Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-25T20:19:17.914Z Has data issue: false hasContentIssue false

10 - Diffusion-weighted MRI of the bone marrow and the spine

Published online by Cambridge University Press:  10 November 2010

Bachir Taouli
Affiliation:
Mount Sinai School of Medicine, New York
Get access

Summary

Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is a well-established magnetic resonance imaging (MRI) technique, in which the MR signal intensity is influenced by the self-diffusion, i.e., the microscopic stochastic Brownian motion, of water molecules caused by the molecular thermal energy. An overview of the physical principles of diffusion and DWI is given in a separate chapter, and elsewhere. DWI can provide information about the microscopic structure and organization of biological tissues and, thus, can depict various pathological changes of organs or tissues. It has been thoroughly evaluated for a multitude of neurological pathologies such as brain tumors, abscesses, or white-matter diseases, and in particular for the early detection of cerebral ischemia, which is generally considered the most important application of clinical DWI.

Significantly fewer studies have been published about diffusion MRI outside the brain, mainly because of the relatively low robustness of conventional DWI methods in non-neurological applications and, consequently, the rather limited image quality in such applications. This situation, however, improved significantly in recent years due to better MRI hardware as well as newly developed pulse sequences; as a consequence, several new applications of DWI have been described. Examples such as DWI studies of the liver, the kidneys, or of soft-tissue tumors are described in detail elsewhere in this book. Recently, whole-body DWI was proposed to improve the detection of malignancies and pathological lymph nodes. Most of these applications are based on variants of the diffusion-weighting echo-planar imaging (EPI) pulse sequence.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, R. A brief account of microscopical observations made in the months of June, July, and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Edinburgh New Philosophical Journal 1828; July–September: 358–71.Google Scholar
Brown, R. Additional remarks on active molecules. The Edinburgh New Philosophical Journal 1830; January–April: 41–6.Google Scholar
Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys-Berlin 1905;17:549–60.CrossRefGoogle Scholar
Hahn, EL. Spin echoes. Phys Rev 1950;80:580–94.CrossRefGoogle Scholar
Merboldt, KD, Hänicke, W, Frahm, J. Self-diffusion NMR imaging using stimulated echoes. J Magn Reson 1985;64:479–86.Google Scholar
Taylor, DG, Bushell, MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 1985;30:345–9.CrossRefGoogle ScholarPubMed
Bihan, D, Breton, E, Lallemand, D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–7.CrossRefGoogle ScholarPubMed
Dietrich, O. Diffusion-weighted imaging and diffusion tensor imaging. In: Reiser, MF, Semmler, W, Hricak, H, eds. Magnetic Resonance Tomography. New York: Springer; 2008, 130–52.Google Scholar
Karaarslan, E, Arslan, A. Diffusion weighted MR imaging in non-infarct lesions of the brain. Eur J Radiol 2008;65:402–16.CrossRefGoogle Scholar
Provenzale, JM, Mukundan, S, Barboriak, DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006;239:632–49.CrossRefGoogle Scholar
Cartes-Zumelzu, FW, Stavrou, I, Castillo, M, et al. Diffusion-weighted imaging in the assessment of brain abscesses therapy. Am J Neuroradiol 2004;25:1310–17.Google ScholarPubMed
Horsfield, MA, Jones, DK. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases: a review. NMR Biomed 2002;15:570–7.CrossRefGoogle ScholarPubMed
