Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T15:49:14.545Z Has data issue: false hasContentIssue false

7 - Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

Sulphate-reducing bacteria (SRB) derive energy for growth by coupling the oxidation of hydrogen or organic compounds to the reduction of sulphate to sulphide. The bioenergetics and the global topology of energy-conserving reactions have already been discussed in Chapter 1. Understanding the bioenergetics of the coupling of hydrogen oxidation and sulphate reduction is simple, in principle. Four H2 are oxidized by periplasmic hydrogenases and the eight protons and electrons are transferred to the cytoplasm through ATP synthase and transmembrane-electron-transfer complexes for sulphate reduction. This produces approximately three adenosine triphosphates (ATPs), of which two are needed to activate sulphate. Hence a net yield of one ATP is produced per sulphate reduced. Energy conservation by coupling the reduction of sulphate to the incomplete oxidation of lactate is more complex because the primary oxidation reactions are now also cytoplasmic. Because these yield two ATPs by substrate level phosphorylation, the same number as required for the activation of sulphate, a net energetic benefit can only be obtained by hydrogen cycling as proposed by Odom and Peck (Odom and Peck, 1981), cycling of formate or CO (Heidelberg et al., 2004; Voordouw, 2002) or by electrogenic proton translocation associated with the electron transport chain for reduction of sulphate. The components that participate in these anaerobic electron transport pathways will be considered in detail here. Harry Peck and Jean LeGall, the pioneers of the biochemistry of SRB, contributed greatly by purifying and characterizing many of the redox proteins present in these organisms.

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 215 - 240
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, C., Brugna, M., Dolla, A., Bruschi, M. and Giudici-Orticoni, M. T. (2000). A sequential electron transfer from hydrogenases to cytochromes in sulphate-reducing bacteria. Biochim Biophys Acta, 1476, 85–92.CrossRefGoogle Scholar
Berks, B. C., Page, M. D., Richardson, D. J.et al. (1995). Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol Microbiol, 15, 319–31.CrossRefGoogle ScholarPubMed
Bruschi, M. (1994). Cytochrome c3 (Mr 26,000) isolated from sulphate-reducing bacteria and its relationship to other polyhemic cytochromes from Desulfovibrio. Methods Enzym, 243, 140–55.CrossRefGoogle Scholar
Casalot, L., Hatchikian, C. E., Forget, N.et al. (1998). Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructosovorans. Anaerobe, 4, 45–55.CrossRefGoogle ScholarPubMed
Casalot, L., Luca, G., Dermoun, Z., Rousset, M. and Philip, P. (2002a). Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans. J Bacteriol, 184, 853–6.CrossRefGoogle Scholar
Casalot, L., Valette, O., Luca, G.et al. (2002b). Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans. FEMS Microbiol Lett, 214, 107–12.CrossRefGoogle Scholar
Cort, J. R., Mariappan, S. V. S., Kim, C.-Y.et al. (2001). Solution structure of Pyrobaculum aerophilum DsrC, an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase. Eur J Biochem, 268, 55842–50.CrossRefGoogle ScholarPubMed
Curatti, L., Brown, C. S., Ludden, P. W. and Rubio, L. M. (2005). Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA, 102, 6291–6.CrossRefGoogle ScholarPubMed
Czjzek, M., Guerlesquin, F., Bruschi, M. and Haser, R. (1996). Crystal structure of a dimeric octaheme cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway. Structure, 4, 395–404.CrossRefGoogle ScholarPubMed
