Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-01T12:21:32.519Z Has data issue: false hasContentIssue false

1 - Molecular pathology of leukemia

Published online by Cambridge University Press:  10 January 2011

Maher Albitar
Affiliation:
Hematopathology and Oncology Department, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
Amber Donahue
Affiliation:
Hematopathology and Oncology Department, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

Most of the current knowledge of the molecular basis of leukemias indicates that leukemias are heterogeneous groups of neoplasms. Even when the clinical and phenotypic presentations are similar, biologically the leukemias may differ, and molecular characterization of the individual leukemia is therefore essential for predicting prognosis and determining therapeutic approaches. This observation is not only relevant to leukemias, but is true of the complexity of cancer in general.

With the recent advances in targeted therapy, and the ability to develop more specific inhibitors which target a specific pathway, precise understanding of the molecular abnormalities in a specific leukemia is becoming more crucial. It is widely accepted at this time that leukemia is a disease of hematopoietic cells, occurring when these cells become capable of independent self-renewal irrespective of physiologic needs. Most leukemic processes are believed to be initiated at the level of stem cells. The definition of stem cells varies, however, dependent on the stage of differentiation. For example, it is believed that in some diseases, particularly chronic leukemias, the leukemic process is initiated at the stem cell level, but that the cells manage to differentiate to a certain extent, allowing the disease to manifest as a chronic leukemic process of the mature cells. While some leukemias are characterized and defined by a specific molecular abnormality, considered the hallmark of the disease, most investigators believe that additional molecular abnormalities must accumulate for the disease to manifest itself, or progress to acute disease.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jones, RJ, Armstrong, SA.Cancer stem cells in hematopoietic malignancies. Biol Blood Marrow Transplant 2008;14:12–16.CrossRefGoogle ScholarPubMed
Passegue, E, Jamieson, CH, Ailles, , et al. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?Proc Natl Acad Sci U S A 2003;100 Suppl 1:11 842–9.CrossRefGoogle ScholarPubMed
Moore, MA.Converging pathways in leukemogenesis and stem cell self-renewal. Exp Hematol 2005;33:719–37.CrossRefGoogle ScholarPubMed
Hochhaus, A, Erben, P, Ernst, T, et al. Resistance to targeted therapy in chronic myelogenous leukemia. Semin Hematol 2007;44:S15–24.CrossRefGoogle ScholarPubMed
Lee, TS, Ma, W, Zhang, X, et al. BCR-ABL alternative splicing as a common mechanism for imatinib resistance: evidence from molecular dynamics simulations. Mol Cancer Ther 2008;7:3834–41.CrossRefGoogle ScholarPubMed
Ghoshal, K, Bai, S.DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc) 2007;43:395–422.CrossRefGoogle ScholarPubMed
Plimack, ER, Kantarjian, HM, Issa, JP.Decitabine and its role in the treatment of hematopoietic malignancies. Leuk Lymphoma 2007;48:1472–81.CrossRefGoogle ScholarPubMed
Friedman, AD.Cell cycle and developmental control of hematopoiesis by Runx1. J Cell Physiol 2009;219:520–4.CrossRefGoogle ScholarPubMed
Levanon, D, Groner, Y.Structure and regulated expression of mammalian RUNX genes. Oncogene 2004;23:4211–19.CrossRefGoogle ScholarPubMed
Byrd, JC, Mrozek, K, Dodge, RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002;100:4325–36.CrossRefGoogle Scholar
Grimwade, D, Walker, H, Harrison, G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 2001;98:1312–20.CrossRefGoogle ScholarPubMed
Marcucci, G, Mrozek, K, Ruppert, AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005;23:5705–17.CrossRefGoogle Scholar
Nucifora, G, Begy, CR, Kobayashi, H, et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci U S A 1994;91:4004–8.CrossRefGoogle ScholarPubMed