Schaefer, PW, Copen, WA, Lev, MH, et al. Diffusion-weighted imaging in acute stroke. Magn Reson Imag Clin N Am 2006;14:141–68.CrossRefGoogle ScholarPubMed
Davis, DP, Robertson, T, Imbesi, SG. Diffusion-weighted magnetic resonance imaging versus computed tomography in the diagnosis of acute ischemic stroke. J Emerg Med 2006;31:269–77.CrossRefGoogle Scholar
Parikh, T, Drew, SJ, Lee, VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246:812–22.CrossRefGoogle ScholarPubMed
Zech, CJ, Herrmann, KA, Dietrich, O, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Investig Radiol 2008;43:261–6.CrossRefGoogle ScholarPubMed
Zhang, J, Tehrani, YM, Wang, L, et al. Renal masses: characterization with diffusion-weighted MR imaging – a preliminary experience. Radiology 2008;247:458–64.CrossRefGoogle ScholarPubMed
Cova, M, Squillaci, E, Stacul, F, et al. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 2004;77:851–7.CrossRefGoogle ScholarPubMed
Nagata, S, Nishimura, H, Uchida, M, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med 2008;26:287–95.CrossRefGoogle ScholarPubMed
Dietrich, O, Raya, JG, Sommer, J, et al. A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. Eur Radiol 2005;15:772–83.CrossRefGoogle ScholarPubMed
Takahara, T, Imai, Y, Yamashita, T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22:275–82.Google ScholarPubMed
Kwee, TC, Takahara, T, Ochiai, R, et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 2008;18:1937–52.CrossRefGoogle Scholar
Baur, A, Stäbler, A, Brüning, R, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998;207:349–56.CrossRefGoogle ScholarPubMed
Raya, JG, Dietrich, O, Reiser, MF, et al. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imag 2006;24:1207–20.CrossRefGoogle ScholarPubMed
Karchevsky, M, Babb, JS, Schweitzer, ME. Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol 2008;37:791–5.CrossRefGoogle ScholarPubMed
Raya, JG, Dietrich, O, Reiser, MF, et al. Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 2005;55:64–73.CrossRefGoogle ScholarPubMed
Stejskal, EO, Tanner, JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965;42:288–92.CrossRefGoogle Scholar
Norris, DG. Implications of bulk motion for diffusion-weighted imaging experiments: effects, mechanisms, and solutions. J Magn Reson Imag 2001;13:486–95.CrossRefGoogle ScholarPubMed
Bammer, R. Basic principles of diffusion-weighted imaging. Eur J Radiol 2003;45:169–84.CrossRefGoogle ScholarPubMed
Bihan, D, Poupon, C, Amadon, A, et al. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imag 2006;24:478–88.CrossRefGoogle ScholarPubMed
Ordidge, RJ, Helpern, JA, Qing, ZX, et al. Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imag 1994;12:455–60.CrossRefGoogle ScholarPubMed
Anderson, AW, Gore, JC. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 1994;32:379–87.CrossRefGoogle ScholarPubMed
Dietrich, O, Heiland, S, Benner, T, et al. Reducing motion artefacts in diffusion-weighted MRI of the brain: efficacy of navigator echo correction and pulse triggering. Neuroradiology 2000;42:85–91.CrossRefGoogle ScholarPubMed
Gmitro, AF, Alexander, AL. Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med 1993;29:835–8.CrossRefGoogle ScholarPubMed
Dietrich, O, Herlihy, A, Dannels, WR, et al. Diffusion-weighted imaging of the spine using radial k-space trajectories. MAGMA Magn Reson Mater Phys 2001;12:23–31.Google ScholarPubMed
Ward, R, Caruthers, S, Yablon, C, et al. Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. Am J Roentgenol 2000;174:731–4.CrossRefGoogle ScholarPubMed
Spuentrup, E, Buecker, A, Adam, G, et al. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Am J Roentgenol 2001;176:351–8.CrossRefGoogle ScholarPubMed
Gudbjartsson, H, Maier, SE, Mulkern, RV, et al. Line scan diffusion imaging. Magn Reson Med 1996;36:509–19.CrossRefGoogle ScholarPubMed