Czjzek, M., Elantak, L., Zamboni, V.et al. (2002). The crystal structure of the hexadeca-heme cytochrome Hmc and a structural model of its complex with cytochrome c3. Structure, 10, 1677–86.CrossRefGoogle Scholar
Dahl, C., Engels, S., Pott-Sperling, A. S.et al. (2005). Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol, 187, 1392–404.CrossRefGoogle ScholarPubMed
Lacey, A. L., Fernandez, V. M. and Rousset, M. (2005). Native and mutant nickel-iron hydrogenases: unravelling structure and function. Coordin Chem Rev, 249, 1596–608.CrossRefGoogle Scholar
Luca, G., Asso, M., Belaich, J. P. and Dermoun, Z. (1998). Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli. Biochemistry, 37, 2660–5.CrossRefGoogle ScholarPubMed
Di Paolo, R. E., Pereira, P. M., Gomes, I.et al. (2006). Resonance Raman fingerprinting of multiheme cytochromes from the cytochrome c3 family. J Biol Inorg Chem, 11, 217–24CrossRefGoogle ScholarPubMed
Dolla, A., Pohorelic, B. K. J., Voordouw, J. K. and Voordouw, G. (2000). Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol, 174, 143–51.CrossRefGoogle ScholarPubMed
Duin, E. C., Madadi-Kahkesh, S., Hedderich, R., Clay, M. D. and Johnson, M. K. (2002). Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site 4Fe-4S cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett, 512, 263–8.CrossRefGoogle ScholarPubMed
Elantak, L., Dolla, A., Durand, M. C., Bianco, P. and Guerlesquin, F. (2005). Role of the tetrahemic subunit in Desulfovibrio vulgaris Hildenborough formate dehydrogenase. Biochemistry, 44, 14828–34.CrossRefGoogle ScholarPubMed
Frazao, C., Sieker, L., Sheldrick, G.et al. (1999). Ab initio structure solution of a dimeric cytochrome c3 from Desulfovibrio gigas containing disulfide bridges. J Biol Inorg Chem, 4, 162–5.CrossRefGoogle ScholarPubMed
Goenka, A., Voordouw, J. K., Lubitz, W., Gartner, W. and Voordouw, G. (2005). Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem Soc Trans, 33, 59–60.CrossRefGoogle ScholarPubMed
Greene, E. A., Hubert, C., Nemati, M., Jenneman, G. E. and Voordouw, G. (2003). Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidising bacteria. Environ Microbiol, 5, 607–17.CrossRefGoogle Scholar
Hatchikian, C. E., Traore, A. S., Fernandez, V. M. and Cammack, R. (1990). Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans. Eur J Biochem, 187, 635–43.CrossRefGoogle ScholarPubMed
Haveman, S. A., Brunelle, V., Voordouw, J. K.et al. (2003). Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J Bacteriol, 195, 4345–53.CrossRefGoogle Scholar
Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. and Voordouw, G. (2004). Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol, 186, 7944–50.CrossRefGoogle ScholarPubMed
Haveman, S. A., Greene, E. A. and Voordouw, G. (2005). Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol, 7, 1461–5.CrossRefGoogle ScholarPubMed
He, Q., Huang, K. H., He, Z.et al., (2006). Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Appl Environ Microbiol, 72, 4370–81.CrossRefGoogle ScholarPubMed
Heidelberg, J. F., Seshadri, R., Haveman, S. A.et al. (2004). The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol, 22, 554–9.CrossRefGoogle Scholar
Huynh, B. H., Czechowski, M. H., Kruger, H. J.et al. (1984). Desulfovibrio vulgaris hydrogenase – a nonheme iron enzyme lacking nickel that exhibits anomalous electron-paramagnetic-res and Mossbauer-spectra. Proc Natl Acad Sci-Biol, 81, 3728–32.CrossRefGoogle ScholarPubMed
Iverson, T. M., Hendrich, M. P., Arciero, D. M., Hooper, A. B. and Rees, D. C. (2001). Cytochrome c554. In Messerschmidt, A., Huber, R., Poulos, T. and Wieghardt, K. (eds.), New York: Wiley. pp. 136–46.
