Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T23:12:17.511Z Has data issue: false hasContentIssue false

10 - Interactions between Fire and Ecosystem Processes

from Part II - Theoretical Advances in Savanna Ecology

Published online by Cambridge University Press:  24 March 2017

Joris P. G. M. Cromsigt
Affiliation:
Swedish University of Agricultural Sciences
Sally Archibald
Affiliation:
University of the Witwatersrand, Johannesburg
Norman Owen-Smith
Affiliation:
University of the Witwatersrand, Johannesburg
Get access
Type
Chapter
Information
Conserving Africa's Mega-Diversity in the Anthropocene
The Hluhluwe-iMfolozi Park Story
, pp. 233 - 262
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10.7 References

Aitken, R. D. & Gale, G. W. (1921) Botanical survey of Natal and Zululand. Government Printing and Stationery Office, Pretoria.CrossRefGoogle Scholar
Archibald, S. (2008) African grazing lawns – how fire, rainfall, and grazer numbers interact to affect grass community states.Journal of Wildlife Management 72: 492501.CrossRefGoogle Scholar
Archibald, S. & Bond, W.J. (2004) Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna. International Journal of Wildland Fire 13: 377385.CrossRefGoogle Scholar
Archibald, S., Bond, W. J., Stock, W. D., & Fairbanks, D. H. K. (2005) Shaping the landscape: fire–grazer interactions in an African savanna. Ecological Applications 15: 96109.CrossRefGoogle Scholar
Archibald, S., Roy, D. P., van Wilgen, B. W., & Scholes, R.J. (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology 15: 613630.CrossRefGoogle Scholar
Archibald, S., Nickless, A., Govender, N., Scholes, R.J., & Lehsten, V. (2010a) Climate and the inter-annual variability of fire in southern Africa. Global Ecology and Biogeography 19: 794809.CrossRefGoogle Scholar
Archibald, S., Scholes, R. J., Roy, D. P., Roberts, G., & Boschetti, L. (2010b) Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire 19: 861878.CrossRefGoogle Scholar
Archibald, S., Staver, A. C., & Levin, S. A. (2012) Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences 109: 847852.CrossRefGoogle ScholarPubMed
Archibald, S., Lehmann, C. E., Gómez-Dans, J. L., & Bradstock, R. A. (2013) Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences 110: 64426447.CrossRefGoogle ScholarPubMed
Balfour, D. A. & Howison, O. E. (2001) Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. African Journal of Range and Forage Science 19: 4553.CrossRefGoogle Scholar
Berry, A. & Macdonald, I. A. W. (1979) Fire regime characteristics in the Hluhluwe–Corridor–Umfolozi Game Reserve Complex in Zululand. Area description and an analysis of causal factors and seasonal incidence of fire in the central complex with particular reference to the period 1955 to 1978. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Biggs, H. C. & Potgieter, A. L. F. (1999) Overview of the fire management policy of the Kruger National Park. Koedoe 42: 101111.CrossRefGoogle Scholar
Biggs, H. C. & Rogers, K. H. (2003) An adaptive system to link science, monitoring and management in practice. In The Kruger experience: ecology and management of savanna heterogeneity (eds.du Toit, J. T., Rogers, K. H., & Biggs, H. C.), pp. 5980. Island Press, Washington, DC.Google Scholar
Bond, W.J. (2005) Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. Journal of Vegetation Science 16: 261266.Google Scholar
Bond, W. J. & Archibald, S. (2003) Confronting complexity: fire policy choices in South African savanna parks. International Journal of Wildland Fire 12: 381389.CrossRefGoogle Scholar
Bond, W.J. & Midgley, G. F. (2012) Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 601612.CrossRefGoogle ScholarPubMed
Bond, W.J. & Van Wilgen, B. W. (1996) Fire and plants. Population and Community Biology series Vol. 14, Chapman and Hall, London.CrossRefGoogle Scholar
Bond, W.J., Smythe, K. A. & Balfour, D. A. (2001) Acacia species turnover in space and time in an African savanna. Journal of Biogeography 28: 117128.CrossRefGoogle Scholar
