Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T13:08:02.211Z Has data issue: false hasContentIssue false

9 - Anaerobic degradation of hydrocarbons with sulphate as electron acceptor

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

Sulphate-reducing bacteria (SRB), or more generally speaking sulphate-reducing prokaryotes (SRP), are terminal oxidizers in the natural recycling of bio-organic compounds to CO2 in anoxic environments, in particular in marine sediments. SRP play this geochemically important role because they make use of a globally abundant electron acceptor, sulphate (in seawater up to 28 mM), and possess numerous degradative (oxidative) capacities with respect to electron donors. The study of the degradative potentials of SRP via de novo enrichment (including direct counting) and isolation from natural samples has been of interest over some decades and formed the basis for our knowledge of the phylogenetic diversity of SRP. Common electron donors and carbon sources of SRP are the low-molecular mass products from the primary anaerobic (fermentative) breakdown of polysaccharides, proteins, lipids and other substances of dead biomass. Several of the involved degradative capacities, for instance complete oxidation or the channelling of branched-chain fatty acids or aromatic compounds into the central metabolism, require special enzymatic reactions (for overview see Rabus et al., 2000) which are not encountered in fermentative bacteria. The study of such and other metabolic capacities in SRP has led to the recognition of principles of general importance or heuristic value in our understanding of the biochemistry and energetics of anaerobes.

A chemical class of organic substrates which have become of interest relatively recently in the study of SRP (and other anaerobes) are hydrocarbons, in particular those from crude oil (petroleum).

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 265 - 304
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeckersberg, F., Bak, F. and Widdel, F. (1991). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulphate-reducing bacteria. Arch Microbiol, 156, 5–14CrossRefGoogle Scholar
Aeckersberg, F., Rainey, F. A. and Widdel, F. (1998). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulphate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol, 170, 361–9CrossRefGoogle Scholar
Aitken, C. M., Jones, D. M. and Larter, S. R. (2004). Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431, 291–4CrossRefGoogle ScholarPubMed
Alperin, M. J. and Reeburgh, W. S. (1985). Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol, 50, 940–5Google ScholarPubMed
Annweiler, E., Materna, A., Safinowski, M.et al. (2000). Anaerobic degradation of 2-methylnaphthalene by a sulphate-reducing enrichment culture. Appl Environ Microbiol, 66, 5329–33CrossRefGoogle Scholar
Annweiler, E., Michaelis, W. and Meckenstock, R. U. (2002). Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol, 68, 852–8CrossRefGoogle ScholarPubMed
Bak, F. and Widdel, F. (1986). Anaerobic degradation of phenol and phenol derivates by Desulfobacterium phenolicum sp. nov. Arch Microbiol, 146, 177–80CrossRefGoogle Scholar
Barnes, R. O. and Goldberg, E. D. (1976). Methane production and consumption in anoxic marine sediments. Geology, 4, 297–3002.0.CO;2>CrossRefGoogle Scholar
Bastin, E. S., Greer, F. E., Merritt, C. A. and Moulton, G. (1926). The presence of sulphate reducing bacteria in oil field waters. Science, 63, 21–4CrossRefGoogle ScholarPubMed
Beller, H. R., Reinhard, M. and Grbic'-Galic', D. (1992). Metabolic by-products of anaerobic toluene degradation by sulphate-reducing enrichment cultures. Appl Environ Microbiol, 58, 3192–5Google Scholar
Beller, H. and Spormann, A. (1997). Benzylsuccinate formation as a means of anaerobic toluene activation by sulphate-reducing strain PRTOL1. Appl Environ Microbiol, 63, 3729–31Google Scholar
Beller, H., Spormann, A., Sharma, P., Cole, J. and Reinhard, M. (1996). Isolation and characterization of a novel toluene-degrading, sulphate-reducing bacterium. Appl Environ Microbiol, 62, 1188–96Google Scholar
