Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-04-30T13:25:45.956Z Has data issue: false hasContentIssue false

11 - The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

GENERAL INTRODUCTION

Approximately 70% of the Earth's environment is marine, which includes substantial sediment deposits, some of which can be greater than 10 km in depth (Fowler, 1990). Although these sediments contain the largest global organic carbon reservoir (∼15 000 × 1018 g C, Hedges and Keil, 1995), apart from shallow margin sediments (to 200 m water depth), they have been considered to be relatively biogeochemically inactive. For example, Jørgensen (1983) calculated that margin sediments accounted for 83% of global marine sediment oxygen uptake whilst only representing 8.6% of global sediment area. In contrast, deeper sediments (200 to >4000 m water depths), despite being ∼91% of marine sediment area, accounted for only 17% of global oxygen uptake. The situation was considered even more extreme for rates of sulphate reduction, with this being responsible for, respectively, 50% and 0% of all organic matter being degraded in margin and deep water sediments (>4000 m water depths) (Jørgensen, 1983). This low activity was consistent with results demonstrating the limited depth distribution of prokaryotic populations in deep sediments. Morita and ZoBell (1955) concluded that the marine biosphere ended at 7.47 m deep, based on their inability to culture bacteria at this or greater depths. Reports of prokaryotes being isolated from deeper sediments were considered to be contaminants introduced during sampling, or dormant organisms being re-activated (ZoBell, 1938).

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 329 - 358
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R., Hobart, M. and Langseth, M. (1979). Geothermal convection through oceanic crust and sediments in the Indian Ocean. Science, 204, 828–32CrossRefGoogle ScholarPubMed
Bach, W. and Edwards, K. J. (2003). Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. et Cosmochim. Acta., 67, 3871–87CrossRefGoogle Scholar
Baker, B. J., Moser, D. P., MacGregor, B. J.et al. (2003). Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ. Microbiol., 5, 267–77CrossRefGoogle ScholarPubMed
Bale, S. J., Goodman, K., Rochelle, P. A.et al. (1997). Desulfovibrio profundus sp. nov., a novel barophilic sulphate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol., 47, 515–21CrossRefGoogle Scholar
Barnes, S. P., Bradbrook, S. D., Cragg, B. A.et al. (1998). Isolation of sulphate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J., 15, 67–83CrossRefGoogle Scholar
Basso, O., Caumette, P. and Magot, M. (2005). Desulfovibrio putealis sp. nov., a novel sulphate-reducing bacterium isolated from a deep subsurface aquifer. Int. J. Syst. Evol. Microbiol., 55, 101–4CrossRefGoogle Scholar
Bekins, B. A., Godsy, E. M. and Warren, E. (1999). Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol., 37, 263–75CrossRefGoogle Scholar
Bidle, K. A., Kastner, M. and Bartlett, D. H. (1999). A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia Margin (ODP site 892B). FEMS Microbiol. Lett., 177, 101–8CrossRefGoogle Scholar
Boetius, A., Ravenschlag, K., Schubert, C. J.et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6CrossRefGoogle ScholarPubMed
Boivin-Jahns, V., Ruimy, R., Bianchi, A., Daumas, S. and Christen, R. (1996). Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol., 62, 3405–12Google Scholar
Bottrell, S. H., Parkes, R. J., Cragg, B. A. and Raiswell, R. (2000). Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. J. Geol. Soc., 157, 711–14CrossRefGoogle Scholar
Bradbrook, S. D. (2000). Physiological, metabolic, and genetic characteristics of sulphate-reducing bacteria from deep-sediment layers of the Cascadia Margin (ODP Leg 146). PhD thesis, University of Bristol.