Bradstock, R. A. (2010) A biogeographic model of fire regimes in Australia: contemporary and future implications. Global Ecology and Biogeography 19: 145158.CrossRefGoogle Scholar
Brockett, B. H., Biggs, H. C., & Van Wilgen, B. W. (2001) A patch mosaic burning system for conservation areas in southern African savannas. International Journal of Wildland Fire 10: 169183.CrossRefGoogle Scholar
Browne, C. & Bond, W. (2011) Firestorms in savanna and forest ecosystems: curse or cure? Veld & Flora 97: 6263.Google Scholar
Burkepile, D. E., Burns, C. E., Tambling, C.J., et al. (2013) Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom-up and top-down forces. Ecosphere 4: 119.CrossRefGoogle Scholar
Coetsee, C., February, E. C., & Bond, W.J. (2008) Nitrogen availability is not affected by frequent fire in a South African savanna. Journal of Tropical Ecology 24: 647654.CrossRefGoogle Scholar
Coetsee, C., Bond, W.J., & February, E. C. (2010) Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162: 10271034.CrossRefGoogle Scholar
Cox, J. T. & Durrett, R. (1988) Limit theorems for the spread of epidemics and forest fires. Stochastic Processes and their Applications 30: 171191.CrossRefGoogle Scholar
East, R. (1984) Rainfall, soil nutrient status and biomass of large African savanna mammals. African Journal of Ecology 22: 245270.CrossRefGoogle Scholar
Fritz, H. & Duncan, P. (1994) On the carrying capacity for large ungulates of African savanna ecosystems. Proceedings of the Royal Society of London B: Biological Sciences 256: 7782.Google ScholarPubMed
Gill, A. M. (1975) Fire and the Australian flora: a review. Australian Forestry 38: 425.CrossRefGoogle Scholar
Govender, N., Trollope, W. S., & Van Wilgen, B. W. (2006) The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa.Journal of Applied Ecology 43: 748758.CrossRefGoogle Scholar
Hantson, S., Pueyo, S., & Chuvieco, E. (2015) Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography 24: 7786.CrossRefGoogle Scholar
Hartshorn, A. S., Coetsee, C., & Chadwick, O. A. (2009) Pyromineralization of soil phosphorus in a South African savanna. Chemical Geology 267: 2431.CrossRefGoogle Scholar
Hempson, G. P., Archibald, S., & Bond, W.J. (2015a) A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350: 10561061.CrossRefGoogle ScholarPubMed
Hempson, G. P., Archibald, S., Bond, W.J., et al. (2015b) Ecology of grazing lawns in Africa. Biological Reviews 90: 979994.CrossRefGoogle ScholarPubMed
Henkel, J. S. (1937) Report on the plant and animal ecology of the Hluhluwe Game Reserve, with special reference to tsetse flies. The Natal Witness, Pietermaritzburg, South Africa.Google Scholar
Hennenberg, K.J., Fischer, F., Kouadio, K., et al. (2006) Phytomass and fire occurrence along forest savanna transects in the Comoe National Park, Ivory Coast.Journal of Tropical Ecology 22: 303311.CrossRefGoogle Scholar
Higgins, S. I., Bond, W.J., & Trollope, W. S. (2000) Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna.Journal of Ecology 88: 213229.CrossRefGoogle Scholar
Hoffmann, W. A. & Solbrig, O. T. (2003) The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management 180: 273286.CrossRefGoogle Scholar
Hoffmann, W. A., Orthen, B., & Nascimento, P. K. V. D. (2003) Comparative fire ecology of tropical savanna and forest trees. Functional Ecology 17: 720726.CrossRefGoogle Scholar
Holdo, R. M., Mack, M. C., & Arnold, S. G. (2012) Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem.Journal of Vegetation Science 23: 352360.CrossRefGoogle Scholar
Keeley, J. E. & Rundel, P. W. (2005) Fire and the Miocene expansion of C4 grasslands. Ecology Letters 8: 683690.CrossRefGoogle Scholar
Korontzi, S., Justice, C. O., & Scholes, R. J. (2003) Influence of timing and spatial extent of savanna fires in southern Africa on atmospheric emissions.Journal of Arid Environments 54: 395404.CrossRefGoogle Scholar
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., & Bond, W. J. (2011) Deciphering the distribution of the savanna biome. New Phytologist 191: 197209.CrossRefGoogle ScholarPubMed