Zent, C, Kim, N, Hiebert, S, et al. Rearrangement of the AML1/CBFA2 gene in myeloid leukemia with the 3;21 translocation: expression of co-existing multiple chimeric genes with similar functions as transcriptional repressors, but with opposite tumorigenic properties. Curr Top Microbiol Immunol 1996;211:243–52.Google ScholarPubMed
Michaud, J, Wu, F, Osato, M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002;99:1364–72.CrossRefGoogle ScholarPubMed
Zelent, A, Greaves, M, Enver, T.Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 2004;23:4275–83.CrossRefGoogle ScholarPubMed
Boissel, N, Leroy, H, Brethon, B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006;20:965–70.CrossRefGoogle Scholar
Grimwade, D, Biondi, A, Mozziconacci, MJ, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies.”Blood 2000;96:1297–308.Google Scholar
Larson, RA, Kondo, K, Vardiman, JW, et al. Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med 1984;76:827–41.CrossRefGoogle ScholarPubMed
Rowley, JD, Golomb, HM, Dougherty, C.15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1977;1:549–50.CrossRefGoogle ScholarPubMed
Chen, SJ, Zelent, A, Tong, JH, et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 1993;91:2260–7.CrossRefGoogle Scholar
Redner, RL.Variations on a theme: the alternate translocations in APL. Leukemia 2002;16:1927–32.CrossRefGoogle ScholarPubMed
Redner, RL, Rush, EA, Faas, S, et al. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996;87:882–6.Google Scholar
Wells, RA, Catzavelos, C, Kamel-Reid, S.Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 1997;17:109–13.CrossRefGoogle ScholarPubMed
Arnould, C, Philippe, C, Bourdon, V, et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999;8:1741–9.CrossRefGoogle ScholarPubMed
Catalano, A, Dawson, MA, Somana, K, et al. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 2007;110:4073–6.CrossRefGoogle Scholar
Guidez, F, Ivins, S, Zhu, J, et al. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998;91:2634–42.Google ScholarPubMed
Gale, RE, Hills, R, Pizzey, AR, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 2005;106:3768–76.CrossRefGoogle ScholarPubMed
Caligiuri, MA, Strout, MP, Lawrence, D, et al. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 1998;58:55–9.Google ScholarPubMed
Dohner, K, Tobis, K, Ulrich, R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol 2002;20:3254–61.CrossRefGoogle ScholarPubMed
Munoz, L, Nomdedeu, JF, Villamor, N, et al. Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 2003;17:76–82.CrossRefGoogle ScholarPubMed
Shiah, HS, Kuo, YY, Tang, JL, et al. Clinical and biologic implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia 2002;16:196–202.CrossRefGoogle Scholar
Wolman, SR, Gundacker, H, Appelbaum, FR, et al. Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood 2002;100:29–35.CrossRefGoogle ScholarPubMed
Johansson, B, Mertens, F, Heim, S, et al. Cytogenetics of secondary myelodysplasia (sMDS) and acute nonlymphocytic leukemia (sANLL). Eur J Haematol 1991;47:17–27.CrossRefGoogle Scholar
Berghe, H, Michaux, L.5q-, twenty-five years later: a synopsis. Cancer Genet Cytogenet 1997;94:1–7.CrossRefGoogle ScholarPubMed
Herry, A, Douet-Guilbert, N, Gueganic, N, et al. Del(5q) and MLL amplification in homogeneously staining region in acute myeloblastic leukemia: a recurrent cytogenetic association. Ann Hematol 2006;85:244–9.CrossRefGoogle ScholarPubMed
Horsman, , Gascoyne, RD, Barnett, MJ.Acute leukemia with structural rearrangements of chromosome 3. Leuk Lymphoma 1995;16:369–77.CrossRefGoogle ScholarPubMed
Larson, RA.Is secondary leukemia an independent poor prognostic factor in acute myeloid leukemia?Best Pract Res Clin Haematol 2007;20:29–37.CrossRefGoogle ScholarPubMed
Kiyoi, H, Naoe, T.Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int J Hematol 2006;83:301–8.CrossRefGoogle ScholarPubMed
Okuwaki, M.The structure and functions of NPM1/Nucleophosmin/B23, a multifunctional nucleolar acidic protein. J Biochem 2008;143:441–8.CrossRefGoogle ScholarPubMed
Falini, B, Mecucci, C, Tiacci, E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254–66.CrossRefGoogle ScholarPubMed
Dohner, K, Schlenk, RF, Habdank, M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005;106:3740–6.CrossRefGoogle ScholarPubMed