Maeda, M, Sakuma, H, Maier, SE, et al. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. Am J Roentgenol 2003;181:1203–9.CrossRefGoogle ScholarPubMed
Bammer, R, Herneth, AM, Maier, SE, et al. Line scan diffusion imaging of the spine. Am J Neuroradiol 2003;24:5–12.Google ScholarPubMed
Newitt, DC, Majumdar, S. Reproducibility and dependence on diffusion weighting of line scan diffusion in the lumbar intervertebral discs. J Magn Reson Imag 2005;21:482–8.CrossRefGoogle ScholarPubMed
Carballido-Gamio, J, Xu, D, Newitt, D, et al. Single-shot fast spin-echo diffusion tensor imaging of the lumbar spine at 1.5 and 3 T. Magn Reson Imag 2007;25:665–70.CrossRefGoogle ScholarPubMed
Turner, R, Bihan, D, Maier, J, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990;177:407–14.CrossRefGoogle ScholarPubMed
Schoenberg, SO, Dietrich, O, Reiser, MF. Parallel Imaging in Clinical MR Applications. New York: Springer; 2007.CrossRefGoogle Scholar
Pruessmann, KP, Weiger, M, Scheidegger, MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–62.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Griswold, MA, Jakob, PM, Heidemann, RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–10.CrossRefGoogle Scholar
Jaermann, T, Pruessmann, KP, Valavanis, A, et al. Influence of SENSE on image properties in high-resolution single-shot echo-planar DTI. Magn Reson Med 2006;55:335–42.CrossRefGoogle ScholarPubMed
Brockstedt, S, Moore, JR, Thomsen, C, et al. High-resolution diffusion imaging using phase-corrected segmented echo-planar imaging. Magn Reson Imaging 2000;18:649–57.CrossRefGoogle ScholarPubMed
Norris, DG, Börnert, P, Reese, T, et al. On the application of ultra-fast RARE experiments. Magn Reson Med 1992;27:142–64.CrossRefGoogle ScholarPubMed
Lövblad, KO, Jakob, PM, Chen, Q, et al. Turbo spin-echo diffusion-weighted MR of ischemic stroke. Am J Neuroradiol 1998;19:201–8.Google ScholarPubMed
Schick, F. SPLICE: sub-second diffusion-sensitive MR imaging using a modified fast spin-echo acquisition mode. Magn Reson Med 1997;38:638–44.CrossRefGoogle ScholarPubMed
Alsop, DC. Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med 1997;38:527–33.CrossRefGoogle ScholarPubMed
Roux, P. Non-CPMG fast spin echo with full signal. J Magn Reson 2002;155:278–92.CrossRefGoogle ScholarPubMed
Norris, DG. Selective parity RARE imaging. Magn Reson Med 2007;58:643–9. (Erratum: Magn Reson Med 2008;59:440.)CrossRefGoogle ScholarPubMed
Pipe, JG, Farthing, VG, Forbes, KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42–52. (Erratum: Magn Reson Med 2002;47:621.)CrossRefGoogle ScholarPubMed
Deng, J, Miller, FH, Salem, R, et al. Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Investig Radiol 2006;41:769–75.CrossRefGoogle ScholarPubMed
Zhou, XJ, Leeds, NE, McKinnon, GC, et al. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. Am J Neuroradiol 2002;23:165–70.Google ScholarPubMed
Byun, WM, Shin, SO, Chang, Y, et al. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol 2002;23:906–12.Google ScholarPubMed
Byun, WM, Jang, HW, Kim, SW, et al. Diffusion-weighted magnetic resonance imaging of sacral insufficiency fractures: comparison with metastases of the sacrum. Spine 2007;32:E820–4.CrossRefGoogle ScholarPubMed
Park, SW, Lee, JH, Ehara, S, et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema?Clin Imag 2004;28:102–8.CrossRefGoogle ScholarPubMed
Oner, AY, Tali, T, Celikyay, F, et al. Diffusion-weighted imaging of the spine with a non-Carr–Purcell–Meiboom–Gill single-shot fast spin-echo sequence: initial experience. Am J Neuroradiol 2007;28:575–80.Google ScholarPubMed
Raya, JG, Dietrich, O, Birkenmaier, C, et al. Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine. Eur Radiol 2007;17:2872–9.CrossRefGoogle ScholarPubMed
