Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-26T05:08:07.085Z Has data issue: false hasContentIssue false

2 - Diffusion-weighted MRI of the liver

Published online by Cambridge University Press:  10 November 2010

Bachir Taouli
Affiliation:
Mount Sinai School of Medicine, New York
Get access

Summary

Introduction

With recent advances in technology, diffusion-weighted MRI (DWI) is reaching potential for clinical use in the abdomen, particularly for the assessment of focal and diffuse liver diseases. DWI is an attractive technique for multiple reasons:

  • It can potentially add useful information to conventional imaging sequences.

  • It is quick (it could be performed within a breath-hold) and can be easily incorporated to existing protocols.

  • It does not require intravenous contrast administration, thus is easy to repeat, and useful in patients with severe renal dysfunction at risk of nephrogenic systemic fibrosis (NSF).

This chapter will discuss the applications of DWI applied for the diagnosis of diffuse and focal liver diseases.

Liver diffusion imaging acquisition and processing

DWI acquisition techniques

Single-shot echo-planar imaging (SS EPI) is the most frequently used sequence in combination with fat-suppression (e.g., spectral attenuated inversion recovery or chemical excitation with spectral suppression). Most diffusion studies have been conducted on 1.5-T MR systems, although there is a growing interest in performing such studies with 3-T systems due to increased availability and potential for improved image quality. DWI of the liver is usually performed prior to contrast material administration, although performing DWI after the administration of gadolinium-DTPA did not appear to significantly affect apparent diffusion coefficient (ADC) calculations in a prior study.