Canfield, D. E. (1991). Sulphate reduction in deep-sea sediments. Am. J. Sci., 291, 177–88CrossRefGoogle ScholarPubMed
Chapelle, F. H. and Bradley, P. M. (1996). Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments. Geology, 24, 925–82.3.CO;2>CrossRefGoogle Scholar
Colwell, F. S., Onstott, T. C., Delwiche, M. E.et al. (1997). Microorganisms from deep, high temperature sandstones: Constraints on microbial colonization. FEMS Microbiol. Rev., 20, 425–35CrossRefGoogle Scholar
Coolen, M. J. L., Cypionka, H., Sass, A. M., Sass, H. and Overmann, J. (2002). Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science, 296, 2407–10CrossRefGoogle ScholarPubMed
Cowen, J. P., Giovannoni, S. J., Kenig, F.et al. (2003). Fluids from ageing ocean crust that support microbial life. Science, 299, 120–3CrossRefGoogle ScholarPubMed
Cragg, B. A., Harvey, S. M., Fry, J. C., Herbert, R. A. and Parkes, R. J. (1992). Bacterial biomass and acyivity in the deep sediment layers of the Japan Sea, Hole 798B. Proc. ODP Sci. Res., 127/128, 761–76Google Scholar
Cragg, B. A., Law, K. M., Cramp, A. and Parkes, R. J. (1997). Bacterial profiles in Amazon Fan sediments (Sites 934, 940). Proc. ODP Sci. Res., 155, 565–71Google Scholar
Cragg, B. A., Law, K. M., Cramp, A. and Parkes, R. J. (1998). The response of bacterial populations to sapropels in deep sediments of the Eastern Medierranean (Site 969). Proc. ODP Sci. Res., 160, 303–7Google Scholar
Cragg, B. A., Parkes, R. J., Fry, J. C.et al. (1996). Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet. Sci. Lett., 139, 497–507CrossRefGoogle Scholar
Cragg, B. A., Parkes, R. J., Fry, J. C.et al. (1995). The impact of fluid and gas venting on bacterial populations and processes in sediments from the Cascadia Margin Accretionary System (Sites 888–892) and the geochemical consequences. Proc. ODP Sci. Res., 146, 399–411Google Scholar
Cragg, B. A., Wellsbury, P., Murray, R. W. and Parkes, R. J. (2003). Bacterial populations in deep-water, low-sedimentation-rate marine sediments and evidence for subsurface bacterial manganese reduction (ODP Site 1149 Izu-Bonin Trench). Proc. ODP Sci. Res., v. Vol. 185, online, http://www-odp.tamu.edu/publications/185_SR/008/008.htm.Google Scholar
Daumas, S., Cord-Ruwisch, R. and Garcia, J. L. (1988). Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulphate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek, 54, 165–78CrossRefGoogle Scholar
D'Hondt, S., Jørgensen, B. B., Miller, D. J.et al. (2004). Distributions of microbial activities in deep subseafloor sediments. Science, 306, 2216–21CrossRefGoogle ScholarPubMed
D'Hondt, S., Rutherford, S. and Spivack, A. J. (2002). Metabolic activity of subsurface life in deep-sea sediments. Science, 295, 2067–70CrossRefGoogle ScholarPubMed
Dickens, G. R., Paull, C. K., Wallace, P. and the ODP Leg 164 Scientific Party. (1997). Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 385, 426–8CrossRefGoogle Scholar
Egeberg, P. K. and Barth, T. (1998). Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge). Chem. Geol., 149, 25–35CrossRefGoogle Scholar
Fisk, M. R., Giovannoni, S. J. and Thorseth, I. H. (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281, 978–80CrossRefGoogle ScholarPubMed
Fowler, C. M. R. (1990). The solid earth, an introduction to global geophysics. Cambridge: Cambridge University Press.Google Scholar
Fry, N. K., Frederikson, J. K., Fishbain, S., Wagner, M. and Stahl, D. A. (1997). Population structure of microbial communities associated with two deep, anaerobic alkaline aquifers. Appl. Environ. Microbiol., 53, 1498–504Google Scholar
Furnes, H. and Staudigel, H. (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere?Earth Planet. Sci. Lett., 166, 97–103CrossRefGoogle Scholar
Gogotova, G. I. and Vainshtein, M. B. (1989). Description of a sulphate-reducing bacterium, Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. Microbiology, 58, 64–8Google Scholar
