Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T10:12:28.537Z Has data issue: false hasContentIssue false

17 - Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

Many xenobiotic chemicals introduced into the environment for agricultural and industrial use are nitro-substituted aromatics. Nitro groups in the aromatic ring are often implicated as the cause of the persistence and toxicity of such compounds. Nitroaromatic compounds enter soil, water, and food by several routes, such as use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. The nitroaromatic compound, trinitrotoluene (TNT) is introduced into soil and water ecosystems mainly by military activities such as the manufacture, loading, and disposal of explosives and propellants. This contamination problem may increase in future because of the demilitarization and disposal of unwanted weapons systems.

Biotransformation of TNT and other nitroaromatics by aerobic bacteria in the laboratory has been reported frequently (Boopathy et al., 1994a; 1994b; Dickel and Knackmuss, 1991; Duque et al., 1993; Funk et al., 1993; McCormick et al., 1976; 1981; Nishino and Spain, 1993; Spain and Gibson, 1991; Zeyer and Kearney, 1984). Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. has been reported to occur via 4-methyl-5-nitrocatechol in a dioxygenase-mediated reaction (Spanggord et al., 1991). Duque et al. (1993) successfully constructed a Pseudomonas hybrid strain that mineralized TNT. White rot fungus has been shown to mineralize radiolabelled TNT (Fernando et al., 1990). The work of Spiker et al. (1992) showed that Phanerochaete chrysosporium is not a good candidate for bioremediation of TNT contaminated sites containing high concentration of explosives because of its high sensitivity to contaminants.

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 483 - 502
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angermeier, L. and Simon, H. (1983). On the reduction of aliphatic and aromatic nitro compounds by Clostridia, the role of ferredoxin and its stabilization. Hoppe Seyler's Z. Physiol Chem, 366, 961–75CrossRefGoogle Scholar
Bak, F. and Widdel, F. (1986). Anaerobic degradation of indolic compounds by sulphate reducing enrichment cultures and description of Desulfobacterium indolicum gen. nov. sp. nov. Archiv Microbiol, 146, 170–6CrossRefGoogle Scholar
Battersby, N. S. and Wilson, V. (1989). Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl Environ Microbiol, 55, 433–9Google ScholarPubMed
Beller, H. R., Grbic-Galic, D. and Reinhard, D. (1992). Microbial degradation of toluene under sulphate reducing conditions and the influence of iron on the process. Appl Environ Microbiol, 58, 786–93Google ScholarPubMed
Berry, D. F., Francis, A. F. and Bellag, J. M. (1987). Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Archiv Microbiol, 112, 115–17Google Scholar
Boopathy, R. (1994). Transformation of nitroaromatic compounds by a methanogenic bacterium Methanococcus sp. (strain B). Archiv Microbiol, 162, 167–72CrossRefGoogle Scholar
Boopathy, R. (2000). Bioremediation of explosives contaminated soil. Internat Biodet Biodegrad, 46, 29–36CrossRefGoogle Scholar
Boopathy, R. (2001). Bioremediation of HMX-contaminated soil using soil slurry reactors. Soil Sedi Contam, 10, 269–83CrossRefGoogle Scholar
Boopathy, R. (2002). Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. J Hazard Material, 92, 103–14CrossRefGoogle ScholarPubMed
Boopathy, R. and Daniels, L. (1991). Isolation and characterization of a furfural degrading sulphate reducing bacterium isolated from an anaerobic digester. Curr Microbiol, 23, 327–32CrossRefGoogle Scholar
Boopathy, R. and Kulpa, C. F. (1992). Trinitrotoluene (TNT) as a sole nitrogen source for a sulphate reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr Microbiol, 25, 235–41CrossRefGoogle Scholar
Boopathy, R. and Kulpa, C. F. (1993). Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain). Can J Microbiol, 39, 430–433CrossRefGoogle Scholar
Boopathy, R., Kulpa, C. F. and Wilson, M. (1993a). Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl Microbiol Biotechnol, 39, 270–5CrossRefGoogle Scholar
Boopathy, R., Wilson, M., Montemagno, C., Manning, J. and Kulpa, C. F. (1994b). Biological transformation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT-contaminated soil. Biores Technol, 47, 19–24CrossRefGoogle Scholar
Boopathy, R. and Kulpa, C. F. (1994). Biotransformation of 2,4,6-trinitrotoluene by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol, 40, 273–8CrossRefGoogle Scholar