Yang, L, Han, Y, Suarez Saiz, F, et al. A tumor suppressor and oncogene: the WT1 story. Leukemia 2007;21:868–76.CrossRefGoogle ScholarPubMed
Gaidzik, VI, Schlenk, RF, Moschny, S, et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 2009;113:4505–11.CrossRefGoogle ScholarPubMed
Renneville, A, Boissel, N, Zurawski, V, et al. Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer 2009;115:3719–27.CrossRefGoogle ScholarPubMed
Koschmieder, S, Halmos, B, Levantini, E, et al. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 2009;27:619–28.CrossRefGoogle Scholar
Fuchs, O, Provaznikova, D, Kocova, M, et al. CEBPA polymorphisms and mutations in patients with acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and non-Hodgkin's lymphoma. Blood Cells Mol Dis 2008;40:401–5.CrossRefGoogle ScholarPubMed
Harrison, CJ, Foroni, L.Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002;6:91–113; discussion 200–2.CrossRefGoogle ScholarPubMed
Mullighan, CG, Goorha, S, Radtke, I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758–64.CrossRefGoogle ScholarPubMed
Charrin, C, Thomas, X, Ffrench, M, et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood 2004;104:2444–51.CrossRefGoogle Scholar
Heerema, NA, Nachman, JB, Sather, HN, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children's cancer group. Blood 1999;94:4036–45.Google ScholarPubMed
Radich, JP.Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am 2001;15:21–36.CrossRefGoogle ScholarPubMed
Jones, CD, Yeung, C, Zehnder, JL.Comprehensive validation of a real-time quantitative bcr-abl assay for clinical laboratory use. Am J Clin Pathol 2003;120:42–8.CrossRefGoogle ScholarPubMed
Mosad, E, Hamed, HB, Bakry, RM, et al. Persistence of TEL-AML1 fusion gene as minimal residual disease has no additive prognostic value in CD 10 positive B-acute lymphoblastic leukemia: a FISH study. J Hematol Oncol 2008;1:17.CrossRefGoogle ScholarPubMed
Mullighan, CG, Su, X, Zhang, J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360:470–80.CrossRefGoogle ScholarPubMed
Thomas, DA, Faderl, S, O'Brien, S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 2006;106:1569–80.CrossRefGoogle ScholarPubMed
Grimaldi, JC, Meeker, TC.The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood 1989;73:2081–5.Google Scholar
Hogan, TF, Koss, W, Murgo, AJ, et al. Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: case report and literature review. J Clin Oncol 1987;5:382–90.CrossRefGoogle ScholarPubMed
Tono-oka, T, Sato, Y, Matsumoto, T, et al. Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation [t(5q;14q)]. Med Pediatr Oncol 1984;12:33–7.CrossRefGoogle Scholar
Mancini, M, Scappaticci, D, Cimino, G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 2005;105:3434–41.CrossRefGoogle ScholarPubMed
Argiropoulos, B, Humphries, RK.Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007;26:6766–76.CrossRefGoogle ScholarPubMed
Chiba, S.Homeobox genes in normal hematopoiesis and leukemogenesis. Int J Hematol 1998;68:343–53.CrossRefGoogle ScholarPubMed
Owens, BM, Hawley, RG.HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 2002;20:364–79.CrossRefGoogle ScholarPubMed
Hatano, M, Roberts, CW, Minden, M, et al. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 1991;253:79–82.CrossRefGoogle Scholar
Hunger, SP, Galili, N, Carroll, AJ, et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991;77:687–93.Google Scholar
Kennedy, MA, Gonzalez-Sarmiento, R, Kees, UR, et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci U S A 1991;88:8900–4.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Hunger, SP, Carroll, AJ, et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993;82:1086–91.Google Scholar
Foa, R, Vitale, A, Mancini, M, et al. E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biologic and clinical features. Br J Haematol 2003;120:484–7.CrossRefGoogle Scholar
Privitera, E, Kamps, MP, Hayashi, Y, et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 1992;79:1781–8.Google ScholarPubMed
Fortini, ME.Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009;16:633–47.CrossRefGoogle ScholarPubMed
Joshi, I, Minter, LM, Telfer, J, et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009;113:1689–98.CrossRefGoogle Scholar