Haridon, S. L., Reysenbach, A., Glenat, P., Prieur, D. and Jeanthon, C. (1995). Hot subterranean biosphere in continental oil reservoir. Nature, 377, 223–4CrossRefGoogle Scholar
Hedges, J. I. and Keil, R. G. (1995). Marine chemistry discussion paper. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 4, 81–115CrossRefGoogle Scholar
Inagaki, F., Suzuki, M., Takai, K.et al. (2003). Microbial communities associated with geological horizons in coastal subseafloor sediment from the Sea of Okhotsk. Appl. Environ. Microbiol., 69, 7224–35CrossRefGoogle ScholarPubMed
Ingle, J. C. Jr., Suyehiro, K. and Breymann, M. T. (1990). Initial Reports Sites 794, 798–799 Japan Sea. Proceedings of the Ocean Drilling Program, Initial Reports, v 128, College Station, TX.CrossRefGoogle Scholar
Jørgensen, B. B. (1983). Processes at the sediment-water interface. In Bolin, B. and Cook, R. B. (eds.), The Major Biogeochemical Cycles and their Interactions, Chichester: John Wiley. pp. 477–515.Google Scholar
Kallmeyer, J. and Boetius, A. (2004). Effects of temperature and pressure on sulphate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol., 70, 1231–3CrossRefGoogle ScholarPubMed
Kemp, P. F. and Aller, J. Y. (2004). Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol., 47, 161–77CrossRefGoogle ScholarPubMed
Kennicutt, M. C., Brooks, J. M. and Cox, B. C. (1993). The origin and distribution of gas hydrates in marine sediments. In Engel, M. H. and Macko, S. A. (eds.), Organic Geochemistry. New York: Plenum Press. pp. 535–44.CrossRefGoogle Scholar
Kimura, H., Sugihara, M., Yamamoto, H.et al. (2005). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles, 9, 407–14CrossRefGoogle Scholar
Knittel, K., Lösekann, T., Boetius, A., Kort, R. and Amann, R. (2005). Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol., 71, 467–79CrossRefGoogle ScholarPubMed
Köpke, B., Wilms, R., Engelen, B., Cypionka, H. and Sass, H. (2005). Microbial diversity in coastal subsurface sediments – a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71, 7819–30CrossRefGoogle ScholarPubMed
Kormas, K. A., Smith, D. C., Edgcomb, V. and Teske, A. (2003). Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol. Ecol., 45, 115–25CrossRefGoogle Scholar
Krumholz, L. R., McKinley, J. P., Ulrich, F. A. and Suflita, J. M. (1997). Confined subsurface microbial communities in Cretaceous rock. Nature, 386, 64–6CrossRefGoogle Scholar
Li, L., Guenzennec, J., Nichols, P.et al. (1999). Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J. Oceanogr., 55, 635–42CrossRefGoogle Scholar
Ludvigsen, L., Albrechtsen, H. J., Ringelberg, D. B., Ekelund, F. and Christensen, T. H. (1999). Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microb. Ecol. 37, 197–207CrossRefGoogle Scholar
Mangelsdorf, K., Zink, K.-G., Birrien, J.-L. and Toffin, L. (2005). A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of a piezosensitive deep sub-seafloor bacterium. Org. Geochem., 36, 1459–79CrossRefGoogle Scholar
Mather, I. D. and Parkes, R. J. (2000). Bacterial populations in sediments of the eastern flank of the Juan de Fuca Ridge, Sites 1026 and 1027. Proc. ODP Sci. Res. 168, 161–5Google Scholar
Mauclaire, L., Zepp, K., Meister, P. and Mckenzie, J. (2004). Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology, 2, 217–23CrossRefGoogle Scholar
Morita, R. Y. and ZoBell, C. E. (1955). Occurence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res., 3, 66–73Google Scholar
Moser, D. P., Onstott, T. C., Fredrickson, J. K.et al. (2003). Temporal shifts in the geochemistry and microbial community structure of an ultradeep mine borehole following isolation. Geomicrobiol. J., 20, 517–48CrossRefGoogle Scholar
Nazina, T. N., Ivanova, A. E., Kanchveli, L. P. and Rozanova, E. P. (1989). A new spore-forming thermophilic methylotrophic sulphate-reducing bacterium, Desulfotomaculum kuznetsovii. Microbiology, 57, 659–63Google Scholar