Boopathy, R. and Manning, J. F. (1996). Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulphate-reducing bacterial consortium. Can J Microbiol, 42, 1203–8CrossRefGoogle Scholar
Boopathy, R., Manning, J. and Kulpa, C. F. (1998). A laboratory study of the bioremediation of 2,4,6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor. Wat Environ Res, 70, 80–6CrossRefGoogle Scholar
Boopathy, R., Manning, J., Montemagno, C. and Kulpa, C. F. (1994a). Metabolism of 2,4,6-trinitrotoluene by a Pseudomonas consortium under aerobic conditions. Curr Microbiol, 28, 131–7CrossRefGoogle Scholar
Boopathy, R., Wilson, M. and Kulpa, C. F. (1993b). Anaerobic removal of 2,4,6-trinitrotoluene under different electron accepting conditions: Laboratory study. Wat Environ Res, 65, 271–5CrossRefGoogle Scholar
Boyd, S. A., Shelton, D. R., Berry, D. and Tiedje, J. M. (1983). Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol, 46, 50–4Google ScholarPubMed
Bruhn, C., Lenke, H. and Knackmuss, H. J. (1987). Nitro substituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol, 53, 208–10Google Scholar
Carpenter, D. F., McCormick, N. G., Cornell, J. H. and Kaplan, A. M. (1978). Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in activated sludge system. Appl Environ Microbiol, 35, 949–54Google ScholarPubMed
Dickel, O. and Knackmuss, H. J. (1991). Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Archiv Microbiol, 157, 76–9CrossRefGoogle ScholarPubMed
Duque, E., Haidour, A., Godoy, F. and Ramos, J. L. (1993). Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacter, 175, 2278–83CrossRefGoogle ScholarPubMed
Edwards, E. A., Wills, L. E., Reinhard, M. and Grbic-Galic, D. (1992). Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulphate reducing conditions. Appl Environ Microbiol, 58, 794–800Google Scholar
Evans, W. C. and Fuchs, F. (1987). Anaerobic degradation of aromatic compounds. Ann Rev Microbiol, 42, 289–317CrossRefGoogle Scholar
Fernando, T., Bumpus, J. A. and Aust, S. D. (1990). Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol, 56, 1666–71Google ScholarPubMed
Fewson, C. A. (1981). Biodegradation of aromatics with industrial relevance. In Leisenger, T., Cook, A. M., Huttler, R. and Nuesch, J. (eds.), Microbial degradation of xenobiotics and recalcitrant compounds. London: Academic Press. pp. 141–79.Google Scholar
Funk, S. B., Roberts, D. J., Crawford, D. L. and Crawford, R. L. (1993). Initial-phase optimization for bioremediation of munitions compounds-contaminated soils. Appl Environ Microbiol, 59, 2171–7Google Scholar
Geissler, J. F., Harwood, C. S. and Gibson, J. (1988). Purification and properties of benzoate coenzyme. A. ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacter, 170, 1709–14CrossRefGoogle ScholarPubMed
Gorontzy, T., Kuver, J. and Blotevogel, K. H. (1993). Microbial transformation of nitroaromatic compounds under anaerobic conditions. J Gen Microbiol, 139, 1331–6CrossRefGoogle ScholarPubMed
Haigler, B. E. and Spain, J. C. (1993). Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl Environ Microbiol, 59, 2239–43Google ScholarPubMed
Hallas, L. and Alexander, M. (1983). Microbial transformation of nitroaromatic compounds in sewage effluents. Appl Environ Microbiol, 57, 3156–62Google Scholar
Harwood, C. S. and Gibson, J. (1986). Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacter, 165, 504–9CrossRefGoogle ScholarPubMed
Holland, K. T., Knapp, J. S. and Shoesmith, J. G. (1987). Anaerobic bacteria. New York: Chapman and Hall.CrossRefGoogle Scholar
Kaplan, D. L. and Kaplan, A. M. (1982). Mutagenicity of 2,4,6-trinitotoluene surfactant complexes. Bulletin Environ Contam Toxicol, 28, 33–8CrossRefGoogle ScholarPubMed
Keith, S. M. and Herbert, R. A. (1983). Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans. FEMS Microbiol Lett, 18, 55–9CrossRefGoogle Scholar
Knoll, G. and Winter, J. (1989). Degradation of phenol via carboxylation of benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl Microbiol Biotechnol, 30, 318–24CrossRefGoogle Scholar
LeGall, J. and Fauque, G. (1988). Dissimilatory reduction of sulfur compounds. In Zehnder, A. J. B (ed.), Biology of anaerobic microorganisms. New York: John Wiley and Sons. pp 587–639.Google Scholar
Liu, M. C. and Peck, H.D. (1981). The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. Jour Biol Chem, 256, 13159–64Google ScholarPubMed
Liu, M. C. and Peck, H. D. (1988). Ammonia forming dissimilatory nitrite reductases as a homologous group of hexaheme-c-type cytochromes in metabolically diverse bacteria. In Kauf, K., Dohren, K. and Peck, H. D. (eds.), The roots of modern biochemistry. Berlin: Walter de Gruyter and Co. pp. 685–91.Google Scholar