Mansour, MR, Linch, DC, Foroni, L, et al. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 2006;20:537–9.CrossRefGoogle ScholarPubMed
Weng, AP, Ferrando, AA, Lee, W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306:269–71.CrossRefGoogle ScholarPubMed
Breit, S, Stanulla, M, Flohr, T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006;108:1151–7.CrossRefGoogle ScholarPubMed
Park, MJ, Taki, T, Oda, M, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol 2009;145:198–206.CrossRefGoogle ScholarPubMed
Grotel, M, Meijerink, JP, Wering, ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 2008;22:124–31.CrossRefGoogle Scholar
Kathrein, KL, Chari, S, Winandy, S.Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem 2008;283:10 476–84.CrossRefGoogle Scholar
Marti, GE, Rawstron, AC, Ghia, P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol 2005;130:325–32.CrossRefGoogle ScholarPubMed
Rawstron, AC, Bennett, FL, O'Connor, SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 2008;359:575–83.CrossRefGoogle ScholarPubMed
Damle, RN, Wasil, T, Fais, F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999;94:1840–7.Google ScholarPubMed
Hamblin, TJ, Davis, Z, Gardiner, A, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999;94:1848–54.Google ScholarPubMed
Kharfan-Dabaja, MA, Chavez, JC, Khorfan, KA, et al. Clinical and therapeutic implications of the mutational status of IGHV in patients with chronic lymphocytic leukemia. Cancer 2008;113:897–906.CrossRefGoogle Scholar
Gumy-Pause, F, Wacker, P, Sappino, AP.ATM gene and lymphoid malignancies. Leukemia 2004;18:238–42.CrossRefGoogle ScholarPubMed
Calin, GA, Cimmino, A, Fabbri, M, et al. MiR-15a and miR-16–1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 2008;105:5166–71.CrossRefGoogle ScholarPubMed
Calin, GA, Dumitru, CD, Shimizu, M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15 524–9.CrossRefGoogle ScholarPubMed
Montserrat, E.New prognostic markers in CLL. Hematology Am Soc Hematol Educ Program 2006;279–84.Google ScholarPubMed
Rabkin, CS, Hirt, C, Janz, S, et al. t(14;18) translocations and risk of follicular lymphoma. J Natl Cancer Inst Monogr 2008;(39):48–51.CrossRefGoogle Scholar
Andreasson, P, Johansson, B, Carlsson, M, et al. BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion. Genes Chromosomes Cancer 1997;20:299–304.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Cirmena, G, Aliano, S, Fugazza, G, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11) in a patient with acute myeloid leukemia. Cancer Genet Cytogenet 2008;183:105–8.CrossRefGoogle Scholar
Griesinger, F, Hennig, H, Hillmer, F, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 2005;44:329–33.CrossRefGoogle Scholar
Lane, SW, Fairbairn, DJ, McCarthy, C, et al. Leukaemia cutis in atypical chronic myeloid leukaemia with a t(9;22) (p24;q11.2) leading to BCR-JAK2 fusion. Br J Haematol 2008;142:503.CrossRefGoogle Scholar
Bousquet, M, Quelen, C, Mas, V, et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005;24:7248–52.CrossRefGoogle Scholar
Reiter, A, Walz, C, Watmore, A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005;65:2662–7.CrossRefGoogle Scholar
Bernasconi, P, Calatroni, S, Boni, M, et al. p230 does not always predict a mild clinical course in myeloid malignancies: e19a2 bcr/abl fusion transcript with additional chromosome abnormalities in a patient with acute monoblastic leukemia (M5a). Haematologica 2001;86:320–1.Google Scholar
Wang, L, Seale, J, Woodcock, BE, et al. e19a2-positive chronic myeloid leukaemia with BCR exon e16-deleted transcripts. Leukemia 2002;16:1562–3.CrossRefGoogle ScholarPubMed
Branford, S, Rudzki, Z, Walsh, S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003;102:276–83.CrossRefGoogle ScholarPubMed
Corbin, AS, Buchdunger, E, Pascal, F, et al. Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571. J Biol Chem 2002;277:32 214–19.CrossRefGoogle ScholarPubMed
Hochhaus, A, Kreil, S, Corbin, AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002;16:2190–6.CrossRefGoogle ScholarPubMed
Jabbour, E, Kantarjian, H, Jones, D, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 2006;20:1767–73.CrossRefGoogle ScholarPubMed