Imaging may be performed in breath-hold which attempts to freeze motion or in free breathing with multiple signal averaging to reduce the effects of motion. Image acquisition in free breathing may also be combined with respiratory triggering.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stehling, MK, Turner, R, Mansfield, P.Echo-planar imaging – magnetic-resonance imaging in a fraction of a second. Science 1991;254 (5028):43–50.CrossRefGoogle Scholar
Butts, K, Riederer, SJ, Ehman, RL, Felmlee, JP, Grimm, RC.Echo-planar imaging of the liver with a standard MR imaging system. Radiology 1993;189 (1):259–64.CrossRefGoogle ScholarPubMed
Turner, R, Bihan, D, Chesnick, AS.Echo-planar imaging of diffusion and perfusion. Magn Reson Med 1991;19 (2):247–53.CrossRefGoogle ScholarPubMed
Turner, R, Bihan, D, Maier, J, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990;177 (2):407–14.CrossRefGoogle ScholarPubMed
Braithwaite, AC, Dale, BM, Boll, DT, Merkle, EM.Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 2009;250 (2):459–65.CrossRefGoogle Scholar
Bos, IC, Hussain, SM, Krestin, GP, Wielopolski, PA.Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study. Radiology 2008;248 (1):264–71.Google Scholar
Chiu, FY, Jao, JC, Chen, CY, et al. Effect of intravenous gadolinium-DTPA on diffusion-weighted magnetic resonance images for evaluation of focal hepatic lesions. J Comput Assist Tomogr 2005;29 (2):176–80.CrossRefGoogle ScholarPubMed
Taouli, B, Sandberg, A, Stemmer, A, et al. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imag 2009;30 (3):561–8.CrossRefGoogle ScholarPubMed
Kandpal, H, Sharma, R, Madhusudhan, KS, Kapoor, KS.Respiratory-triggered versus breath-hold diffusion-weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. Am J Roentgenol 2009;192 (4):915–22.CrossRefGoogle ScholarPubMed
Kwee, TC, Takahara, T, Ochiai, R, Nievelstein, RA, Luijten, PR.Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 2008;18 (9):1937–52.CrossRefGoogle Scholar
Parikh, T, Drew, SJ, Lee, VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246 (3):812–22.CrossRefGoogle ScholarPubMed
Nasu, K, Kuroki, Y, Fujii, H, Minami, M.Hepatic pseudo-anisotropy: a specific artifact in hepatic diffusion-weighted images obtained with respiratory triggering. Magma 2007;20 (4):205–11.CrossRefGoogle ScholarPubMed
Nasu, K, Kuroki, Y, Sekiguchi, R, Nawano, S.The effect of simultaneous use of respiratory triggering in diffusion-weighted imaging of the liver. Magn Reson Med Sci 2006;5 (3):129–36.CrossRefGoogle ScholarPubMed
Kwee, TC, Takahara, T, Koh, DM, Nievelstein, RA, Luijten, PR.Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imag 2008;28 (5):1141–8.CrossRefGoogle ScholarPubMed
Bazelaire, CM, Duhamel, GD, Rofsky, NM, Alsop, DC.MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004;230 (3):652–9.CrossRefGoogle Scholar
Okada, Y, Ohtomo, K, Kiryu, S, Sasaki, Y.Breath-hold T2-weighted MRI of hepatic tumors: value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr 1998;22 (3):364–71.CrossRefGoogle ScholarPubMed
Hussain, SM, Becker, J, Hop, WC, Dwarkasing, S, Wielopolski, PA.Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study. J Magn Reson Imag 2005;21 (3):219–29.CrossRefGoogle ScholarPubMed
Kim, T, Murakami, T, Takahashi, S, Hori, M, Tsuda, K, Nakamura, H.Diffusion-weighted single-shot echoplanar MR imaging for liver disease. Am J Roentgenol 1999;173 (2):393–8.CrossRefGoogle ScholarPubMed
Taouli, B, Vilgrain, V, Dumont, E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003;226 (1):71–8.CrossRefGoogle ScholarPubMed
Bihan, D, Poupon, C, Amadon, A, Lethimonnier, F.Artifacts and pitfalls in diffusion MRI. J Magn Reson Imag 2006;24 (3):478–88.CrossRefGoogle ScholarPubMed
Pruessmann, KP, Weiger, M, Scheidegger, MB, Boesiger, P.SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42 (5):952–62.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Niendorf, T, Dijkhuizen, RM, Norris, DG, Lookeren Campagne, M, Nicolay, K.Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996;36 (6):847–57.CrossRefGoogle ScholarPubMed
Assaf, Y, Cohen, Y.Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 1998;131 (1):69–85.CrossRefGoogle ScholarPubMed
Bihan, D, Breton, E, Lallemand, D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168 (2):497–505.CrossRefGoogle ScholarPubMed
Yamada, I, Aung, W, Himeno, Y, Nakagawa, T, Shibuya, H.Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999;210 (3):617–23.CrossRefGoogle ScholarPubMed
Luciani, A, Vignaud, A, Cavet, M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging – pilot study. Radiology 2008;249 (3):891–9.CrossRefGoogle ScholarPubMed
Patel, J, Sigmund, EE, Rusinek, H, et al. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imag 2010;31 (3):589–600.CrossRefGoogle ScholarPubMed
Gudbjartsson, H, Patz, S.The Rician distribution of noisy MRI data. Magn Reson Med 1995;34 (6):910–14.CrossRefGoogle ScholarPubMed
Nasu, K, Kuroki, Y, Nawano, S, et al. Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 2006;239 (1):122–30.CrossRefGoogle ScholarPubMed
Coenegrachts, K, Delanote, J, Beek, L, et al. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol 2007;80 (955):524–31.CrossRefGoogle ScholarPubMed
Bruegel, M, Gaa, J, Waldt, S, et al. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five T2-weighted turbo spin-echo sequences. Am J Roentgenol 2008;191 (5):1421–9.CrossRefGoogle ScholarPubMed
Zech, CJ, Herrmann, KA, Dietrich, O, et al. Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Investig Radiol 2008;43 (4):261–6.CrossRefGoogle ScholarPubMed