Jeong, H. S. and Jouanneau, Y. (2000). Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol, 182, 1208–14.CrossRefGoogle ScholarPubMed
Keon, R. G. and Voordouw, G. (1996). Identification of the HmcF and topology of the HmcB subunit of the Hmc complex of Desulfovibrio vulgaris. Anaerobe, 2, 231.CrossRefGoogle Scholar
Keon, R. G., Fu, R. and Voordouw, G. (1997). Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch Microbiol, 167, 376–83.CrossRefGoogle ScholarPubMed
Klenk, H. P., Clayton, R. A., Tomb, J. F.et al. (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390, 364–70.CrossRefGoogle ScholarPubMed
Koo, M. S., Lee, J. H., Rah, S. Y.et al. (2003). A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J, 22, 2614–22.CrossRefGoogle ScholarPubMed
Kumagai, H., Fujiwara, T., Matsubara, H. and Saeki, K. (1997). Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry, 36, 5509–21.CrossRefGoogle ScholarPubMed
Kunkel, A., Vaupel, M., Heim, S., Thauer, R. K. and Hedderich, R. (1997). Heterodisulfide reductase from methanol-grown cells of Methanosarcina barkeri is not a flavoenzyme. Eur J Biochem, 244, 226–34.CrossRefGoogle Scholar
Madadi-Kahkesh, S., Duin, E. C., Heim, S.et al. (2001). A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea. Eur J Biochem, 268, 2566–77.CrossRefGoogle ScholarPubMed
Malki, S., Deluca, G., Fardeau, M. L.et al. (1997). Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch Microbiol, 167, 38–45.CrossRefGoogle ScholarPubMed
Mander, G. J., Duin, E. C., Linder, D., Stetter, K. O. and Hedderich, R. (2002). Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem, 269, 1895–904.CrossRefGoogle Scholar
Matias, P. M., Coelho, R., Pereira, I. A.et al. (1999a). The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Structure, 7, 119–30.CrossRefGoogle Scholar
Matias, P. M., Saraiva, L. M., Soares, C. M.et al. (1999b). Nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774: primary sequence determination, crystallographic refinement at 1.8 and modelling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem, 4, 478–94.CrossRefGoogle Scholar
Matias, P. M., Coelho, A. V., Valente, F. M. A.et al. (2002). Sulphate respiration in Desulfovibrio vulgaris Hildenborough: structure of the 16-heme cytochrome c HmcA at 2.5A resolution and a view of its role in transmembrane electron transfer. J Biol Chem, 277, 47907–16.CrossRefGoogle Scholar
Matias, P. M., Pereira, I. A., Soares, C. M. and Carrondo, M. A. (2005). Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol, 89, 292–329.CrossRefGoogle ScholarPubMed
Menon, N. K., Chatelus, C. Y., Dervartanian, M.et al. (1994). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol, 176, 4416–23.CrossRefGoogle ScholarPubMed
Mizuno, N., Voordouw, G., Miki, K., Sarai, A. and Higuchi, Y. (2003). Crystal structure of dissimilatory sulfite reductase D (DsrD) protein – possible interaction with B- and Z-DNA by its winged helix motif. Structure, 11, 1133–40.CrossRefGoogle ScholarPubMed
Norager, S., Legrand, P., Pieulle, L., Hatchikian, C. and Roth, M. (1999). Crystal structure of the oxidised and reduced acidic cytochrome c3 from Desulfovibrio africanus. J Mol Biol, 290, 881–902.CrossRefGoogle ScholarPubMed
Odom, J. M. and Peck, H. D. Jr. (1981). Hydrogen cycling as a general mechanism for energy coupling in the sulphate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett, 12, 47–50.CrossRefGoogle Scholar
Pereira, I. A. C., Romão, C. V., Xavier, A. V., Legall, J. and Teixeira, M. (2000). Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta, 1481, 119–30.CrossRefGoogle ScholarPubMed
Pereira, I. A. C. and Xavier, A. V. (2005). Multi-Heme c cytochromes and enzymes. In King, R. B. (ed.), Encyclopedia of inorganic chemistry, 2nd edn. John Wiley & Sons.Google Scholar
Pereira, P. M., Teixeira, M., Xavier, A. V.et al., (2006). The Tmc complex from Desulfovibrio vulgaris Hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. Biochemistry, 45, 10359–67.CrossRefGoogle ScholarPubMed
Pierik, A. J., Duyvis, M. G., Helvoort, J. M. L. M., Wolbert, R. B. G. and Hagen, W. R. (1992). The third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem, 205, 111–15.CrossRefGoogle ScholarPubMed
Pieulle, L., Morelli, X., Gallice, P.et al. (2005). The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulphate reduction pathway. J Mol Biol, 354, 73–90.CrossRefGoogle Scholar
Pires, R. H., Lourenco, A. I., Morais, F.et al. (2003). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta, 1605, 67–82.CrossRefGoogle ScholarPubMed
Pires, R. H., Venceslau, S., Morais, F.et al. (2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulphate respiratory pathway. Biochemistry, 45, 249–62.CrossRefGoogle ScholarPubMed