Shah, NP, Nicoll, JM, Nagar, B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117–25.CrossRefGoogle ScholarPubMed
Soverini, S, Colarossi, S, Gnani, A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 2006;12:7374–9.CrossRefGoogle ScholarPubMed
Talpaz, M, Shah, NP, Kantarjian, H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006;354:2531–41.CrossRefGoogle ScholarPubMed
Apperley, JF.Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 2007;8:1018–29.CrossRefGoogle ScholarPubMed
Gruber, FX, Lamark, T, Anonli, A, et al. Selecting and deselecting imatinib-resistant clones: observations made by longitudinal, quantitative monitoring of mutated BCR-ABL. Leukemia 2005;19:2159–65.CrossRefGoogle ScholarPubMed
Martinelli, G, Iacobucci, I, Soverini, S, et al. Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. Hematol Oncol 2006;24:196–204.CrossRefGoogle ScholarPubMed
O'Hare, T, Walters, DK, Stoffregen, EP, et al. Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib. Clin Cancer Res 2005;11:6987–93.CrossRefGoogle ScholarPubMed
Weisberg, E, Manley, PW, Cowan-Jacob, SW, et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007;7:345–56.CrossRefGoogle ScholarPubMed
Ma, W, Tseng, R, Gorre, M, et al. Plasma RNA as an alternative to cells for monitoring molecular response in patients with chronic myeloid leukemia. Haematologica 2007;92:170–5.CrossRefGoogle ScholarPubMed
Ma, W, Kantarjian, H, Zhang, X, et al. Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J Mol Diagn 2009;11:49–53.CrossRefGoogle ScholarPubMed
Ma, W, Kantarjian, H, Verstovsek, S, et al. Hemizygous/homozygous and heterozygous JAK2 mutation detected in plasma of patients with myeloproliferative diseases: correlation with clinical behaviour. Br J Haematol 2006;134:341–3.CrossRefGoogle ScholarPubMed
Pardanani, A, Lasho, TL, Finke, C, et al. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007;21:1960–3.CrossRefGoogle ScholarPubMed
Pancrazzi, A, Guglielmelli, P, Ponziani, V, et al. A sensitive detection method for MPLW515L or MPLW515K mutation in chronic myeloproliferative disorders with locked nucleic acid-modified probes and real-time polymerase chain reaction. J Mol Diagn 2008;10:435–41.CrossRefGoogle ScholarPubMed
Pikman, Y, Lee, BH, Mercher, T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270.CrossRefGoogle ScholarPubMed
Ding, J, Komatsu, H, Wakita, A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004;103:4198–200.CrossRefGoogle ScholarPubMed
El-Harith el, HA, Roesl, C, Ballmaier, M, et al. Familial thrombocytosis caused by the novel germ-line mutation p.Pro106Leu in the MPL gene. Br J Haematol 2009;144:185–94.CrossRefGoogle Scholar
Beer, PA, Campbell, PJ, Scott, LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008;112:141–9.CrossRefGoogle ScholarPubMed
Schnittger, S, Bacher, U, Haferlach, C, et al. Characterization of 35 new cases with four different MPLW515 mutations and essential thrombocytosis or primary myelofibrosis. Haematologica 2009;94:141–4.CrossRefGoogle ScholarPubMed
Lasho, TL, Pardanani, A, McClure, RF, et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br J Haematol 2006;135:683–7.CrossRefGoogle ScholarPubMed
Vannucchi, AM, Antonioli, E, Guglielmelli, P, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood 2008;112:844–7.CrossRefGoogle ScholarPubMed
Cross, NC, Reiter, A.Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 2008;119:199–206.CrossRefGoogle ScholarPubMed
Cools, J, DeAngelo, DJ, Gotlib, J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:1201–14.CrossRefGoogle ScholarPubMed
Metzgeroth, G, Walz, C, Score, J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007;21:1183–8.CrossRefGoogle ScholarPubMed
Bain, BJ, Fletcher, SH.Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am 2007;27:377–88.CrossRefGoogle ScholarPubMed
Golub, TR, Barker, GF, Lovett, M, et al. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77:307–16.CrossRefGoogle Scholar
Steer, EJ, Cross, NC.Myeloproliferative disorders with translocations of chromosome 5q31–35: role of the platelet-derived growth factor receptor Beta. Acta Haematol 2002;107:113–22.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×