Tokuda, O, Okada, M, Fujita, T, et al. Correlation between diffusion in lumbar intervertebral disks and lumbar artery status: evaluation with fresh blood imaging technique. J Magn Reson Imag 2007;25:185–91.CrossRefGoogle ScholarPubMed
Gyngell, ML. The application of steady-state free precession in rapid 2DFT NMR imaging: FAST and CE-FAST sequences. Magn Reson Imag 1988;6:415–19.CrossRefGoogle ScholarPubMed
Bruder, H, Fischer, H, Graumann, R, et al. A new steady-state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts. Magn Reson Med 1988;7:35–42.CrossRefGoogle ScholarPubMed
Bihan, D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 1988;7:346–51.CrossRefGoogle ScholarPubMed
Merboldt, KD, Bruhn, H, Frahm, J, et al. MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med 1989;9:423–9.CrossRefGoogle ScholarPubMed
Kaiser, R, Bartholdi, E, Ernst, RR. Diffusion and field-gradient effects in NMR Fourier spectroscopy. J Chem Phys 1974;60:2966–79.CrossRefGoogle Scholar
Wu, EX, Buxton, RB. Effect of diffusion on the steady-state magnetization with pulsed field gradients. J Magn Reson 1990;90:243–53.Google Scholar
Miller, KL, Hargreaves, BA, Gold, GE, et al. Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 2004;51:394–8.CrossRefGoogle ScholarPubMed
Dietrich, O, Heiland, S, Sartor, K. Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 2001;45:448–53.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Tang, G, Liu, Y, Li, W, et al. Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol 2007;36:1035–41.CrossRefGoogle ScholarPubMed
Castillo, M, Arbelaez, A, Smith, JK, et al. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. Am J Neuroradiol 2000;21:948–53.Google ScholarPubMed
Hackländer, T, Scharwächter, C, Golz, R, et al. Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors. Rofo Fortschr Röntgenstr 2006;178:416–24.CrossRefGoogle ScholarPubMed
Baur, A, Huber, A, Ertl-Wagner, B, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. Am J Neuroradiol 2001;22:366–72.Google Scholar
Baur, A, Huber, A, Dürr, HR, et al. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Rofo Fortschr Röntgenstr 2002;174:70–5.CrossRefGoogle ScholarPubMed
Herneth, AM, Naude, J, Philipp, M, et al. The value of diffusion-weighted MRT in assessing the bone marrow changes in vertebral metastases. Radiologe 2000;40:731–6.CrossRefGoogle ScholarPubMed
Chan, JH, Peh, WC, Tsui, EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignnant causes using apparent diffusion coefficients. Br J Radiol 2002;75:207–14.CrossRefGoogle Scholar
Mulkern, RV, Schwartz, RB. In re: characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. Am J Neuroradiol 2003;24:1489–90.Google ScholarPubMed
Bihan, D, Breton, E, Lallemand, D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497–505.CrossRefGoogle ScholarPubMed
Yeung, DK, Wong, SY, Griffith, JF, et al. Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imag 2004;19:222–8.CrossRefGoogle ScholarPubMed
Mürtz, P, Krautmacher, C, Träber, F, et al. Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol 2007;17:3031–7.CrossRefGoogle ScholarPubMed
Koh, DM, Takahara, T, Imai, Y, et al. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007;6:211–24.CrossRefGoogle ScholarPubMed
Kealey, SM, Aho, T, Delong, D, et al. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology 2005;235:569–74.CrossRefGoogle ScholarPubMed
Ludescher, B, Effelsberg, J, Martirosian, P, et al. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imag 2008;28:252–7.CrossRefGoogle Scholar
Beattie, PF, Donley, JW, Arnot, CF, et al. The change in the diffusion of water in normal and degenerative lumbar intervertebral discs following joint mobilization compared to prone lying. J Orthop Sports Phys Ther 2009;39: 4–11.CrossRefGoogle ScholarPubMed
