Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T07:06:54.741Z Has data issue: false hasContentIssue false

Part II - Theoretical Advances in Savanna Ecology

Published online by Cambridge University Press:  24 March 2017

Joris P. G. M. Cromsigt
Affiliation:
Swedish University of Agricultural Sciences
Sally Archibald
Affiliation:
University of the Witwatersrand, Johannesburg
Norman Owen-Smith
Affiliation:
University of the Witwatersrand, Johannesburg
Get access
Type
Chapter
Information
Conserving Africa's Mega-Diversity in the Anthropocene
The Hluhluwe-iMfolozi Park Story
, pp. 109 - 262
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5.8 References

Andersson, C. J. (1856) Lake Ngami. Facsimile reprint in 1967 by C. S. Struik, Cape Town.Google Scholar
Arsenault, R. & Owen-Smith, N. (2002) Facilitation versus competition in grazing herbivore assemblages. Oikos 97: 313318.CrossRefGoogle Scholar
Arsenault, R. & Owen-Smith, N. (2008) Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117: 17111717.CrossRefGoogle Scholar
Arsenault, R. & Owen-Smith, N. (2011) Competition and coexistence among short grass grazers in the Hluhluwe-iMfolozi Park, South Africa. Canadian Journal of Zoology 89: 900907.CrossRefGoogle Scholar
Barnovsky, A. D. & Lindsey, E. L. (2010) Timing of Quaternary megafaunal extinctions in South America in relation to human arrival and climate change. Quaternary International 217: 1029.CrossRefGoogle Scholar
Barnovsky, A. D., Kock, P. L., Feranec, R. S., Wing, S. L., & Shabel, A. B. (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306: 7075.CrossRefGoogle Scholar
Bell, R. H. V. (1971) A grazing ecosystem in the Serengeti. Scientific American 225: 8693.CrossRefGoogle Scholar
Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J., & Zazula, G. D. (2011) Pleistocene graminoid-dominated ecosystems in the Arctic. Quaternary Science Review 30: 29062929.CrossRefGoogle Scholar
Bond, W. J. (2005) Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. Journal of Vegetation Science 16: 261266.Google Scholar
Brain, C., Forge, O., & Erb, P. (1999) Lion predation on black rhinoceros in Etosha National Park. African Journal of Ecology 37: 107109.CrossRefGoogle Scholar
Caughley, G. (1976) Plant–herbivore systems. In: Theoretical ecology (ed. May, R. M.), pp. 94113. Blackwell, Oxford.Google Scholar
Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagoma, F., & Clobert, J. (2008) Resource availability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population. Journal of Animal Ecology 77: 135144.CrossRefGoogle Scholar
Clauss, M., Frey, R., Kieffer, B., et al. (2003) The maximum attainable body size of herbivorous mammals: morphological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136: 1427.CrossRefGoogle Scholar
Clauss, M., Castell, J. C., Kienzle, E., et al. (2007) Mineral absorption in the black rhinoceros as compared with the domestic horse. Journal of Animal Physiology and Animal Nutrition 91: 193204.CrossRefGoogle ScholarPubMed
Cromsigt, J. P. G. M. (2006) Large herbivores in space: resource partitioning among savanna grazers in a heterogeneous environment. PhD thesis, University of Groningen, the Netherlands.Google Scholar
Cromsigt, J. P. G. M. & Kuijper, D. P. J. (2011) Revisiting the browsing lawn concept: evolutionary interaction of pruning herbivores? Perspectives in Plant Ecology, Evolution and Systematics 13: 207215.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. & Olff, H. (2006) Resource partitioning among savanna grazers mediated by local heterogeneity: an experimental approach. Ecology 87: 15321541.CrossRefGoogle ScholarPubMed
Cromsigt, J. P. G. M. & te Beest, M. (2014) Restoration of a megaherbivore: landscape-level impacts of white rhinoceros in Kruger National Park, South Africa. Journal of Ecology 102: 566575.CrossRefGoogle Scholar
Cromsigt, J. P. G. M., Prins, H. H. T., & Olff, H. (2009) Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Diversity and Distributions 15: 513522.CrossRefGoogle Scholar
Demment, M. W. & Van Soest, P. J. (1985) A nutritional explanation for body size patterns of ruminant and nonruminant herbivores. American Naturalist 125: 641672.CrossRefGoogle Scholar
du Toit, J. T. (1990) Feeding-height stratification among African browsing ruminants. African Journal of Ecology 28: 5561.CrossRefGoogle Scholar
du Toit, J. T. & Olff, H. (2014) Generalities in grazing and browsing ecology: using cross-guild comparisons to control contingencies. Oecologia 174: 10751083.CrossRefGoogle Scholar
du Toit, J. T. & Owen-Smith, N. (1989) Body size, population metabolism and habitat specialization among African large herbivores. The American Naturalist 133: 736740.CrossRefGoogle Scholar
Field, C. R. (1970) A study of the feeding habits of the hippopotamus in the Queen Elizabeth National Park, Uganda, with some management implications. Zoologica Africana 5: 7186.CrossRefGoogle Scholar
Field, C. R. & Laws, R. M. (1970) The distribution of the larger herbivores in the Queen Elizabeth National Park, Uganda. Journal of Applied Ecology 7: 273294.CrossRefGoogle Scholar
Fornara, D. A. & du Toit, J. T. (2007) Browsing lawns? Responses of Acacia nigrescens to ungulate browsing in an African savanna. Ecology 88: 200209.CrossRefGoogle Scholar
Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B., & Robinson, G. S. (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326: 11001103.CrossRefGoogle ScholarPubMed
Gross, J. E., Gordon, I. J., & Owen-Smith, N. (2010) Irruptive dynamics and vegetation interactions. In: Dynamics of large herbivore populations in changing environments (ed. Owen-Smith, N.), pp. 117140. Blackwell, Oxford.CrossRefGoogle Scholar
Harris, W. C. (1838) Narrative of an expedition into southern Africa during the years 1836 and 1837. John Murray, London.Google Scholar
Hempson, G., Archibald, S., Bond, W., et al. (2015) Ecology of grazing lawns in Africa. Biological Reviews 90: 979994.CrossRefGoogle ScholarPubMed
Hitchins, P. M. & Anderson, J. L. (1983) Reproduction, population characteristics and management of the black rhinoceros in the Hluhluwe/Corridor/Umfolozi Game Reserve. South African Journal of Wildlife Research 13: 7885.Google Scholar
Hooijer, D. A. & Patterson, B. (1972) Rhinoceroses from the Pliocene of north-western Kenya. Bulletin of the Museum of Comparative Zoology (Harvard University) 144: 126.Google Scholar
Janis, C. (1976) The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution 30: 757776.CrossRefGoogle ScholarPubMed
Jarman, P. J. (1974) The social organization of antelope in relation to their ecology. Behaviour 48: 215267.CrossRefGoogle Scholar
Johnson, C. N. (2009) Ecological consequences of late Quaternary extinctions of megafauna. Proceedings of the Royal Society Series B 276: 25092519.Google ScholarPubMed
Jones, C. G., Lawton, J. H., & Shachak, M. (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 19461957.CrossRefGoogle Scholar
Joubert, D. (2006) Hunting behaviour of lions (Panthera leo) on elephants (Loxodonta africana) in the Chobe National Park, Botswana. African Journal of Ecology 44: 279281.CrossRefGoogle Scholar