Little, J. K., Prior, L. D., Williamson, G.J., Williams, S. E., & Bowman, D. M. (2012) Fire weather risk differs across rain forest–savanna boundaries in the humid tropics of north-eastern Australia. Austral Ecology 37: 915925.CrossRefGoogle Scholar
Macdonald, I. A. W. & Frame, G. W. (1988) The invasion of introduced species into nature reserves in tropical savannas and dry woodlands. Biological Conservation 44: 6793.CrossRefGoogle Scholar
Maurin, O., Davies, T. J., Burrows, J. E., et al. (2014) Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytologist 204: 201214.CrossRefGoogle ScholarPubMed
McKenzie, D., Miller, C. & Falk, D. A. (2011) The landscape ecology of fire. Springer, Berlin.CrossRefGoogle Scholar
Mills, A.J. & Fey, M. V. (2004) Frequent fires intensify soil crusting: physicochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma 121: 4564.CrossRefGoogle Scholar
Mucina, L. & Rutherford, M. C. (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria.Google Scholar
Norton-Griffiths, M. (1979) The influence of grazing, browsing, and fire on the vegetation dynamics of the Serengeti. In: Serengeti: dynamics of an ecosystem (eds Sinclair, A. R. E. & Norton-Griffiths, M.), pp. 310352. University of Chicago Press, Chicago.Google Scholar
Ojima, D. S., Schimel, D. S., Parton, W.J., & Owensby, C. E. (1994) Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24: 6784.CrossRefGoogle Scholar
Osborne, C. P. (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C(4) grasslands? Journal of Ecology 96: 3545.CrossRefGoogle ScholarPubMed
Parr, C. L. & Anderson, A. N. (2006) Patch mosaic burn for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation Biology 20: 16101619.CrossRefGoogle Scholar
Pellegrini, A. F. A., Hedin, L. O., Staver, A. C., & Govender, N. (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96: 12751285.CrossRefGoogle ScholarPubMed
Polley, H. W.,Johnson, H. B., & Mayeux, H. S. (1994) Increasing CO2: comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75: 976988.CrossRefGoogle Scholar
Radke, J. (2013) Fire and firestorms. In: Encyclopedia of natural hazards SE – 134 (ed. Bobrowsky, P. T.), pp. 323324. Encyclopedia of Earth Sciences series. Springer Dordrecht.CrossRefGoogle Scholar
Reich, P. B., Peterson, D. W., Wedin, D. A., & Wrage, K. (2001) Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82: 17031719.Google Scholar
Sankaran, M., Hanan, N. P., Scholes, R.J., et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846849.CrossRefGoogle ScholarPubMed
Scheffer, M. & Carpenter, S. R. (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648656.CrossRefGoogle Scholar
Scholes, R.J. & Archer, S. R. (1997) Tree–grass interactions in savannas. Annual Review of Ecological Systematics 28: 517544.CrossRefGoogle Scholar
Scholes, R.J. & Walker, B. H. (1993) An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Scholes, R. J., Archibald, S., Colvin, C., et al. (2010) Global change risk analysis: understanding and reducing key risks to ecosystem services associated with climate change in South Africa. p. 21.Google Scholar
Scott, J. D. (1955) Principles of pasture management. In: The grasses and pastures of South Africa (ed. Meredith, D.), pp. 601623. Central News Agency, Johannesburg.Google Scholar
Simon, M. F. & Pennington, T. (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian cerrado. International Journal of Plant Sciences 173: 711723.CrossRefGoogle Scholar
Skowno, A. L., Midgley, J.J., Bond, W.J., & Balfour, D. (1999) Secondary succession in Acacia nilotica (L.) savanna in the Hluhluwe Game Reserve, South Africa. Plant Ecology 145: 19.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Stock, W. D., van Rensburg, S.J., & Waldram, M. S. (2009) Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications 19: 19091919.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Cramer, M. D., & Wakeling, J. L. (2012) Top-down determinants of niche structure and adaptation among African Acacias. Ecology Letters 15: 673679.CrossRefGoogle ScholarPubMed
Strydom, T., Rowe, T., Riddell, E., Govender, N., & Lorentz, S. (2014) Pyrohydrology in African savannas. Report 2146/1/14. Water Research Commission, Pretoria.Google Scholar
