGoogle ScholarPubMed
Yeung, KB, Thomas, PK, King, RH, et al. The clinical spectrum of peripheral neuropathies associated with benign monoclonal IgM, IgG and IgA paraproteinaemia. Comparative clinical, immunological and nerve biopsy findings. J Neurol 1991;238:383–91.CrossRefGoogle ScholarPubMed
Wilson, HC, Lunn, MP, Schey, S, et al. Successful treatment of IgM paraproteinaemic neuropathy with fludarabine. J Neurol, Neurosurg Psychiatry 1999;66:575–80.CrossRefGoogle Scholar
Levine, TD, Pestronk, A. IgM antibody-related polyneuropathies: B-cell depletion chemotherapy using Rituximab. Neurology 1999;52:1701–4.CrossRefGoogle ScholarPubMed
Renaud, S, Gregor, M, Fuhr, P, et al. Rituximab in the treatment of polyneuropathy associated with anti-MAG antibodies. Muscle Nerve 2003;27:611–15.CrossRefGoogle ScholarPubMed
Pestronk, A, Florence, J, Miller, T, et al. Treatment of IgM antibody associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry 2003;74:485–9.CrossRefGoogle ScholarPubMed
Cokonis Georgakis, CD, Falasca, G, Georgakis, A, et al. Scleromyxedema. Clin Dermatol 2006;24:493–7.CrossRefGoogle ScholarPubMed
Kucher, C, Xu, X, Pasha, T, et al. Histopathologic comparison of nephrogenic fibrosing dermopathy and scleromyxedema. J Cutan Pathol 2005;32:484–90.CrossRefGoogle ScholarPubMed
Rongioletti, F, Rebora, A. Updated classification of papular mucinosis, lichen myxedematosus, and scleromyxedema. J Am Acad Dermatol 2001;44:273–81.CrossRefGoogle ScholarPubMed
Dinneen, AM, Dicken, CH. Scleromyxedema. J Am Acad Dermatol 1995;33:37–43.CrossRefGoogle ScholarPubMed
Berger, JR, Dobbs, MR, Terhune, MH, et al. The neurologic complications of scleromyxedema. Medicine (Baltimore) 2001;80:313–19.CrossRefGoogle ScholarPubMed
Pomann, JJ, Rudner, EJ. Scleromyxedema revisited. Int J Dermatol 2003;42:31–5.CrossRefGoogle ScholarPubMed
Lacy, MQ, Hogan, WJ, Gertz, MA, et al. Successful treatment of scleromyxedema with autologous peripheral blood stem cell transplantation. Arch Dermatol 2005;141:1277–82.CrossRefGoogle ScholarPubMed
Sansbury, JC, Cocuroccia, B, Jorizzo, JL, et al. Treatment of recalcitrant scleromyxedema with thalidomide in 3 patients. J Am Acad Dermatol 2004;51:126–31.CrossRefGoogle ScholarPubMed
Fernandez-Herrera, J, Pedraz, J. Necrobiotic xanthogranuloma. Semin Cutan Med Surg 2007;26:108–13.CrossRefGoogle ScholarPubMed
Finan, MC, Winkelmann, RK. Necrobiotic xanthogranuloma with paraproteinemia. A review of 22 cases. Medicine (Baltimore) 1986;65:376–88.CrossRefGoogle ScholarPubMed
Bullock, JD, Bartley, GB, Campbell, RJ, et al. Necrobiotic xanthogranuloma with paraproteinemia: case report and a pathogenetic theory. Trans Am Ophthalmol Soc 1986;84:342–54.Google Scholar
Matsuura, F, Yamashita, S, Hirano, K, et al. Activation of monocytes in vivo causes intracellular accumulation of lipoprotein-derived lipids and marked hypocholesterolemia–a possible pathogenesis of necrobiotic xanthogranuloma. Atherosclerosis 1999;142:355–65.CrossRefGoogle ScholarPubMed
Venencie, PY, Bras, P, Toan, ND, et al. Recombinant interferon alfa-2b treatment of necrobiotic xanthogranuloma with paraproteinemia. J Am Acad Dermatol 1995;32:666–7.CrossRefGoogle ScholarPubMed
Goede, JS, Misselwitz, B, Taverna, C, et al. Necrobiotic xanthogranuloma successfully treated with autologous stem cell transplantation. Ann Hematol 2007;86:303–6.CrossRefGoogle ScholarPubMed
Schnitzler, L, Schubert, B, Boasson, M, et al. Urticaire chronique, lesions osseuses, macroglobulinemie IgM: maladie de Waldenstrom-IIe presentation. Bull Soc Fr Dermatol Syphiligr 1974;81:363.Google Scholar
Lipsker, D, Veran, Y, Grunenberger, F, et al. The Schnitzler syndrome. Four new cases and review of the literature. Medicine (Baltimore) 2001;80:37–44.CrossRefGoogle ScholarPubMed
Koning, HD, Bodar, EJ, Meer, JW, et al. Schnitzler syndrome: beyond the case reports: review and follow-up of 94 patients with an emphasis on prognosis and treatment. Semin Arthritis Rheum 2007;37:137–48.CrossRefGoogle ScholarPubMed
Castro, FR, Masouye, I, Winkelmann, RK, et al. Urticarial pathology in Schnitzler's (hyper-IgM) syndrome. Dermatology 1996;193:94–9.CrossRefGoogle ScholarPubMed
Schneider, SW, Gaubitz, M, Luger, TA, et al. Prompt response of refractory Schnitzler syndrome to treatment with anakinra. J Am Acad Dermatol 2007;56:S120–2.CrossRefGoogle ScholarPubMed
Eiling, E, Moller, M, Kreiselmaier, I, et al. Schnitzler syndrome: treatment failure to rituximab but response to anakinra. J Am Acad Dermatol 2007;57:361–4.CrossRefGoogle ScholarPubMed
Lipsker, D, Imrie, K, Simon, A, et al. Hot and hobbling with hives: Schnitzler syndrome. Clin Immunol 2006; 119:131–4.CrossRefGoogle ScholarPubMed
Martinez-Taboada, VM, Fontalba, A, Blanco, R, et al. Successful treatment of refractory Schnitzler's syndrome with anakinra: comment on the article by Hawkins et al. Arthritis Rheum 2005;52:2226–7.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×