Kingdon, J. & Hoffmann, M. (2013) Mammals of Africa Volume VI. Bloomsbury, London.Google Scholar
Kleynhans, E. J., Jolles, A. E., Bos, M. R. E., & Olff, H. (2011) Resource partitioning along multiple niche dimensions in differently sized African savanna grazers. Oikos 120: 591600.CrossRefGoogle Scholar
Laws, R. M. (1969) The Tsavo Research Project. Journal of Reproduction and Fertility, Supplement 6: 495531.Google Scholar
Laws, R. M. (1970) Elephants as agents of habitat and landscape change in East Africa. Oikos 21: 115.CrossRefGoogle Scholar
Laws, R. M., Parker, I. S. C., & Johnstone, R. C. B. (1975) Elephants and their habitats. The ecology of elephants in North Bunyoro, Uganda. Clarendon Press, Oxford.Google Scholar
Loveridge, A. J., Hunt, J. E., Murindagomo, F., & Macdonald, D. (2006) Influence of drought on predation of elephant calves by lions in an African savanna woodland. Journal of Zoology 270: 523530.CrossRefGoogle Scholar
Makhabu, S. W., Skarpe, C., & Hytteborn, H. (2006) Elephant impact on shoot distribution on trees and on rebrowsing by smaller browsers. Acta Oecologia 30: 136146.CrossRefGoogle Scholar
Marshall, P. J. and Sayer, J. A. (1976) Population ecology and response to cropping of a hippopotamus population in eastern Zambia. Journal of Applied Ecology 13: 391404.CrossRefGoogle Scholar
McNaughton, S. J. (1984) Grazing lawns: animals in herds, plant form and coevolution. American Naturalist 124: 863886.CrossRefGoogle Scholar
Mduma, S. A. R. & Hopcraft, J. G. C. (1995) The main herbivorous mammals and crocodiles in the Greater Serengeti Ecosystem. In: Serengeti III (eds Sinclair, A. R. E., Packer, C., Mduma, S. A. R., & Fryxell, J. M.), pp. 497499. University of Chicago Press, Chicago.Google Scholar
Muller, D. W. H., Codron, D., Meloro, C., et al. (2013) Assessing the Jarman–Bell Principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comparative Biochemistry and Physiology Part A 164: 129149.CrossRefGoogle ScholarPubMed
O'Kane, C. A. J., Duffey, K. J., Page, B. R., & Macdonald, D. W. (2011) Overlap and seasonal shifts in use of woody plant species amongst a guild of savanna browsers. Journal of Tropical Ecology 27: 249258.CrossRefGoogle Scholar
O'Kane, C. A. J., Duffey, K. J., Page, B. R., & Macdonald, D. W. (2013) Effects of resource limitation on habitat usage by the browser guild in Hluhluwe-iMfolozi Park, South Africa. Journal of Tropical Ecology 29: 3947.CrossRefGoogle Scholar
Olivier, R. C. D. & Laurie, W. A. (1974) Habitat utilization by hippopotamus in the Mara river. East African Wildlife Journal 12: 249272.CrossRefGoogle Scholar
Olofsson, J., Kitti, H., Rautiainen, P., Stark, S., & Oksanen, L. (2001) Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. Ecography 24: 1324.CrossRefGoogle Scholar
Owen-Smith, N. (1974) The social system of the white rhinoceros. In: The behaviour of ungulates and its relation to management (eds Geist, V. & Walther, F.), pp. 341351. IUCN Publication new series no. 24, IUCN, Morges.Google Scholar
Owen-Smith, N. (1975) The social ethology of the white rhinoceros. Zeitschrift fur Tierpsychologie 38: 337384.CrossRefGoogle Scholar
Owen-Smith, N. (1981) The white rhinoceros overpopulation problem, and a proposed solution. In: Problems in management of locally abundant wild mammals (eds Jewell, P. A., Holt, S., & Hart, D.), pp. 129150. Academic Press, New York.CrossRefGoogle Scholar
Owen-Smith, N. (1983) Dispersal and the dynamics of large herbivore populations in enclosed areas. In: Management of large mammals in African conservation areas (ed. Owen-Smith, R. N.), pp. 127143. Haum, Pretoria.Google Scholar
Owen-Smith, N. (1987) Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13: 351362.CrossRefGoogle Scholar
Owen-Smith, N. (1988) Megaherbivores. The influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Owen-Smith, N. (1989) Megafaunal extinctions: the conservation message from 11 000 years BP. Conservation Biology 3: 405412.CrossRefGoogle Scholar
Owen-Smith, N. (2013a) Megaherbivores. In: Encyclopedia of biodiversity (ed. Levin, S. A.), pp. 223239. Academic Press, Waltham, MA.CrossRefGoogle Scholar
Owen-Smith, N. (2013b) Contrasts in the large herbivore faunas of the southern continents in the late Pleistocene and the ecological implications for human origins. Journal of Biogeography 40: 12151224.CrossRefGoogle Scholar
Owen-Smith, N. & Mills, M. G. L. (2008) Shifting prey selection generates contrasting herbivore dynamics within a large-mammal predator–prey web. Ecology 89: 11201133.CrossRefGoogle ScholarPubMed
Pienaar, U. de V. (1969) Predator–prey relationships among the large mammals of the Kruger National Park. Koedoe 12: 108176.CrossRefGoogle Scholar
Prins, H. H. T. & Olff, H. (1998) Species richness of African grazer assemblages: towards a functional explanation. In: Dynamics of tropical ecosystems (eds Newberry, D. N., Prins, H. H. T., & Brown, N.), pp. 449490. Blackwell, Oxford.Google Scholar
Ritchie, M. E. & Olff, H. (1999) Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400: 557560.CrossRefGoogle ScholarPubMed
Rule, S., Brook, B. W., Haberle, S. G., et al. (2012) The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335: 14831486.CrossRefGoogle ScholarPubMed
Selous, F. C. (1899) The white or square-mouthed rhinoceros. In: Great and small game of Africa (ed. Bryden, H. A.), pp. 5267. Rowland Ward, London.Google Scholar
Shrader, A. M., Owen-Smith, N. & Ogutu, J. O. (2006) Food intake rate and nutrient gains of a mega-grazer, the white rhinoceros, through the dry season. Functional Ecology 20: 376384.CrossRefGoogle Scholar
Smith, A. (1849) Illustrations of the zoology of South Africa. Mammals. London.Google Scholar
Stock, W. D., Bond, W. J., & van de Vijver, C. A. D. M. (2010) Herbivore and nutrient control of lawn and bunch grass distributions in a southern African savanna. Plant Ecology 206: 1527.CrossRefGoogle Scholar
van der Wal, R., Bardgett, R. D., Harrison, K. A., & Stien, A. (2004) Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography 134: 242252.CrossRefGoogle Scholar
Vera, F. W. M., Bakker, E. S. & Olff, H. (2006) Large herbivores: missing partners of western European light-demanding tree and shrub species? In: Large herbivore ecology, ecosystem dynamics and conservation (eds Danell, K., Bergstrom, R., Duncan, P., & Pastor, J.), pp. 203231. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Waldram, M. S., Bond, W. J., & Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Zimov, S. A., Chuprynin, V. I., Oreshko, A. P., et al. (1995) Steppe–tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. American Naturalist 146: 765794.CrossRefGoogle Scholar

6.9 References

Agnew, W., Uresk, D. W., & Hansen, R. M. (1986) Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota. Journal of Range Management 39: 135139.CrossRefGoogle Scholar
Anderson, T. M., Fokkema, W., Valls-Fox, H., & Olff, H. (2013) Distinct physiological responses underlie defoliation tolerance in African lawn and bunch grasses. International Journal of Plant Sciences 174: 769778.CrossRefGoogle Scholar