Boetius, A., Ravenschlag, K., Schubert, C. J.et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6CrossRefGoogle ScholarPubMed
Boll, M. (2005). Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim Biophys Acta (BBA) – Bioenergetics, 1707, 34–50CrossRefGoogle ScholarPubMed
Boll, M., Fuchs, G. and Heider, J. (2002). Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol, 6, 604–11CrossRefGoogle ScholarPubMed
Caldwell, M. E. and Suflita, J. M. (2000). Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol, 34, 1216–20CrossRefGoogle Scholar
Coates, J., Anderson, R. and Lovley, D. (1996). Oxidation of polycyclic aromatic hydrocarbons under sulphate-reducing conditions. Appl Environ Microbiol, 62, 1099–101Google Scholar
Coates, J. D., Chakraborty, R. and McInerney, M. J. (2002). Anaerobic benzene degradation – a new era. Res Microbiol, 153, 621–8CrossRefGoogle ScholarPubMed
Coates, J., Woodward, J., Allen, J., Philp, P. and Lovley, D. (1997). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol, 63, 3589–93Google ScholarPubMed
Connan, J., Lacrampe-Coulome, G. and Magot, M. (1996). Origin of gases in reservoirs. In Dolenc, D. (ed.), Proceedings of the 1995 International Gas Research Conference Vol. 1. Rockville: Government Institutes. pp. 21–62.Google Scholar
Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R. and Hirschler-Rea, A. (2005). Anaerobic n-alkane metabolism by a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol, 71, 3458–67CrossRefGoogle Scholar
Cravo-Laureau, C., Hirschler-Rea, A., Matheron, R. and Grossi, V. (2004a). Growth and cellular fatty-acid composition of a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T, grown on n-alkenes. Comptes Rendus Biologies, 327, 687–94CrossRefGoogle Scholar
Cravo-Laureau, C., Matheron, R., Cayol, J.-L., Joulian, C. and Hirschler-Rea, A. (2004b). Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulphate-reducing bacterium. Int J Syst Evol Microbiol, 54, 77–83CrossRefGoogle Scholar
Cravo-Laureau, C., Matheron, R., Joulian, C., Cayol, J.-L. and Hirschler-Rea, A. (2004c). Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulphate-reducing bacterium, and emended description of the genus Desulfatibacillum. Int J Syst Evol Microbiol, 54, 1639–42CrossRefGoogle Scholar
d'Ans, J. and Lax, E. (1983). Taschenbuch für Chemiker und Physiker, Bd. 2 (Ed, Synowietz, C.). Berlin: Springer.Google Scholar
Davico, G. E. B., Veronica, M., DePuy, C. H., Ellison, G. B. and Squires, R. R. (1995). The C–H bond energy of benzene. J Am Chem Soc, 117, 2590–9CrossRefGoogle Scholar
Davidova, I. A., Gieg, L. M., Nanny, M.et al., (2005). Stable isotope studies of n-alkane metabolism by a sulphate-reducing bacteria enrichment culture. Appl Environ Microbiol, 71, 8174–82CrossRefGoogle Scholar
Davidova, I. A. and Suflita, J. M. (2005). In Leadbetter, J. R. (ed.), Methods in enzymology, Vol. 397. Amsterdam and London: Elsevier Academic Press. pp. 17–34.Google Scholar
Dean, J. A. (1992). Lange's handbook of chemistry. New York: McGraw-Hill.Google Scholar
Edwards, E. A. and Grbić-Galić, D. (1992). Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl Environ Microbiol, 58, 2663–6Google ScholarPubMed
Elshahed, M. S., Gieg, L. M., McInerney, M. J. and Suflita, J. M. (2001). Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol, 35, 682–9CrossRefGoogle ScholarPubMed
Elvert, M., Suess, E. and Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften, 86, 295–300CrossRefGoogle Scholar
Fischer-Romero, C., Tindall, B. and Jüttner, F. (1996). Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol, 46, 183–8CrossRefGoogle ScholarPubMed
Flesher, J. W. and Myers, S. R. (1991). Methyl-substitution of benzene and toluene in preparations of human bone marrow. Life Sci, 48, 843–50CrossRefGoogle ScholarPubMed
Galushko, A. S., Kiesele-Lang, U. and Kappler, A. (2003). Degradation of 2-methylnaphthalene by a sulphate-reducing enrichment culture of mesophilic freshwater bacteria. Polyc Arom Comp, 23, 207–18CrossRefGoogle Scholar
Galushko, A., Minz, D., Schink, B. and Widdel, F. (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol, 1, 415–20CrossRefGoogle ScholarPubMed