Pohorelic, B. K., Voordouw, J. K., Lojou, E.et al. (2002). Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol, 184, 679–686.CrossRefGoogle ScholarPubMed
Rabus, R., Ruepp, A., Frickey, T.et al. (2004). The genome of Desulfotalea psychrophila, a sulphate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol, 6, 887–902.CrossRefGoogle Scholar
Rodrigues, R., Valente, F. M., Pereira, I. A. C., Oliveira, S. and Rodrigues-Pousada, C. (2003). A novel membrane-bound Ech NiFe hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun, 306, 366–75.CrossRefGoogle ScholarPubMed
Romao, C. V., Pereira, I. A., Xavier, A. V., Legall, J. and Teixeira, M. (1997). Characterization of the NiFe hydrogenase from the sulphate reducer Desulfovibrio vulgaris Hildenborough. Biochem Biophys Res Commun, 240, 75–9.CrossRefGoogle ScholarPubMed
Rossi, M., Pollock, W. B., Reij, M. W.et al. (1993). The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol, 175, 4699–711.CrossRefGoogle ScholarPubMed
Rousset, M., Dermoun, Z., Hatchikian, C. E. and Belaich, J. P. (1990). Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic Nife hydrogenase from Desulfovibrio fructosovorans. Gene, 94, 95–101.CrossRefGoogle ScholarPubMed
Saraiva, L. M., Da Costa, P. N., Conte, C., Xavier, A. V. and Legall, J. (2001). In the facultative sulphate/nitrate reducer Desulfovibrio desulfuricans ATCC 27774, the nine-haem cytochrome c is part of a membrane-bound redox complex mainly expressed in sulphate-grown cells. Biochim Biophys Acta, 1520, 63–70.CrossRefGoogle ScholarPubMed
Schmehl, M., Jahn, A., Vilsendorf, A. M. Z.et al. (1993). Identification of a new class of nitrogen-fixation genes in Rhodobacter capsulatus – a putative membrane complex involved in electron-transport to nitrogenase. Mol Gen Genet, 241, 602–15.CrossRefGoogle ScholarPubMed
Sebban, C., Blanchard, L., Bruschi, M. and Guerlesquin, F. (1995). Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol Lett, 133, 143–9.CrossRefGoogle ScholarPubMed
Shokes, J. E., Duin, E. C., Bauer, C.et al. (2005). Direct interaction of coenzyme M with the active-site Fe-S cluster of heterodisulfide reductase. FEBS Lett, 579, 1741–4.CrossRefGoogle ScholarPubMed
Stams, A. J. M. and Hansen, T. A. (1982). Oxygen-labile lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett, 13, 389–94.Google Scholar
Teixeira, V. H., Baptista, A. M. and Soares, C. M. (2004). Modeling electron transfer thermodynamics in protein complexes: interaction between two cytochromes c(3). Biophys J, 86, 2773–85.CrossRefGoogle Scholar
Umhau, S., Fritz, G., Diederichs, K.et al. (2001). Three-dimensional structure of the nonaheme cytochrome c from Desulfovibrio desulfuricans Essex in the Fe(III) state at 1.89 A resolution. Biochemistry, 40, 1308–16.CrossRefGoogle ScholarPubMed
Valente, F. M. A., Saraiva, L. M., Legall, J.et al. (2001). A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough. Chembiochem, 2, 895–905.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Valente, F. M. A., Oliveira, A. S. F., Gnadt, N.et al. (2005). Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound NiFeSe hydrogenase. J Biol Inorg Chem, 10, 667–82.CrossRefGoogle ScholarPubMed
Valente, F. M. A., Almeida, C. C., Pacheco, I.et al., (2006). Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol, 188, 3228–35.CrossRefGoogle ScholarPubMed
Westen, H. M., Mayhew, S. G. and Veeger, C. (1978). Separation of hydrogenase from intact cells of Desulfovibrio vulgaris – purification and properties. FEBS Lett, 86, 122–6.CrossRefGoogle ScholarPubMed
Vignais, P. M. and Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Curr Issues Mol Biol, 6, 159–88.Google ScholarPubMed
Volbeda, A., Charon, M. H., Piras, C.et al. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373, 580–7.CrossRefGoogle ScholarPubMed
Volbeda, A. and Fontecilla-Camps, J. C. (2005). Structure-function relationships of nickel-iron sites in hydrogenase and a comparison with the active sites of other nickel-iron enzymes. Coordin Chem Rev, 249, 1609–19.CrossRefGoogle Scholar
Voordouw, G., Niviere, V., Ferris, F. G., Fedorak, P. M. and Westlake, D. W. S. (1990). Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol, 56, 3748–54.Google ScholarPubMed
Voordouw, G. (2002). Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol, 184, 5903–11.CrossRefGoogle ScholarPubMed
Xavier, A. V. (2004). Thermodynamic and choreographic constraints for energy transduction by cytochrome c oxidase. Biochim Biophys Acta, 1658, 23–30.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×