Archibald, S. (2008) African grazing lawns – how fire, rainfall, and grazer numbers interact to affect grass community states. The Journal of Wildlife Management 72: 492501.CrossRefGoogle Scholar
Archibald, S. & Bond, W. J. (2004) Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna. International Journal of Wildland Fire 13: 19.CrossRefGoogle Scholar
Archibald, S., Bond, W. J., Stock, W. D., & Fairbanks, D. H. K. (2005) Shaping the landscape: fire–grazer interactions in an African savanna. Ecological Applications 15: 96109.CrossRefGoogle Scholar
Arnold, S. G., Anderson, T. M., & Holdo, R. M. (2014) Edaphic, nutritive, and species assemblage differences between hotspots and matrix vegetation: two African case studies. Biotropica 46: 387394.CrossRefGoogle Scholar
Arsenault, R. & Owen-Smith, N. (2008) Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117: 17111717.CrossRefGoogle Scholar
Arsenault, R. & Owen-Smith, N. (2011) Competition and coexistence among short-grass grazers in the Hluhluwe-iMfolozi Park, South Africa. Canadian Journal of Zoology 89: 900907.CrossRefGoogle Scholar
Arshad, M. A. (1982) Influence of the termite Macrotermes michaelseni (Sjost) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems 8: 4758.CrossRefGoogle Scholar
Askins, R. A., Chávez-Ramírez, F., Dale, B. C., et al. (2007) Conservation of grassland birds in North America: understanding ecological processes in different regions. Ornithological Monographs 64: 146.Google Scholar
Augustine, D. J. (2003) Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. Journal of Applied Ecology 40: 137149.CrossRefGoogle Scholar
Augustine, D. J. & McNaughton, S. J. (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. Journal of Wildlife Management 62: 11651183.CrossRefGoogle Scholar
Augustine, D. J. & McNaughton, S. J. (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9: 12421256.CrossRefGoogle Scholar
Augustine, D. J. & Skagen, S. K. (2014) Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe. Journal of Wildlife Management 78: 595602.CrossRefGoogle Scholar
Augustine, D. J., McNaughton, S. J., & Frank, D. A. (2003) Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecological Applications 13: 13251337.CrossRefGoogle Scholar
Bartlett, M. K., Scoffoni, C., & Sack, L. (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters 15: 393405.CrossRefGoogle ScholarPubMed
Bell, R. H. V. (1971) A grazing ecosystem in the Serengeti. Scientific American 225: 8694.CrossRefGoogle Scholar
Blackmore, A. C., Mentis, M. T., & Scholes, R. J. (1990) The origin and extent of nutrient-enriched patches within a nutrient-poor savanna in South Africa. Journal of Biogeography 17: 463470.CrossRefGoogle Scholar
Bond, W. J., Smythe, K., & Balfour, D. A. (2001) Acacia species turnover in space and time in an African savanna. Journal of Biogeography 28: 117128.CrossRefGoogle Scholar
Bonnet, O., Fritz, H., Gignoux, J., & Meuret, M. (2010) Challenges of foraging on a high-quality but unpredictable food source: the dynamics of grass production and consumption in savanna grazing lawns. Journal of Ecology 98: 908916.CrossRefGoogle Scholar
Brooks, P. M. & Macdonald, I. A. W. (1983) The Hluhluwe-Umfolozi Reserve: an ecological case history. In: Management of large mammals in African conservation areas (ed. Owen-Smith, N.), pp. 5177. Haum Educational Publishers, Pretoria.Google Scholar
Brooks, S. J. (2001) Changing nature: a critical historical geography of the Umfolozi and Hluhluwe Game Reserves, Zululand, 1887 to 1947. PhD thesis, Queen's University, Kingston, Canada.Google Scholar
Clauss, M., Castell, J. C., Kienzle, E., et al. (2007) Mineral absorption in the black rhinoceros (Diceros bicornis) as compared with the domestic horse. Journal of Animal Physiology and Animal Nutrition 91: 193204.CrossRefGoogle ScholarPubMed
Coetsee, C., Stock, W. D., & Craine, J. M. (2010) Do grazers alter nitrogen dynamics on grazing lawns in a South African savannah? African Journal of Ecology 49: 6269.CrossRefGoogle Scholar
Coughenour, M. B. (1985) Graminoid responses to grazing by large herbivores – adaptations, exaptations, and interacting processes. Annals of the Missouri Botanical Garden 72: 852863.CrossRefGoogle Scholar
Craig, T. P. (2010) The resource regulation hypothesis and positive feedback loops in plant–herbivore interactions. Population Ecology 52: 461473.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. (2006) Large herbivores in space: resource partitioning among savanna grazers in a heterogeneous environment. PhD thesis, University of Groningen, Groningen.Google Scholar
Cromsigt, J. P. G. M. & Kuijper, D. P. J. (2011) Revisiting the browsing lawn concept: evolutionary interactions or pruning herbivores? Perspectives in Plant Ecology, Evolution or Systematics 13: 207215.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. & Olff, H. (2008) Dynamics of grazing lawn formation: an experimental test of the role of scale-dependent processes. Oikos 117: 14441452.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. & te Beest, M. (2014) Restoration of a megaherbivore: landscape-level impacts of white rhinoceros in Kruger National Park, South Africa. Journal of Ecology 102: 566575.CrossRefGoogle Scholar
Cromsigt, J. P. G. M., Prins, H. H. T. & Olff, H. (2009) Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Diversity and Distributions 15: 513522.CrossRefGoogle Scholar
Currie, G. (2003) The impact of megaherbivore grazers on grasshopper communities via grassland conversion in a savannah ecosystem. Honours thesis, University of Cape Town, Cape Town.Google Scholar
Davies, A. B., Robertson, M. P., Levick, S. R., et al. (2014) Variable effects of termite mounds on African savanna grass communities across a rainfall gradient. Journal of Vegetation Science 25: 14051416.CrossRefGoogle Scholar
Deane, N. N. (1966) Ecological changes and their effect on a population of reedbuck (Redunca arundinum (Boddaert)). Lammergeyer 6: 28.Google Scholar
Desmond, M. J. (2004) Effects of grazing practices and fossorial rodents on a winter avian community in Chihuahua, Mexico. Biological Conservation 116: 235242.CrossRefGoogle Scholar
Downing, B. H. (1972) A plant ecological survey of the Imfolozi Game Reserve, Zululand. PhD thesis, University of Natal, Durban.Google Scholar
Du Plessis, S. S. (1972) Ecology of blesbok with special reference to productivity. Wildlife Monographs 30: 170.Google Scholar
Eltringham, S. K. (1974) Changes in the large mammal community of Mweya Peninsula, Rwenzori National Park, Uganda, following removal of hippopotamus. Journal of Applied Ecology 11: 855865.CrossRefGoogle Scholar
Feely, J. M. (1980) Did Iron Age man have a role in the history of Zululand's wilderness landscapes? South African Journal of Science 76: 150152.Google Scholar
Feely, J. M. (2004) Prehistoric use of woodland and forest by farming peoples in South Africa. In: Indigenous forests and woodlands: policy, people and practice (eds Lawes, M. J., Eeley, H. A. C., Shackleton, C. M., & Geach, B. G. S.), pp. 284286. University of KwaZulu-Natal Press, Pietermaritzburg.Google Scholar