Kerttula, LI, Jauhiainen, JP, Tervonen, O, et al. Apparent diffusion coefficient in thoracolumbar intervertebral discs of healthy young volunteers. J Magn Reson Imag 2000;12:255–60.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Kerttula, L, Kurunlahti, M, Jauhiainen, J, et al. Apparent diffusion coefficients and T2 relaxation time measurements to evaluate disc degeneration: a quantitative MR study of young patients with previous vertebral fracture. Acta Radiol 2001;42:585–91.Google ScholarPubMed
Kurunlahti, M, Kerttula, L, Jauhiainen, J, et al. Correlation of diffusion in lumbar intervertebral disks with occlusion of lumbar arteries: a study in adult volunteers. Radiology 2001;221:779–86.CrossRefGoogle ScholarPubMed
Beattie, PF, Morgan, PS, Peters, D. Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: a new method to potentially quantify the physiologic effect of physical therapy intervention. J Orthop Sports Phys Ther 2008;38:42–9.CrossRefGoogle ScholarPubMed
Yasumoto, M, Nonomura, Y, Yoshimura, R, et al. MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 2002;31:263–9.CrossRefGoogle ScholarPubMed
Abanoz, R, Hakyemez, B, Parlak, M. Diffusion-weighted imaging of acute vertebral compression: differential diagnosis of benign versus malignant pathologic fractures. Tani Girisim Radyol 2003;9:176–83.Google ScholarPubMed
Herneth, AM, Philipp, MO, Naude, J, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 2002;225:889–94.CrossRefGoogle ScholarPubMed
Ballon, D, Watts, R, Dyke, JP, et al. Imaging therapeutic response in human bone marrow using rapid whole-body MRI. Magn Reson Med 2004;52:1234–8.CrossRefGoogle ScholarPubMed
Pui, MH, Mitha, A, Rae, WI, et al. Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 2005;15:164–70.CrossRefGoogle ScholarPubMed
Gašperši, N, Sersa, I, Jevtic, V, et al. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol 2008;37:123–31.CrossRefGoogle Scholar
Bozgeyik, Z, Ozgocmen, S, Kocakoc, E. Role of diffusion-weighted MRI in the detection of early active sacroiliitis. Am J Roentgenol 2008;191:980–6.CrossRefGoogle ScholarPubMed
Balliu, E, Vilanova, JC, Peláez, I, et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 2009;69:560–6.CrossRefGoogle ScholarPubMed
Griffith, JF, Yeung, DK, Antonio, GE, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006;241:831–8.CrossRefGoogle ScholarPubMed
Hatipoglu, HG, Selvi, A, Ciliz, D, et al. Quantitative and diffusion MR imaging as a new method to assess osteoporosis. Am J Neuroradiol 2007;28:1934–7.CrossRefGoogle ScholarPubMed
Sugimoto, T, Tanigawa, N, Ikeda, K, et al. Diffusion-weighted imaging for predicting new compression fractures following percutaneous vertebroplasty. Acta Radiol 2008;49:419–26.CrossRefGoogle ScholarPubMed
Ballon, D, Dyke, J, Schwartz, LH, et al. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR Biomed 2000;13:321–8.3.0.CO;2-P>CrossRefGoogle Scholar
Nonomura, Y, Yasumoto, M, Yoshimura, R, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imag 2001;13:757–60.CrossRefGoogle ScholarPubMed
Ragin, AB, Wu, Y, Storey, P, et al. Bone marrow diffusion measures correlate with dementia severity in HIV patients. Am J Neuroradiol 2006;27: 89–92.Google ScholarPubMed
Moon, WJ, Lee, MH, Chung, EC. Diffusion-weighted imaging with sensitivity encoding (SENSE) for detecting cranial bone marrow metastases: comparison with T1-weighted images. Korean J Radiol 2007;8:185–91.CrossRefGoogle ScholarPubMed
Niinimäki, J, Korkiakoski, A, Parviainen, O, et al. Association of lumbar artery narrowing, degenerative changes in disc and endplate and apparent diffusion in disc on postcontrast enhancement of lumbar intervertebral disc. MAGMA Magn Reson Mater Phys 2009;22:101–9.CrossRefGoogle Scholar
Niinimäki, J, Korkiakoski, A, Ojala, O, et al. Association between visual degeneration of intervertebral discs and the apparent diffusion coefficient. Magn Reson Imag 2009;27:641–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×