Nedwell, D. B., Embley, T. M. and Purdy, K. J. (2004). Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquat. Microb. Ecol., 37, 209–17CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A., Bale, S. J.et al. (1994). Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410–13CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A., Bale, S. J., Goodman, K. and Fry, J. C. (1995). A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J. Microbiol. Meth., 23, 235–49CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A., Fry, J. C., Herbert, R. A. and Wimpenny, J. W. T. (1990). Bacterial biomass and activity in deep sediment layers from the Peru Margin. Phil. Trans. R. Soc. Lond. A., 331, 139–53CrossRefGoogle Scholar
Parkes, R. J., Cragg, B. A. and Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J., 8, 11–28CrossRefGoogle Scholar
Parkes, R. J., Webster, G., Cragg, B. A.et al. (2005). Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 436, 390–4CrossRefGoogle ScholarPubMed
Paull, C. K., Buelow, W. J., Ussler, W. and Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–62.3.CO;2>CrossRefGoogle Scholar
Pedersen, K., Arlinger, J., Ekendahl, S. and Hallbeck, L. (1996). 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö hard rock laboratory, Sweden. FEMS Microbiol. Ecol., 19, 249–62Google Scholar
Postgate, J. R. and Hunter, J. R. (1963). Acceleration of bacterial death by growth substrate. Nature, 198, 273.CrossRefGoogle Scholar
Quigley, T. M. and Mackenzie, A. S. (1988). The temperatures of oil and gas formation in the sub-surface. Nature, 333, 549–52CrossRefGoogle Scholar
Reed, D. W., Fujita, Y., Delwiche, M. E.et al. (2002). Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol., 68, 3759–70CrossRefGoogle Scholar
Sass, H. and Cypionka, H. (2004). Isolation of sulphate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. System. Appl. Microbiol., 27, 541–8CrossRefGoogle Scholar
Schippers, A., Neretin, L. N., Kallmeyer, J.et al. (2005). Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 433, 861–4CrossRefGoogle ScholarPubMed
Süß, J., Engelen, B., Cypionka, H. and Sass, H. (2004). Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol. Ecol., 51, 109–21Google ScholarPubMed
Tasaki, M., Kamagata, Y., Nakamura, K. and Mikami, E. (1991). Isolation and characterization of a thermophilic benzoate-degrading, sulphate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol., 155, 348–52CrossRefGoogle Scholar
Thomsen, T. R., Finster, K. and Ramsing, N. B. (2001). Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol., 67, 1646–56CrossRefGoogle Scholar
Toffin, L., Webster, G., Weightman, A. J., Fry, J. C. and Prieur, D. (2004). Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol. Ecol., 48, 357–67CrossRefGoogle ScholarPubMed
Wellsbury, P., Goodman, K., Barth, T.et al. (1997). Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388, 573–6CrossRefGoogle Scholar
Wellsbury, P., Goodman, K., Cragg, B. A. and Parkes, R. J. (2000). The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997). Proc. ODP Sci. Res., 164, 379–91Google Scholar
Wellsbury, P., Mather, I. and Parkes, R. J. (2002). Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. FEMS Microbiol. Ecol., 42, 59–70CrossRefGoogle ScholarPubMed
Wellsbury, P. and Parkes, R. J. (2000). Deep biosphere: source of methane for oceanic hydrate. In Max, M. D. (ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht: Kluwer. pp. 91–104.CrossRefGoogle Scholar
Whitman, W. B., Coleman, D. C. and Wiebe, W. J. (1998). Prokaryotes: the unseen majority: Proc. Natl. Acad. Sci. USA., 95, 6578–83CrossRefGoogle ScholarPubMed
Wilms, R., Köpke, B., Sass, H. et al. (2006). Deep-biosphere bacteria within the subsurface of tidal flat sediments. Environ. Microbiol., 8, 709–19.CrossRef
ZoBell, C. E. (1938). Studies on the bacterial flora of marine bottom sediments. J. Sed. Petrol., 8, 10–18Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×