Frank, D. A., Groffman, P. M., Evans, R. D., & Tracy, B. F. (2000) Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia 123: 116121.CrossRefGoogle ScholarPubMed
Fuhlendorf, S. D. & Engle, D. M. (2001) Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns. BioScience 51: 625632.CrossRefGoogle Scholar
Gandar, M. V., Huntley, B. J., & Walker, B. H. (1982) Trophic ecology and plant/herbivore energetics. In: Ecology of tropical savannas (eds Huntley, B. J. & Walker, B. H.), pp. 514534. Springer Verlag, Berlin.CrossRefGoogle Scholar
Girma, F. S. & Krieg, D. R. (1992) Osmotic adjustment in sorghum. 1. Mechanisms of diurnal osmotic potential changes. Plant Physiology 99: 577582.CrossRefGoogle ScholarPubMed
Gosling, C. M. (2014) Biotic determinants of heterogeneity in a South African savanna. PhD thesis, University of Groningen, Groningen.Google Scholar
Gosling, C. M., Cromsigt, J. P. G. M., & Olff, H. (2011) Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savanna. Ecosystems 15: 128139.CrossRefGoogle Scholar
Grant, C. C. & Scholes, M. C. (2006) The importance of nutrient hot-spots in the conservation and management of large wild mammalian herbivores in semi-arid savannas. Biological Conservation 130: 426437.CrossRefGoogle Scholar
Hagenah, N., Prins, H. H. T., & Olff, H. (2009) Effects of large herbivores on murid rodents in a South African savanna. Journal of Tropical Ecology 25: 483492.CrossRefGoogle Scholar
Hall, M. (1984) Prehistoric farming in the Mfolozi and Hluhluwe valleys of southeast Africa: an archaeo-botanical survey. Journal of Archaeological Science 11: 223235.CrossRefGoogle Scholar
Hempson, G. P., Archibald, S., Bond, W. J., et al. (2015) Ecology of grazing lawns in Africa. Biological Reviews 90: 979994.CrossRefGoogle ScholarPubMed
Illius, A. W. & O'Connor, T. G. (2000) Resource heterogeneity and ungulate population dynamics. Oikos 89: 283294.CrossRefGoogle Scholar
Jouquet, P., Boulain, N., Gignoux, J. & Lepage, M. (2004) Association between subterranean termites and grasses in a West African savanna: spatial pattern analysis shows a significant role for Odontotermes n. pauperans. Applied Soil Ecology 27: 99107.CrossRefGoogle Scholar
Karki, J. B., Jhala, Y. V., & Khanna, P. P. (2000) Grazing lawns in Terai Grasslands, Royal Bardia National Park, Nepal. Biotropica 32: 423429.CrossRefGoogle Scholar
Kim, H., Anderson, S. H., Motavalli, P. P., & Gantzer, C. J. (2010) Compaction effects on soil macropore geometry and related parameters for an arable field. Geoderma 160: 244251.CrossRefGoogle Scholar
Kleynhans, E. J., Jolles, A. E., Bos, M. R. E., & Olff, H. (2011) Resource partitioning along multiple niche dimensions in differently sized African savanna grazers. Oikos 120: 591600.CrossRefGoogle Scholar
Knapp, A. K., Blair, J. M., Briggs, J. M., et al. (1999) The keystone role of bison in North American tallgrass prairie. BioScience 49: 3950.CrossRefGoogle Scholar
Krook, K., Bond, W. J., & Hockey, P. A. R. (2007) The effect of grassland shifts on the avifauna of a South African savanna. Ostrich – Journal of African Ornithology 78: 271279.CrossRefGoogle Scholar
Lock, J. M. (1972) The effects of hippopotamus grazing on grassland. Journal of Ecology 60: 445467.CrossRefGoogle Scholar
McNaughton, S. J. (1983) Compensatory growth as a response to herbivory. Oikos 40: 329336.CrossRefGoogle Scholar
McNaughton, S. J. (1984) Grazing lawns: animals in herds, plant form, and coevolution. American Naturalist 124: 863886.CrossRefGoogle Scholar
McNaughton, S. J. (1985) Ecology of a grazing ecosystem: the Serengeti. Ecological Monographs 55: 259294.CrossRefGoogle Scholar
McNaughton, S. J. (1988) Mineral-nutrition and spatial concentrations of African ungulates. Nature 334: 343345.CrossRefGoogle ScholarPubMed
McNaughton, S. J., Banyikwa, F. F., & McNaughton, M. M. (1997) Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278(5344): 17981800.CrossRefGoogle ScholarPubMed
Mgobozi, M. P. (2008) Spider community responses to Chromolaena odorata invasion, grassland type and grazing intensities. MSc thesis, University of Pretoria, Pretoria.Google Scholar
Milchunas, D. G., Sala, O. E., & Lauenroth, W. K. (1988) A generalized-model of the effects of grazing by large herbivores on grassland community structure. American Naturalist 132: 87106.CrossRefGoogle Scholar
Mills, A. J., Milewski, A., Fey, M. V., Groengroeft, A., & Petersen, A. (2009) Fungus culturing, nutrient mining and geophagy: a geochemical investigation of Macrotermes and Trinervitermes mounds in southern Africa. Journal of Zoology 278: 2435.CrossRefGoogle Scholar
Morgan, J. W. & Lunt, I. D. (1999) Effects of time-since-fire on the tussock dynamics of a dominant grass (Themeda triandra) in a temperate Australian grassland. Biological Conservation 88: 379386.CrossRefGoogle Scholar
Novellie, P. (1990) Habitat use by indigenous grazing ungulates in relation to sward structure and veld condition. Journal of the Grassland Society of Southern Africa 7: 1623.CrossRefGoogle Scholar
Novellie, P. & Gaillard, A. (2013) Long-term stability of grazing lawns in a small protected area, the Mountain Zebra National Park. Koedoe 55: 17.CrossRefGoogle Scholar
Olivier, R. C. D. & Laurie, W. A. (1974) Habitat utilization by hippopotamus in the Mara river. African Journal of Ecology 12: 249271.CrossRefGoogle Scholar
Owen-Smith, N. (1973) The behavioural ecology of the white rhinoceros. PhD thesis, University of Wisconsin, Madison, WI.Google Scholar
Owen-Smith, N. (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Owen-Smith, N. (2004) Functional heterogeneity in resources within landscapes and herbivore population dynamics. Landscape Ecology 19: 761771.CrossRefGoogle Scholar
Person, B. T., Herzog, M. P., Ruess, R. W., et al. (2003) Feedback dynamics of grazing lawns: coupling vegetation change with animal growth. Oecologia 135: 583592.CrossRefGoogle ScholarPubMed
Roberts, C. M. (2009) Marsupial grazing lawns in Tasmania: maintenance, biota and the effects of climate change. PhD thesis, University of Tasmania.Google Scholar
Scholes, R. J. (2003) Convex relationships in ecosystems containing mixtures of trees and grass. Environmental and Resource Economics 26: 559574.CrossRefGoogle Scholar
Shrader, A. M. & Perrin, M. R. (2006) Influence of density on the seasonal utilization of broad grassland types by white rhinoceroses. African Zoology 41: 312315.CrossRefGoogle Scholar
Stock, W. D., Bond, W. J., & Van de Vijver, C. A. D. M. (2010) Herbivore and nutrient control of lawn and bunch grass distributions in a southern African savanna. Plant Ecology 206: 1527.CrossRefGoogle Scholar
Swemmer, T. (1998) The distribution and ecology of grazing lawns in a South African savannah ecosystem. Honours thesis, University of Cape Town, Cape Town.Google Scholar
Tracy, B. & McNaughton, S. J. (1995) Elemental analysis of mineral lick soils from the Serengeti National Park, the Konza Prairie and Yellowstone National Park. Ecography 18: 9194.CrossRefGoogle Scholar