Galushko, A. S. and Rozanova, E. P. (1991). Desulfobacterium cetonicum sp. nov. – a sulphate–reducing bacterium which oxidizes fatty acids and ketones. Microbiol (Engl.Transl. Mikrobiologiya (USSR)), 60, 742–6Google Scholar
Gieg, L. M. and Suflita, J. M. (2002). Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol, 36, 3755–62CrossRefGoogle ScholarPubMed
Grogan, D. W. and Cronan, J. E. Jr. (1997). Cyclopropane ring formation in membrane lipds of bacteria. Microbiol Mol Biol Rev, 61, 429–41Google Scholar
Girguis, P. R., Cozen, A. E. and DeLong, E. F. (2005). Growth and population dynamics of anaerobic methane-oxidizing archaea and sulphate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol, 71, 3725–33CrossRefGoogle Scholar
Groves, J. T. (2006). High-valent iron in chemical and biological oxidations. J Inorg Biochem, 100, 434–47CrossRefGoogle ScholarPubMed
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D. E. (2002). Calibration of sulphate levels in the Archaean ocean. Science, 298, 2372–4CrossRefGoogle Scholar
Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. and DeLong, E. F. (2003). Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol, 69, 5483–91CrossRefGoogle ScholarPubMed
Hallam, S. J., Putnam, N., Preston, C. M.et al. (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305, 1457–62CrossRefGoogle ScholarPubMed
Harder, J. (1997). Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Marine Geol, 137, 13–23CrossRefGoogle Scholar
Harms, G., Zengler, K., Rabus, R.et al. (1999). Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulphate-reducing bacteria. Appl Environ Microbiol, 65, 999–1004Google Scholar
Hayes, L. A., Nevin, K. P. and Lovley, D. R. (1999). Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem, 30, 937–45CrossRefGoogle Scholar
Head, I. M., Jones, D. M. and Larter, S. R. (2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344–52CrossRefGoogle ScholarPubMed
Hedderich, R. and Whitman, W. B. (2006). Physiology and biochemistry of the methane-producing archaea. In Dworkin, M., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).Google Scholar
Hinrichs, K. U. and Boetius, A. B. (2002). In Wefer, G., Hebbeln, D., Jørgensen, B. B., Schlüter, M. and Weering, T. (eds.), Ocean margin systems, Heidelberg: Springer-Verlag. pp. 457–77.Google Scholar
Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G. and DeLong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–5CrossRefGoogle ScholarPubMed
Hoehler, T. M., Alperin, M. J., Albert, D. B. and Martens, C. S. (1994). Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulphate reducer consortium. Global Biogeochem Cycles, 8, 451–63CrossRefGoogle Scholar
Holm, N. G. and Charlou, J. L. (2001). Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett, 191, 1–8CrossRefGoogle Scholar
Horng, Y.-C., Becker, D. F. and Ragsdale, S. W. (2001). Mechanistic studies of methane biogenesis by methyl-coenzyme M reductase: evidence that coenzyme B participates in cleaving the C–S bond of methyl-coenzyme M. Biochemistry, 40, 12875–85CrossRefGoogle Scholar
Hunkeler, D., Höhener, P. and Zeyer, J. (2002). Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. J Contam Hydrol, 59, 231–45CrossRefGoogle ScholarPubMed
Hylemon, P. B. and Harder, J. (1998). Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev, 22, 475–88CrossRefGoogle ScholarPubMed
Iversen, N. and Jørgensen, B. B. (1985). Anaerobic methane oxidation rates at the sulphate methane transition in marine-sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr, 30, 944–55CrossRefGoogle Scholar
Johnson, H. A. and Spormann, A. M. (1999). In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization. J Bacteriol, 181, 5662–8Google ScholarPubMed
Jones, W. D. (2000). Conquering the carbon–hydrogen bond. Science, 287, 1942–3CrossRefGoogle Scholar
Kniemeyer, O., Fischer, T., Wilkes, H., Glöckner, F. O. and Widdel, F. (2003). Anaerobic degradation of ethylbenzene by a new type of marine sulphate-reducing bacterium. Appl Environ Microbiol, 69, 760–8CrossRefGoogle Scholar
Kniemeyer, O. and Heider, J. (2001). Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem, 276, 21381–6CrossRefGoogle ScholarPubMed