Sullivan, A. L. (2008) Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18: 387403.CrossRefGoogle Scholar
Tainton, N. M. (1985) Recent trends in grazing management philosophy in South Africa. Journal of the Grassland Society of Southern Africa 2: 46.CrossRefGoogle Scholar
Tainton, N. M., Groves, R. H., & Nash, R. (1977) Time of mowing and burning veld: short term effects on production and tiller development. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa 12: 5964.CrossRefGoogle Scholar
te Beest, M., Cromsigt, J. P. G. M., Ngobese, J., & Olff, H. (2012) Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biological Invasions 14: 607618.CrossRefGoogle Scholar
Tomor, B. M. & Owen-Smith, N. (2002) Comparative use of burnt and unburnt grassland by grazing ungulates in the Nylsvley nature reserve, South Africa. African Journal of Ecology 40: 201204.CrossRefGoogle Scholar
Trollope, W. S. W. (1974) Role of fire in preventing bush encroachment in the Eastern Cape. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa 9: 6772.CrossRefGoogle Scholar
Trollope, W. S. W. & Tainton, N. M. (2007) Effect of fire intensity on the grass and bush components of the Eastern Cape thornveld. African Journal of Range and Forage Science 3: 3742.Google Scholar
Trollope, W. S. W., Trollope, L. A., Biggs, H. C., Pienaar, D., & Potgieter, A. L. F. (1998) Long-term changes in the woody vegetation of the Kruger National Park, with special reference to the effects of elephants and fire. Koedoe 41: 103112.CrossRefGoogle Scholar
Turner, M. G., Gardner, R. H., Dale, V. H., & O'Neill, R. V. (1989) Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121129.CrossRefGoogle Scholar
Twidwell, D., Rogers, W. E., Fuhlendorf, S. D., et al. (2013) The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Frontiers in Ecology and the Environment 11: 6471.CrossRefGoogle Scholar
Van Wilgen, B. W., Govender, N., Biggs, H. C., Ntsala, D., & Funda, X. N. (2004) Response of savanna fire regimes to changing fire-management policies in a large African national park. Conservation Biology 18: 15331540.CrossRefGoogle Scholar
Van Wilgen, B. W., Govender, N. & MacFadyen, S. (2008) An assessment of the implementation and outcomes of recent changes to fire management in the Kruger National Park. Koedoe 50: 2231.CrossRefGoogle Scholar
Vincent, J. (1970) The history of Umfolozi Game Reserve, Zululand, as it relates to management. Lammergeyer 11: 748.Google Scholar
Wakeling, J. L. & Bond, W.J. (2007) Disturbance and the frequency of root suckering in an invasive savanna shrub, Dichrostachys cinerea. African Journal of Range and Forage Science 24: 7376.CrossRefGoogle Scholar
Wakeling, J. L., Staver, A. C., & Bond, W. J. (2011) Simply the best: the transition of savanna saplings to trees. Oikos 120: 14481451.CrossRefGoogle Scholar
Waldram, M. S., Bond, W.J., & Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Ward, C. J. (1962) Report on scrub control in the Hluhluwe Game Reserve. Lammergeyer 2: 5762.Google Scholar
Wigley, B.J., Bond, W.J., & Hoffman, M. (2010) Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biology 16: 964976.CrossRefGoogle Scholar
Williams, R. J. & Bradstock, R. A. (2009) Large fires and their ecological consequences: introduction to the special issue. International Journal of Wildland Fire 17: 685687.CrossRefGoogle Scholar
Wilsey, B.J. (1996) Variation in use of green flushes following burns among African ungulate species: the importance of body size. African Journal of Ecology 34: 3238.CrossRefGoogle Scholar
Yates, C. P., Edwards, A. C., & Russell-Smith, J. (2008) Big fires and their ecological impacts in Australian savannas: size and frequency matters. International Journal of Wildland Fire 17: 768781.CrossRefGoogle Scholar
Yoganand, K. & Owen-Smith, N. (2014) Restricted habitat use by an African savanna herbivore through the seasonal cycle: key resources concept expanded. Ecography 37: 969982.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×