Valls-Fox, H., Bonnet, O., Cromsigt, J. P. G. M., Fritz, H., & Shrader, A. M. (2015) Legacy effects of different land-use histories interact with current grazing patterns to determine grazing lawn properties. Ecosystems 18: 720733.CrossRefGoogle Scholar
Van de Vijver, C. A. D. M., Poot, P., & Prins, H. H. T. (1999) Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna. Plant and Soil 214: 173185.CrossRefGoogle Scholar
Van der Plas, F., Anderson, T. M., & Olff, H. (2012) Trait similarity patterns within grass and grasshopper communities: multitrophic community assembly at work. Ecology 93: 836846.CrossRefGoogle ScholarPubMed
Van der Plas, F., Zeinstra, P., Veldhuis, M., et al. (2013) Responses of savanna lawn and bunch grasses to water limitation. Plant Ecology 214: 11571168.CrossRefGoogle Scholar
Van der Waal, C., Kool, A., Meijer, S. S., et al. (2011) Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165: 10951107.CrossRefGoogle ScholarPubMed
Veldhuis, M. P., Howison, R. A., Fokkema, R. W., Tielens, E., & Olff, H. (2014) A novel mechanism for grazing lawn formation: large herbivore-induced modification of the plant–soil water balance. Journal of Ecology 102: 15061517.CrossRefGoogle Scholar
Veldhuis, M. P., Fakkert, H. F., Berg, M. P., & Olff, H. (2016). Grassland structural heterogeneity in a savanna is driven more by productivity differences than by consumption differences between lawn and bunch grasses. Oecologia 182: 841853.CrossRefGoogle Scholar
Verweij, R. J. T., Verrelst, J., Loth, P. E., Heitkönig, I. M. A. & Brunsting, A. M. H. (2006) Grazing lawns contribute to the subsistence of mesoherbivores on dystrophic savannas. Oikos 114: 108116.CrossRefGoogle Scholar
Vesey-Fitzgerald, D. F. (1960) Grazing succession among East African game animals. Journal of Mammalogy 41: 161172.CrossRefGoogle Scholar
Vos, I. A. (2010) Spatial heterogeneity of resources – variation in space and time in the distribution and persistence of grazing lawns. MSc thesis, Utrecht University, Utrecht.Google Scholar
Waldram, M. S., Bond, W.J., & Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Walters, M., Midgley, J. J., & Somers, M. J. (2004) Effects of fire and fire intensity on the germination and establishment of Acacia karroo, Acacia nilotica, Acacia luederitzii and Dichrostachys cinerea in the field. BMC Ecology 4: 113.CrossRefGoogle ScholarPubMed
Wood, T. G. & Sands, W. (1978) The role of termites in ecosystems. In: Production ecology of ants and termites (ed. Brian, M. V.), pp. 245292. Cambridge University Press, Cambridge.Google Scholar
Young, T. P., Patridge, N., & Macrae, A. (1995) Long-term glades in acacia bushland and their edge effects in Laikipia, Kenya. Ecological Applications 5: 97108.CrossRefGoogle Scholar

7.6 References

Archibald, S. & Bond, W. J. (2003) Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102: 314.CrossRefGoogle Scholar
Archibald, S., Bond, W. J., Stock, W. D., & Fairbanks, D. H. K. (2005) Shaping the landscape: fire–grazer interactions in an African savanna. Ecological Applications 15: 96109.CrossRefGoogle Scholar
Balfour, D. A. & Howison, O. E. (2002) Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. African Journal of Range and Forage Science 19: 4553.CrossRefGoogle Scholar
Balfour, D. A. & Midgley, J.J. (2008) A demographic perspective on bush encroachment by Acacia karroo in Hluhluwe-Imfolozi Park, South Africa. African Journal of Range and Forage Science 25: 147151.CrossRefGoogle Scholar
Bergengren, J. C., Waliser, D. E., & Yung, Y. L. (2011) Ecological sensitivity: a biospheric view of climate change. Climatic Change 107: 433457.CrossRefGoogle Scholar
Bond, W.J. (2008) What limits trees in C4 grasslands and savannas? Annual Review of Ecology, Evolution, and Systematics 39: 641659.CrossRefGoogle Scholar
Bond, W.J. & Loffell, D. (2001) Introduction of giraffe changes acacia distribution in a South African savanna. African Journal of Ecology 39: 286294.CrossRefGoogle Scholar
Bond, W. J. & Midgley, G. F. (2012) CO2 and the uneasy interactions of trees and savanna grasses. Philosophical Transactions Royal Society B 367: 601612.CrossRefGoogle Scholar
Bond, W.J. & Van Wilgen, B. W. (1996) Fire and plants. Chapman and Hall, London.CrossRefGoogle Scholar
Bond, W.J., Smythe, K. A. & Balfour, D. A. (2001) Acacia species turnover in space and time in an African savanna. Journal of Biogeography 28: 117128.CrossRefGoogle Scholar
Bond, W.J., Midgley, G. F., & Woodward, F.I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology 9: 973982.CrossRefGoogle Scholar
Bond, W. J., Cook, G., & Williams, R. J. (2012) Which trees dominate in savannas? The escape hypothesis and eucalypts in northern Australia. Austral Ecology 37: 678685.CrossRefGoogle Scholar
Boundja, R. P. & Midgley, J.J. (2010) Patterns of elephant impact on woody plants in the Hluhluwe-Imfolozi Park, KwaZulu-Natal, South Africa. African Journal of Ecology 48: 206214.CrossRefGoogle Scholar
Buitenwerf, R., Bond, W. J., Stevens, N., & Trollope, W. S. W. (2012) Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biology 18: 675684.CrossRefGoogle Scholar
Cramer, M. D. & Bond, W.J. (2013) N-fertilization does not alleviate grass competition induced reduction of growth of African savanna species. Plant and Soil 366: 563574.CrossRefGoogle Scholar
Cramer, M. D., Chimphango, S. B. M., Van Cauter, A., Waldram, M. S., & Bond, W.J. (2007) Grass competition induces N2 fixation in some species of African Acacia. Journal of Ecology 95: 11231133.CrossRefGoogle Scholar
Cramer, M. D., van Cauter, A., & Bond, W.J. (2010) Growth of N2-fixing African savanna Acacia spp. is constrained by below-ground competition with grass. Journal of Ecology 98: 156167.CrossRefGoogle Scholar
Cramer, M. D., Wakeling, J. L., & Bond, W.J. (2012) Belowground competitive suppression of seedling growth by grass in an African savanna. Plant Ecology 213: 16551666.CrossRefGoogle Scholar
Dublin, H. T., Sinclair, A. R., & McGlade, J. (1990) Elephants and fire as causes of multiple stable states in the Serengeti–Mara woodlands. Journal of Animal Ecology 59: 11471164.CrossRefGoogle Scholar
February, E. C., Higgins, S. I., Bond, W.J., & Swemmer, L. (2013) Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94: 11551164.CrossRefGoogle ScholarPubMed
Gordijn, P.J., Rice, E., & Ward, D. (2012) The effects of fire on woody plant encroachment are exacerbated by succession of trees of decreased palatability. Perspectives in Plant Ecology, Evolution and Systematics 14: 411422.CrossRefGoogle Scholar
Higgins, S. I. & Scheiter, S. (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488: 209212.CrossRefGoogle Scholar
Higgins, S. I., Bond, W. J., & Trollope, W. S. (2000) Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. Journal of Ecology 88: 213229.CrossRefGoogle Scholar
Higgins, S. I., Bond, W. J., Combrink, H., et al. (2012) Which traits determine shifts in the abundance of tree species in a fire-prone savanna? Journal of Ecology 100: 14001410.CrossRefGoogle Scholar
Hoffmann, W. A., Adasme, R., Haridasan, M., et al. (2009) Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 90: 13261337.CrossRefGoogle Scholar
Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., et al. (2012) Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters 15: 759768.CrossRefGoogle ScholarPubMed
Holdo, R. M., Holt, R. D., & Fryxell, J. M. (2009) Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications 19: 95109.CrossRefGoogle ScholarPubMed
Jurena, P. N. & Archer, S. (2003) Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84: 907919.CrossRefGoogle Scholar
Kgope, B. S., Bond, W.J., & Midgley, G. F. (2010) Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecology 35: 451463.CrossRefGoogle Scholar
Maze, K. E. (2001) Fire survival and life histories of Acacia and Dichrostachys species in a South African savanna. MSc thesis, University of Cape Town, Cape Town.Google Scholar
Midgley, J.J. & Bond, W.J. (2001) A synthesis of the demography of African acacias. Journal of Tropical Ecology 17: 871886.CrossRefGoogle Scholar
Midgley, J.J., McLean, P., Botha, M., & Balfour, D. (2001) Why do some African thorn trees (Acacia spp.) have a flat-top: a grazer–plant mutualism hypothesis? African Journal of Ecology 39: 226228.CrossRefGoogle Scholar
Midgley, J. J., Lawes, M. J., & Chamaillé-Jammes, S. (2010) Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Australian Journal of Botany 58: 111.CrossRefGoogle Scholar
Moncrieff, G. R., Kruger, L. M., & Midgley, J. J. (2008) Stem mortality of Acacia nigrescens induced by the synergistic effects of elephants and fire in Kruger National Park, South Africa. Journal of Tropical Ecology 24: 655662.CrossRefGoogle Scholar
Moncrieff, G. R., Chamaillé-Jammes, S., Higgins, S. I., O'Hara, R. B., & Bond, W.J. (2011) Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology 92: 23102315.CrossRefGoogle Scholar
Moncrieff, G. R., Scheiter, S., Bond, W. J., & Higgins, S. I. (2014) Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New Phytologist 201: 908915.CrossRefGoogle ScholarPubMed
O'Connor, T. G. & Crow, V. R. T. (1999) Rate and pattern of bush encroachment in Eastern Cape savanna and grassland. African Journal of Range and Forage Science 16: 2631.CrossRefGoogle Scholar
O'Connor, T. G., Puttick, J. R., & Hoffman, M. T. (2014) Bush encroachment in southern Africa: changes and causes. African Journal of Range & Forage Science 31: 6788.CrossRefGoogle Scholar
O'Kane, C. A., Duffy, K. J., Page, B. R., & Macdonald, D. W. (2012) Heavy impact on seedlings by the impala suggests a central role in woodland dynamics. Journal of Tropical Ecology 28: 291297.CrossRefGoogle Scholar
Owen-Smith, N. (1987) Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13: 351362.CrossRefGoogle Scholar
Parr, C. L., Gray, E. F., & Bond, W.J. (2012) Cascading biodiversity and functional consequences of a global change-induced biome switch. Diversity and Distributions 18: 493503.CrossRefGoogle Scholar
Prins, H. H. T. & van der Jeugd, H. P. (1993) Herbivore population crashes and woodland structure in East Africa. Journal of Ecology 81: 305314.CrossRefGoogle Scholar
Russell, J. M. & Ward, D. (2014) Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing 35: 904926.CrossRefGoogle Scholar
Sankaran, M., Augustine, D.J., & Ratnam, J. (2013) Native ungulates of diverse body sizes collectively regulate long-term woody plant demography and structure of a semi-arid savanna. Journal of Ecology 101: 13891399.CrossRefGoogle Scholar
Scheiter, S. & Higgins, S. I. (2009) Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Global Change Biology 15: 22242246.CrossRefGoogle Scholar
Scheiter, S., Higgins, S. I., Osborne, C. P., et al. (2012) Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. New Phytologist 195: 653666.CrossRefGoogle ScholarPubMed
Scholes, R. J. & Archer, S. R. (1997) Tree–grass interactions in savannas. Annual Review of Ecology and Systematics 28: 517544.CrossRefGoogle Scholar
Scholes, R.J. & Walker, B. H. (1993) An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Schutz, A. E. N., Bond, W. J., & Cramer, M. D. (2009) Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160: 235246.CrossRefGoogle Scholar
Silva, L. C., Hoffmann, W. A., Rossatto, D. R., et al. (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil 373: 829842.CrossRefGoogle Scholar
Skarpe, C., Aarrestad, P. A., Andreassen, H. P., et al. (2004) The return of the giants: ecological effects of an increasing elephant population. Ambio 33: 276282.CrossRefGoogle ScholarPubMed
Skowno, A. L., Midgley, J. J., Bond, W. J., & Balfour, D. (1999) Secondary succession in Acacia nilotica (L.) savanna in the Hluhluwe Game Reserve, South Africa. Plant Ecology 145: 19.CrossRefGoogle Scholar
Staver, A. C. & Bond, W. J. (2014) Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. Journal of Ecology 102: 595602.CrossRefGoogle Scholar
Staver, A. C. & Levin, S. A. (2012) Integrating theoretical climate and fire effects on savanna and forest systems. American Naturalist 180: 211224.CrossRefGoogle ScholarPubMed
Staver, A. C., Bond, W.J., Stock, W. D., van Rensburg, S.J., & Waldram, M. S. (2009) Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications 19: 19091919.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., & February, E. C. (2011) History matters: tree establishment variability and species turnover in an African savanna. Ecosphere 2: art49.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Cramer, M. D., & Wakeling, J. L. (2012) Top-down determinants of niche structure and adaptation among African Acacias. Ecology Letters 15: 673679.CrossRefGoogle ScholarPubMed
Stevens, N. (2014) Exploring the potential impacts of global change on the woody component of South African savannas. PhD thesis, University of Cape Town, Cape Town.Google Scholar
Svenning, J. C. (2002) A review of natural vegetation openness in north-western Europe. Biological Conservation 104: 133148.CrossRefGoogle Scholar
Tedder, M., Kirkman, K., Morris, C. & Fynn, R. (2014) Tree–grass competition along a catenal gradient in a mesic grassland, South Africa. Grassland Science 60: 18.CrossRefGoogle Scholar
Trollope, W. S. W. (1984) Fire in savanna. In: Ecological effects of fire in South African ecosystems (eds de V. Booysen, P. & Tainton, N. M.), pp. 149176. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Trollope, W. S. W. (1993) Fire regime of the Kruger National Park for the period 1980–1992. Koedoe 36: 4552.CrossRefGoogle Scholar
Trollope, W. S. W., Potgieter, A. L. F., & Zambatis, N. (1995) Effect of fire intensity on the mortality and topkill of bush in the Kruger National Park in South Africa. Bulletin of the Grassland Society of Southern Africa 6: 66.Google Scholar
Viljoen, A.J. (1995) The influence of the 1991/92 drought on the woody vegetation of the Kruger National Park. Koedoe 38: 8597.CrossRefGoogle Scholar
Wakeling, J. L. & Bond, W.J. (2007) Disturbance and the frequency of root suckering in an invasive savanna shrub, Dichrostachys cinerea. African Journal of Range & Forage Science 24: 7376.CrossRefGoogle Scholar