Knittel, K., Boetius, A., Lemke, A.et al. (2003). Activity, distribution, and diversity of sulphate reducers and other bacteria in sediments above gas hydrates (Cascadia Margin, Oregon). Geomicrobiol J, 20, 269–94CrossRefGoogle Scholar
Knittel, K., Lösekann, T., Boetius, A., Kort, R. and Amann, R. (2005). Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microbiol, 71, 467–79CrossRefGoogle ScholarPubMed
Kropp, K. G., Davidova, I. A. and Suflita, J. M. (2000). Anaerobic oxidation of n-dodecane by an addition reaction in a sulphate-reducing bacterial enrichment culture. Appl Environ Microbiol, 66, 5393–8CrossRefGoogle Scholar
Krüger, M., Meyerdierks, A., Glöckner, F. O.et al. (2003). A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426, 878–81CrossRefGoogle ScholarPubMed
Kvenvolden, K. A. (1999). Potential effects of gas hydrate on human welfare. PNAS, 96, 3420–6CrossRefGoogle ScholarPubMed
Lovley, D. R., Coates, J. D., Woodward, J. C. and Phillips, E. J. P. (1995). Benzene oxidation coupled to sulphate reduction. Appl Environ Microbiol, 61, 953–8Google Scholar
Martens, C. S. and Berner, R. A. (1974). Methane production in the interstitial waters of sulphate-depleted marine sediment. Science, 185, 1167–9CrossRefGoogle Scholar
Mavrovounoitis, M. L. (1991). Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem, 266, 14440–5Google Scholar
McGillen, D. F. and Golden, D. M. (1982). Hydrocarbon bond dissociation energies. Ann Rev Phys Chem, 33, 493–532CrossRefGoogle Scholar
Meckenstock, R. U., Annweiler, E., Michaelis, W., Richnow, H. H. and Schink, B. (2000). Anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Appl Environ Microbiol, 66, 2743–7CrossRefGoogle Scholar
Meckenstock, R. U., Morasch, B., Griebler, C. and Richnow, H. H. (2004). Stable isotope analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol, 75, 215–55CrossRefGoogle Scholar
Meckenstock, R. U., Morasch, B., Warthmann, R.et al. (1999). 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol, 1, 409–14CrossRefGoogle ScholarPubMed
Michaelis, W., Seifert, R., Nauhaus, K.et al. (2002). Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–15CrossRefGoogle ScholarPubMed
Moran, J. J., House, C., Freeman, K. H. and Ferry, J. J. (2005). Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea, 1, 303–9CrossRefGoogle ScholarPubMed
Morasch, B. and Meckenstock, R. U. (2005). Anaerobic degradation of p-xylene by a sulphate-reducing enrichment culture. Curr Microbiol, 51, 127–30CrossRefGoogle Scholar
Morasch, B., Schink, B., Tebbe, C. and Meckenstock, R. U. (2004). Degradation of o-xylene and m-xylene by a novel sulphate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol, 181, 407–17CrossRefGoogle Scholar
Mrowiec, B., Suschka, J. and Keener, T. C. (2005). Formation and biodegradation of toluene in the anaerobic sludge digestion process. Water Environ Res, 77, 274–8CrossRefGoogle ScholarPubMed
Nauhas, K., Albrecht, M. and Elvert, M.et al. (2007). In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol, 9, 187–96CrossRefGoogle Scholar
Nauhaus, K., Boetius, A., Kruger, M. and Widdel, F. (2002). In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol, 4, 296–305CrossRefGoogle ScholarPubMed
Nauhaus, K., Treude, T., Boetius, A. and Krüger, M. (2005). Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol, 7, 98–106CrossRefGoogle ScholarPubMed
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. and DeLong, E. F. (2002). Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. PNAS, 99, 7663–8CrossRefGoogle ScholarPubMed
Pancost, R. D., Sinninghe Damste, J. S., Lint, S., Maarel, M. J. E. C., Gottschal, J. C. and The Medinaut Shipboard Scientific Party. (2000). Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria. Appl Environ Microbiol, 66, 1126–32CrossRefGoogle ScholarPubMed
Paull, C. K., Chanton, J., Neumann, A. C.et al. (1992). Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida Escarpment. Palaios, 7, 361–75CrossRefGoogle Scholar
Pelmenschikov, V., Blomberg, M. R. A., Siegbahn, P. E. M. and Crabtree, R. H. (2002). A mechanism from quantum chemical studies for methane formation in methanogenesis. J Am Chem Soc, 124, 4039–49CrossRefGoogle ScholarPubMed