McCormick, N., Feeherry, F. E. and Levinson, H. S. (1976). Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol, 31, 949–58Google ScholarPubMed
McCormick, N. G., Cornell, J. H. and Kaplan, A. M. (1981). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol, 42, 817–23Google ScholarPubMed
Michels, J. and Gottschalk, G. (1994). Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl Environ Microbiol, 60, 187–94Google ScholarPubMed
Naumova, P. R., Selivanovskay, S. Y. and Mingatina, F. A. (1986) Possibility of deep bacterial destruction of 2,4,6-trinitrotoluene. Mikrobiologiya, 57, 218–22Google Scholar
Nishino, S. F. and Spain, J. C. (1993). Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol, 59, 2520–5Google ScholarPubMed
Preuss, A., Fimpel, J. and Diekert, G. (1993). Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Archiv Microbiol, 159, 345–53CrossRefGoogle Scholar
Schnell, S., Bak, F. and Pfennig, N. (1989). Anaerobic degradation of aniline and dihydroxy-benzenes by newly isolated sulphate reducing bacteria and description of Desulfobacterium anilini. Archiv Microbiol, 152, 556–63CrossRefGoogle Scholar
Schnell, S. and Schink, B. (1991). Anaerobic aniline degradation via reductive deamination of 4-amino-benzoyl CoA in Desulfobacterium anilini. Archiv Microbiol, 155, 183–90CrossRefGoogle Scholar
Schnell, S. and Schink, B. (1992). Anaerobic degradation of 3-aminobenzoate by a newly isolated sulphate reducer and a methanogenic enrichment culture. Archiv Microbiol, 158, 328–34CrossRefGoogle Scholar
Spain, J. C. and Gibson, D. T. (1991). Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol, 57, 812–19Google Scholar
Spanggord, R. J., Spain, J. C., Nishino, S. F. and Mortelmans, K. E. (1991). Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol, 57, 3200–5Google ScholarPubMed
Spiker, J. K., Crawford, D. L. and Crawford, R. L. (1992). Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 58, 3199–202Google ScholarPubMed
Steenkamp, D. J. and Peck, H. D. (1981). On the proton translocation association with nitrite respiration in Desulfovibrio desulfuricans. Jour Biol Chem, 256, 5450–8Google Scholar
Szewzyk, U. and Schink, B. (1989). Degradation of hydroquinone, gentisate and benzoate by a fermenting bacterium in pure or defined mixed culture. Archiv Microbiol, 151, 541–5CrossRefGoogle Scholar
Tschech, A. (1989). Der anaerobe annau von aromatischen verbindungen. Forum Mikrobiol, 12, 251–61Google Scholar
Tschech, A. and Fuch, G. (1989). Anaerobic degradation of phenol via carboxylation to 4-hydroxy benzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Archiv Microbiol, 152, 594–9CrossRefGoogle Scholar
Tschech, A. and Schink, B. (1986). Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Archiv Microbiol, 145, 396–402CrossRefGoogle Scholar
Tschech, A. and Schink, B. (1988). Methanogenic degradation of anthranilate (2-aminobenzoate). Syst. Appl. Microbiol, 11, 9–12CrossRefGoogle Scholar
Valli, K., Brock, B. J., Joshi, D. K. and Gold, M. H. (1992). Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 58, 221–8Google ScholarPubMed
Vega, J. M. and Kamin, H. (1977). Spinach nitrite reductase. Purification and properties of a siroheme-containing iron-sulfur enzyme. Jour Biol Chem, 252, 896–909Google ScholarPubMed
Widdel, F. (1988). Microbiology and Ecology of sulphate and sulfur reducing bacteria. In Zehnder, A. J. B. (ed.), Biology of anaerobic microorganisms. New York: John Wiley and Sons. pp 469–585.Google Scholar
Widdel, F. and Hansen, T. A. (1992). The dissimilatory sulphate and sulfur reducing bacteria. In Balows, A., Truper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H. (eds.), The Prokaryotes. 2nd edn. New York: Springer Verlag. pp 583–624.CrossRefGoogle Scholar
Won, D. W., Disalvo, L. H. and Ng, J. (1974). Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol, 31, 576–80Google Scholar
Wyman, J. F., Guard, H. E., Won, W. D. and Quay, J. H. (1979). Conversion of trinitrophenol to a mutagen by Pseudomonas aeruginosa. Appl Environ Microbiol, 37, 222–6Google ScholarPubMed
Zeigler, K., Braun, K., Bockler, A. and Fuchs, G. (1987). Studies on the anaerobic degradation of benzoic acid and 2-aminobenzoic acid by a denitrifying Pseudomonas strain. Archiv Microbiol, 149, 62–9CrossRefGoogle Scholar
Zeyer, J. and Kearney, P. C. (1984). Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. Jour Agri Food Chem, 32, 238–42CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×