Koh, DM, Brown, G, Riddell, AM, et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol 2008;18 (5):903–10.CrossRefGoogle ScholarPubMed
Hardie, AD, Naik, M, Hecht, EM, et al. Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol 2010;20:1431–41.CrossRefGoogle ScholarPubMed
Nishie, A, Tajima, T, Ishigami, K, et al. Detection of hepatocellular carcinoma (HCC) using super paramagnetic iron oxide (SPIO)-enhanced MRI: added value of diffusion-weighted imaging (DWI). J Magn Reson Imag 2010;31 (2):373–82.CrossRefGoogle Scholar
Xu, PJ, Yan, FH, Wang, JH, Lin, J, Ji, Y.Added value of breathhold diffusion-weighted MRI in detection of small hepatocellular carcinoma lesions compared with dynamic contrast-enhanced MRI alone using receiver operating characteristic curve analysis. J Magn Reson Imag 2009;29 (2):341–9.CrossRefGoogle ScholarPubMed
Bruegel, M, Holzapfel, K, Gaa, J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 2008;18 (3):477–85.CrossRefGoogle ScholarPubMed
Gourtsoyianni, S, Papanikolaou, N, Yarmenitis, S, et al. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 2008;18 (3):486–92.CrossRefGoogle ScholarPubMed
Muhi, A, Ichikawa, T, Motosugi, U, et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imag 2009;30 (5):1005–11.CrossRefGoogle ScholarPubMed
Aube, C, Racineux, PX, Lebigot, J, et al. Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results. J Radiol 2004;85 (3):301–6.Google ScholarPubMed
Taouli, B, Tolia, AJ, Losada, M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. Am J Roentgenol 2007;189 (4):799–806.CrossRefGoogle ScholarPubMed
Lewin, M, Poujol-Robert, A, Boelle, PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 2007;46 (3):658–65.CrossRefGoogle ScholarPubMed
Sandrasegaran, K, Akisik, FM, Lin, C, et al. Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis. Am J Roentgenol 2009;193 (6):1556–60.CrossRefGoogle ScholarPubMed
Koh, DM, Scurr, E, Collins, D, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. Am J Roentgenol 2007;188 (4):1001–8.CrossRefGoogle ScholarPubMed
Cui, Y, Zhang, XP, Sun, YS, Tang, L, Shen, L.Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008;248 (3):894–900.CrossRefGoogle ScholarPubMed
Kamel, IR, Bluemke, DA, Ramsey, D, et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. Am J Roentgenol 2003;181 (3):708–10.CrossRefGoogle ScholarPubMed
Deng, J, Miller, FH, Rhee, TK, et al. Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Intervent Radiol 2006;17 (7):1195–200.CrossRefGoogle ScholarPubMed
Kamel, IR, Liapi, E, Reyes, DK, et al. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology 2009;250 (2):466–73.CrossRefGoogle ScholarPubMed
Mannelli, L, Kim, S, Hajdu, CH, et al. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. Am J Roentgenol 2009;193 (4):1044–52.CrossRefGoogle ScholarPubMed
Taouli, B, Koh, DM.Diffusion-weighted MR imaging of the liver. Radiology 2010;254 (1):47–66.CrossRefGoogle ScholarPubMed
Bammer, R, Auer, M, Keeling, SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002;48 (1):128–36.CrossRefGoogle ScholarPubMed
Bammer, R, Keeling, SL, Augustin, M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 2001;46 (3):548–54.CrossRefGoogle Scholar
Taouli, B, Martin, AJ, Qayyum, A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. Am J Roentgenol 2004;183 (3):677–80.CrossRefGoogle ScholarPubMed
Dale, BM, Braithwaite, AC, Boll, DT, Merkle, EM.Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Investig Radiol 2010;45 (2):104–8.CrossRefGoogle ScholarPubMed
Lee, VS, Hecht, EM, Taouli, B, et al. Body and cardiovascular MR imaging at 3.0 T. Radiology 2007;244 (3):692–705.CrossRefGoogle ScholarPubMed
Barth, MM, Smith, MP, Pedrosa, I, Lenkinski, RE, Rofsky, NM.Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 2007;27 (5):1445–62; discussion 62–4.CrossRefGoogle Scholar
Deng, J, Miller, FH, Salem, R, Omary, RA, Larson, AC.Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Investig Radiol 2006;41 (10):769–75.CrossRefGoogle ScholarPubMed
Deng, J, Omary, RA, Larson, AC.Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008;59 (5):947–53.CrossRefGoogle ScholarPubMed
Hagiwara, M, Rusinek, H, Lee, VS, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging: initial experience. Radiology 2008;246 (3):926–34.CrossRefGoogle ScholarPubMed
Talwalkar, JA.Elastography for detecting hepatic fibrosis: options and considerations. Gastroenterology 2008;135 (1):299–302.CrossRefGoogle ScholarPubMed
Bammer, R.Basic principles of diffusion-weighted imaging. Eur J Radiol 2003;45 (3):169–84.CrossRefGoogle ScholarPubMed
Bammer, R, Augustin, M, Strasser-Fuchs, S, et al. Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 2000;44 (4):583–91.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Chepuri, NB, Yen, YF, Burdette, JH, et al. Diffusion anisotropy in the corpus callosum. Am J Neuroradiol 2002;23 (5):803–8.Google ScholarPubMed
Dong, Q, Welsh, RC, Chenevert, TL, et al. Clinical applications of diffusion tensor imaging. J Magn Reson Imag 2004;19 (1):6–18.CrossRefGoogle ScholarPubMed
Bihan, D, Mangin, JF, Poupon, C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag 2001;13 (4):534–46.CrossRefGoogle ScholarPubMed
Pierpaoli, C, Jezzard, P, Basser, PJ, Barnett, A, Di Chiro, G.Diffusion tensor MR imaging of the human brain. Radiology 1996;201 (3):637–48.CrossRefGoogle ScholarPubMed
Taber, KH, Pierpaoli, C, Rose, SE, et al. The future for diffusion tensor imaging in neuropsychiatry. J Neuropsychiatry Clin Neurosci 2002;14 (1):1–5.CrossRefGoogle ScholarPubMed
Namimoto, T, Yamashita, Y, Sumi, S, Tang, Y, Takahashi, M.Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997;204 (3):739–44.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×