Peters, F., Rother, M. and Boll, M. (2004). Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. J Bacteriol, 186, 2156–63CrossRefGoogle ScholarPubMed
Phelps, C. D., Kazumi, J. and Young, L. Y. (1996). Anaerobic degradation of benzene in BTX mixtures dependent on sulphate reduction. FEMS Microbiol Lett, 145, 433–7CrossRefGoogle Scholar
Phelps, C. D., Kerkhof, L. J. and Young, L. Y. (1998). Molecular characterization of a sulphate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol, 27, 269–79CrossRefGoogle Scholar
Phelps, C. D., Zhang, X. and Young, L. Y. (2001). Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol, 3, 600–3CrossRefGoogle Scholar
Postgate, J. R. (1984). The sulphate-reducing bacteria. Cambridge, UK: Cambridge University Press.Google Scholar
Rabus, R., Hansen, T. and Widdel, F. (2000). Dissimilatory sulphate- and sulfur-reducing prokaryotes. In Dworkin, M., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).Google Scholar
Rabus, R. and Heider, J. (1998). Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulphate-reducing bacteria. Arch Microbiol, 170, 377–84CrossRefGoogle Scholar
Rabus, R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993). Complete oxidation of toluene under strictly anoxic conditions by a new sulphate-reducing bacterium. Appl Environ Microbiol, 59, 1444–51Google Scholar
Rabus, R., Wilkes, H., Behrends, A.et al. (2001). Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol, 183, 1707–15CrossRefGoogle Scholar
Raghoebarsing, A. A., Pol, A., Pas-Schoonen, K. T.et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918–21CrossRefGoogle ScholarPubMed
Reeburgh, W. S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett, 28, 337–44CrossRefGoogle Scholar
Reeburgh, W. S. (1980). Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet Sci Lett, 47, 345–52CrossRefGoogle Scholar
Reed, D. R. and Kass, S. R. (2000). Experimental determination of the α and β C–H bond dissociation energies in naphthalene. J Mass Spectr, 35, 534–93.0.CO;2-T>CrossRefGoogle ScholarPubMed
Reguera, G., McCarthy, K. D., Mehta, T.et al. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435, 1098–101CrossRefGoogle ScholarPubMed
Reusser, D. E., Istok, J. D., Beller, H. R. and Field, J. A. (2002). In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol, 36, 4127–34CrossRefGoogle ScholarPubMed
Richnow, H. H., Annweiler, E., Michaelis, W. and Meckenstock, R. U. (2003). Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol, 65, 101–20CrossRefGoogle Scholar
Ritger, S., Carson, B. and Suess, E. (1987). Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull, 98, 147–562.0.CO;2>CrossRefGoogle Scholar
Ruckmick, J. C., Wimberly, B. H. and Edwards, A. F. (1979). Classification and genesis of biogenic sulfur deposits. Econ Geol, 74, 469–74CrossRefGoogle Scholar
Rueter, P., Rabus, R., Wilkes, H.et al. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372, 455–8CrossRefGoogle ScholarPubMed
Safinowski, M. and Meckenstock, R. U. (2004). Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N 47. FEMS Microbiol Lett, 240, 99–104CrossRefGoogle ScholarPubMed
Safinowski, M. and Meckenstock, R. U. (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Environ Microbiol, 8, 347–52CrossRefGoogle Scholar
Schink, B. (1985). Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Lett, 31, 69–77CrossRefGoogle Scholar
Schink, B. and Stams, A. F. (2002). Structure and growth dynamics of syntrophic associations. In Dworkin, M., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).Google Scholar
Schmitt, R., Langguth, H. R. and Püttmann, W. (1998). Abbau aromatischer Kohlenwasserstoffe und Metabolitenbildung im Grundwasserleiter eines ehemaligen GaswerkstandortsGrundwasser, 3, 78–86CrossRefGoogle Scholar
Selmer, T. and Andrei, P. I. (2001). p-Hydroxyphenylacetate decarboxylase from Clostridium difficile: a novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem, 268, 1363–72CrossRefGoogle ScholarPubMed
Selmer, T., Pierik, A. and Heider, J. (2005). New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol Chem, 386, 981–8CrossRefGoogle ScholarPubMed