Wakeling, J. L., Cramer, M. D., & Bond, W.J. (2010) Is the lack of leguminous savanna trees in grasslands of South Africa related to nutritional constraints? Plant and Soil 336: 173182.CrossRefGoogle Scholar
Wakeling, J. L., Staver, A. C., & Bond, W.J. (2011) Simply the best: the transition of savanna saplings to trees. Oikos 120: 14481451.CrossRefGoogle Scholar
Wakeling, J. L., Cramer, M. D., & Bond, W.J. (2012) The savanna–grassland ‘treeline’: why don't savanna trees occur in upland grasslands? Journal of Ecology 100: 381391.CrossRefGoogle Scholar
Wakeling, J. L., Bond, W.J., Ghaui, M., & February, E. C. (2015) Grass competition and the savanna–grassland ‘treeline’: a question of root gaps? South African Journal of Botany 101: 9197.CrossRefGoogle Scholar
Waldram, M. S., Bond, W.J., &, Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Walter, H. (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh.Google Scholar
Watson, H. K. & Macdonald, I. A. W. (1983) Vegetation changes in the Hluhluwe-Umfolozi Game Reserve Complex from 1937 to 1975. Bothalia 14: 265269.CrossRefGoogle Scholar
Weigl, P. D. & Knowles, T. W. (2014) Temperate mountain grasslands: a climate–herbivore hypothesis for origins and persistence. Biological Reviews 89: 466476.CrossRefGoogle ScholarPubMed
Werner, P. A. & Prior, L. D. (2013) Demography and growth of subadult savanna trees: interactions of life history, size, fire season, and grassy understory. Ecological Monographs 83: 6793.CrossRefGoogle Scholar
Whateley, A. & Porter, R. N. (1983) The woody vegetation communities of the Hluhluwe–Corridor–Umfolozi Game Reserve Complex. Bothalia 14: 745758.CrossRefGoogle Scholar
White, A. M. & Goodman, P. S. (2010) Differences in woody vegetation are unrelated to use by African elephants (Loxodonta africana) in Mkhuze Game Reserve, South Africa. African Journal of Ecology 48: 215223.CrossRefGoogle Scholar
Wigley, B. J., Cramer, M. D., & Bond, W. J. (2009) Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecology 2003: 111.CrossRefGoogle Scholar
Wigley, B. J., Bond, W. J., & Hoffman, M. T. (2010) Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biology 16: 964976.CrossRefGoogle Scholar
Wilson, S. L. & Kerley, G. I. (2003) Bite diameter selection by thicket browsers: the effect of body size and plant morphology on forage intake and quality. Forest Ecology and Management 181: 5165.CrossRefGoogle Scholar

8.5 References

Archibald, S. & Bond, W.J. (2003) Growing tall vs. growing wide: tree architecture and allometry of Acacia karroo in forest, savanna and arid environments. Oikos 102: 314.CrossRefGoogle Scholar
Archibald, S., Bond, W.J., Stock, W. D., & Fairbanks, D. H. K. (2005) Shaping the landscape: fire–grazer interactions in an African savanna. Ecological Applications 15: 96109.CrossRefGoogle Scholar
Balfour, D. A. & Midgley, J.J. (2008) A demographic perspective on bush encroachment by Acacia karroo in Hluhluwe-Infolozi Park, South Africa. African Journal of Range and Forage Science 25: 147151.CrossRefGoogle Scholar
Barthélémy, D. & Caraglio, Y. (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99: 375407.CrossRefGoogle ScholarPubMed
Baudena, M., Dekker, S. C., van Bodegom, P. M., et al. (2015) Forests, savannas and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences 12: 18331848.CrossRefGoogle Scholar
Bond, W.J. (2005) Large parts of the world are brown or black: a different view of the Green World Hypothesis. Journal of Vegetation Science 16: 261266.Google Scholar
Bond, W.J. & Loffell, D. (2001) Introduction of giraffe changes acacia distribution in a South African savanna. African Journal of Ecology 39: 286294.CrossRefGoogle Scholar
Bond, W.J. & Midgley, J.J. (2001) Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16: 4551.CrossRefGoogle ScholarPubMed
Bond, W.J. & Midgley, J.J. (2003) The evolutionary ecology of sprouting in woody plants. International Journal of Plant Sciences 164: 103114.CrossRefGoogle Scholar
Bond, W.J. & van Wilgen, B. A. (1996) Fire and plants. Chapman and Hall, London.CrossRefGoogle Scholar
Bond, W.J., Smythe, K., & Balfour, D. A. (2001). Acacia species turnover in space and time in an African savanna. Journal of Biogeography 28: 117128.CrossRefGoogle Scholar
Brown, W. (1960). Ants, acacias and browsing animals. Ecology 41: 587592.CrossRefGoogle Scholar
Burrows, G. E., Hornby, S. K., Waters, D. A., et al. (2008) Leaf axil anatomy and bud reserves in 21 Myrtaceae species from northern Australia. International Journal of Plant Sciences 169: 11741186.CrossRefGoogle Scholar
Burrows, G. E., Hornby, S. K., Waters, D. A., et al. (2010) A wide diversity of epicormic structures is present in Myrtaceae species in the northern Australian savanna biome – implications for adaptation to fire. Australian Journal of Botany 58: 493507.CrossRefGoogle Scholar
Charles-Dominique, T., Beckett, H., Midgley, G. F., & Bond, W.J. (2015a) Bud protection: a key trait for species sorting in a forest–savanna mosaic. New Phytologist 207: 10521060.CrossRefGoogle Scholar
Charles-Dominique, T., Staver, A. C., Midgley, G. F., & Bond, W.J. (2015b) Functional differentiation of biomes in an African savanna/forest mosaic. South African Journal of Botany 101: 8290.CrossRefGoogle Scholar
Clarke, P.J., Lawes, M.J., Midgley, J.J., et al. (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist 197: 1935.CrossRefGoogle ScholarPubMed
Dantas, V. D. L. & Pausas, J. G. (2013) The lanky and the corky: fire-escape strategies in savanna woody species. Journal of Ecology 101: 12651272.CrossRefGoogle Scholar
du Toit, J. T., Bryant, J. P., & Frisby, K. (1990) Regrowth and palatability of Acacia shoots following pruning by African savanna browsers. Ecology 71: 149154.CrossRefGoogle Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350356.CrossRefGoogle Scholar
Eldridge, D.J., Bowker, M. A., Maestre, F. T., et al. (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecological Letters 14: 709722.CrossRefGoogle ScholarPubMed
Gignoux, J., Clobert, J., & Menaut, J.-C. (1997) Alternative fire resistance strategies in savanna trees. Oecologia 110: 576583.CrossRefGoogle ScholarPubMed
Grime, J. P. (1997) Biodiversity and ecosystem function: the debate deepens. Science 277(5330) 12601261.CrossRefGoogle Scholar
Hempson, G., Midgley, J.J., Lawes, M. J., Vickers, K. V., & Kruger, L. M. (2014) Comparing bark thickness: testing methods with bark-stem data from two South African fire-prone biomes. Journal of Vegetation Science 25: 12471256.CrossRefGoogle Scholar
Higgins, S. I., Bond, W.J., & Trollope, W. S. W. (2000) Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. Journal of Ecology 88: 221229.CrossRefGoogle Scholar
Hodgkinson, K. C. (1998) Sprouting success of shrubs after fire: height-dependent relationships for different strategies. Oecologia 115: 6472.CrossRefGoogle ScholarPubMed
Hoffmann, W. A., Jaconis, S. Y., McKinley, K. L., et al. (2012) Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecology 37: 634643.CrossRefGoogle Scholar
Keddy, P. A. (2007) Plants and vegetation: origins, processes, consequences. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Keeley, J. E. & Zedler, P. H. (1998) Evolution of life histories in Pinus. In: Ecology and biogeography of Pinus (ed. Richardson, D. M.), pp. 219249. Cambridge University Press, Cambridge.Google Scholar