Shen, Y., Buick, R. and Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81CrossRefGoogle ScholarPubMed
Shilov, A. E. and Shul'pin, B. (1997). Activation of C−H bonds by metal complexes. Chem Rev, 97, 2879–932CrossRefGoogle Scholar
Shima, S. and Thauer, R. K. (2005). Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol, 8, 643–8CrossRefGoogle ScholarPubMed
So, C. M., Phelps, C. D. and Young, L. Y. (2003). Anaerobic transformation of alkanes to fatty acids by a sulphate-reducing bacterium, strain Hxd3. Appl Environ Microbiol, 69, 3892–900CrossRefGoogle Scholar
So, C. M. and Young, L. Y. (1999). Isolation and characterization of a sulphate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol, 65, 2969–76Google Scholar
Sørensen, K. B., Finster, K. and Ramsing, N. B. (2001). Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate and methanol as possible shuttles. Microbial Ecol, 42, 1–10Google ScholarPubMed
Spormann, A. M. and Widdel, F. (2000). Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation, 11, 85–105CrossRefGoogle ScholarPubMed
Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry, 2nd edn. New York: John Wiley & Sons.Google Scholar
Sullivan, E. R., Zhang, X., Phelps, C. and Young, L. Y. (2001). Anaerobic mineralization of stable-isotope-labeled 2-methylnaphthaleneAppl Environ Microbiol, 67, 4353–7CrossRefGoogle ScholarPubMed
Tauson, V. O., Veselov, I. Ya. (1934). O bakterialnom razlozhenii tsiklicheskikh soyedineniy pri vosstanovlenii sulfatov. (On the bacteriology of the decomposition of cyclical compounds at the reduction of sulphates.) Mikrobiologiya (in Russian), 3, 360–9Google Scholar
Tissot, B. P. and Welte, D. H. (1984). Petroleum formation and occurrence. Berlin: Springer.CrossRefGoogle Scholar
Thauer, R. K., Jungermann, K. and Decker, K. (1977). Energy conservation in anaerobic bacteria. Bacteriol Rev, 41, 100–80Google ScholarPubMed
Thauer, R. K. (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology, 144, 2377–406CrossRefGoogle ScholarPubMed
Townsend, G. T., Prince, R. C. and Suflita, J. M. (2003). Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol, 37, 5213–18CrossRefGoogle ScholarPubMed
Ulrich, A. C., Beller, H. R. and Edwards, E. A. (2005). Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol, 39, 6681–91CrossRefGoogle ScholarPubMed
Weast, R. C. (1989). Handbook of chemistry and physics. Boca Raton, USA: CRC Press.Google Scholar
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In Zehnder, A. J. B. (ed.), Biology of anaerobic microorganisms. New York: John Wiley & Sons. pp 469–585.Google Scholar
Widdel, F.Boetius, A. and Rabus, R. (2004). Anaerobic biodegradation of hydrocarbons including methane. In Dworkin, M., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (eds.), The prokaryotes, electronic edition. New York: Springer. (URL: http://141.150.157.117:8080/prokPUB/index.htm).Google Scholar
Widdel, F. and Rabus, R. (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol, 12, 259–76CrossRefGoogle ScholarPubMed
Wilkes, H., Rabus, R., Fischer, T.et al. (2002). Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl) succinate via c-skeleton rearrangement. Arch Microbiol, 177, 235–43CrossRefGoogle Scholar
Wischgoll, S., Heintz, D., Peters, F.et al. (2005). Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol, 58, 1238–52CrossRefGoogle ScholarPubMed
Wolfe, R. S. (1991). My kind of biology. Annu Rev Microbiol, 45, 1–35CrossRefGoogle ScholarPubMed
Zehnder, A. J. and Brock, T. D. (1979). Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol, 137, 420–32Google ScholarPubMed
Zengler, K., Richnow, H. H., Rosselló-Mora, R., Michaelis, W. and Widdel, F. (1999). Methane formation from long-chain alkanes by anarobic microorganisms. Nature, 401, 266–9CrossRefGoogle Scholar
Zhang, X. and Young, L. Y. (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol, 63, 4759–64Google ScholarPubMed
ZoBell, C. E. (1946). Action of microörganisms on hydrocarbons. Bacteriol Rev, 10, 1–49Google ScholarPubMed
ZoBell, C. E. (1959). Ecology of sulphate reducing bacteria. Prod Mon, 22: 12–29Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×