Kruger, L. M., Midgley, J.J., & Cowling, R. M. (1997) Resprouters versus reseeders in South African forest trees; a model based on canopy height. Functional Ecology 11: 101105.CrossRefGoogle Scholar
Leishmann, M. R., Wright, I. A., Moles, A. T., & Westoby, M. (2000) The evolutionary ecology of seed size. In: Seeds: the ecology of regeneration in plant communities (ed. Fenner, M.), pp. 3157. CABI, Wallingford.CrossRefGoogle Scholar
Loehle, C. (2000) Strategy space and the disturbance spectrum: a life-history model for tree species coexistence. The American Naturalist 156: 1433.CrossRefGoogle ScholarPubMed
McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178185.CrossRefGoogle ScholarPubMed
McIntyre, S., Lavorel, S., Landsberg, J., & Forbes, T. D. A. (1999) Disturbance response in vegetation – towards a global perspective on functional traits. Journal of Vegetation Science 10: 621630.CrossRefGoogle Scholar
Midgley, J.J. (1996) Why the world's vegetation is not totally dominated by resprouting plants. Ecography 19: 9295.CrossRefGoogle Scholar
Midgley, J.J. & Bond, W.J. (2001) A synthesis of the demography of African acacias. Journal of Tropical Ecology 17: 871886.CrossRefGoogle Scholar
Midgley, J.J., Botha, M. A., & Balfour, D. A. (2001) Patterns of thorn length, density, type and colour in African acacias. African Journal of Range & Forage Science 18: 5961.CrossRefGoogle Scholar
Mucina, L. & Rutherford, M. C. (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria.Google Scholar
Noble, I. R. & Slatyer, R. O. (1980). The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. In: Succession, pp. 521. Springer, Dordrecht.CrossRefGoogle Scholar
Parr, C. L., Gray, E. F., & Bond, W.J. (2012) Cascading biodiversity and functional consequences of a global change-induced biome switch. Diversity and Distributions 18: 493503.CrossRefGoogle Scholar
Pausas, J. G. (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. Journal of Vegetation Science 10: 717722.CrossRefGoogle Scholar
Pellegrini, A. F. A., Hoffmann, W. A., & Franco, A. C. (2014) Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95: 342352.CrossRefGoogle ScholarPubMed
Raunkiær, C. (1937) Plant life forms. The Clarendon Press, Oxford.Google Scholar
Reich, P. B., Walters, M. B., Ellsworth, D. S., et al. (1998) Relationship of leaf dark respiration to leaf nitrogen, specific leaf area, and leaf life-span: a test across biomes and functional groups. Oecologia 114: 471482.CrossRefGoogle ScholarPubMed
Rusch, G. M., Pausas, J. G., & Lepš, J. (2003) Plant functional types in relation to disturbance and land use: introduction. Journal of Vegetation Science 14: 307310.CrossRefGoogle Scholar
Sankaran, M., Hanan, N. P., Scholes, R. J., et al. (2005) Determinants of woody cover in African savannas. Nature 438(7069): 846849.CrossRefGoogle ScholarPubMed
Scheffer, M. & Carpenter, S. R. (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648656.CrossRefGoogle Scholar
Schutz, A. E. N., Bond, W.J. & Cramer, M. D. (2009) Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160: 235246.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Stock, W. D., van Rensburg, S.J., & Waldram, M. S. (2009) Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications 19: 19091919.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Cramer, M. D., & Wakeling, J. L. (2012) Top-down determinants of niche structure and adaptation among African acacias. Ecology Letters 15: 673679.CrossRefGoogle ScholarPubMed
Tilman, D. (1990) Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58: 315.CrossRefGoogle Scholar
Vesk, P. A. (2006) Plant size and resprouting ability: trading tolerance and avoidance of damage? Journal of Ecology 94: 10271034.CrossRefGoogle Scholar
Waldram, M. S., Bond, W.J., & Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Warman, L. & Moles, A. T. (2009) Alternative stable states in Australia's wet tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecology 24: 113.CrossRefGoogle Scholar
Wakeling, J. L., Staver, A. C., & Bond, W.J. (2011) Simply the best: the transition of savanna saplings to trees. Oikos 120: 14481451.CrossRefGoogle Scholar
Watson, H. K. (1995) Management implications of vegetation changes in Hluhluwe-Umfolozi Park. South African Geographical Journal 77: 7783.CrossRefGoogle Scholar
Westoby, M. (1998) A leaf–height–seed (LHS) plant ecology strategy scheme. Plant and Soil 199: 213227.CrossRefGoogle Scholar
Westoby, M., Leishman, M. R., & Lord, J. M. (1996) Comparative ecology of seed size and seed dispersal. Philosophical Transactions of the Royal Society 351: 13091318.Google Scholar
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I.J. (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology, Evolution and Systematics 33: 125159.CrossRefGoogle Scholar
Whateley, A. & Porter, R. N. (1983) The woody vegetation communities of the Hluhluwe–Corridor–Umfolozi Game Reserve Complex. Bothalia 14: 745758.CrossRefGoogle Scholar
Wigley, B.J., Bond, W.J., & Hoffman, M. (2010) Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biology 16: 964976.CrossRefGoogle Scholar
Wigley, B.J., Fritz, H., Coetsee, C., & Bond, W.J. (2014) Herbivores shape woody plant communities in the Kruger National Park: lessons from three long-term exclosures. Koedoe 56: art. #1165.CrossRefGoogle Scholar
Wilson, J. B. & Agnew, A. D. (1992) Positive-feedback switches in plant communities. Advances in Ecological Research 23: 263336.CrossRefGoogle Scholar
Woodward, F. I., Lomas, M. R., & Kelly, C. K. (2004) Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London B, 359: 14651476.CrossRefGoogle ScholarPubMed

9.6 References

Bagine, R. K. N. (1984) Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of Northern Kenya. Oecologia 64: 263266.CrossRefGoogle Scholar
Bakker, E. S. (2003) Herbivores as mediators of their environment: the impact of large and small species on vegetation dynamics. PhD thesis, Wageningen University.Google Scholar
Bellier, L. (1967). Recherches écologiques dans la savane de Lamto (Côte d'Ivoire): densités et biomasses des petitsmammiféres. Terre Vie 2: 319329.Google Scholar
Blaum, N., Rossmanith, E., & Jeltsch, F. (2007) Land use affects rodent communities in Kalahari savanna rangelands. African Journal of Ecology 45: 189195.CrossRefGoogle Scholar
Bourquin, O., Vincent, J., & Hitchins, P. M. (1971) The vertebrates of the Hluhluwe Game Reserve–Corridor (State land)–Umfolozi Game Reserve Complex. Lammergeyer 14: 158.Google Scholar
Bowland, A. E. & Perrin, M. E. (1989) The effect of overgrazing on the small mammals in Umfolozi Game Reserve. Zeitschrift fur Saugetierkunde 54: 251260.Google Scholar
Brown, J. H. & Zeng, Z. (1989) Comparative population ecology of eleven species of rodents in the Chihuahuan Desert. Ecology 70: 15071525.CrossRefGoogle Scholar
Byrom, A. E., Ruscoe, W. A., Nkwabi, A. K., et al. (2014) Small mammal diversity and population dynamics in the Greater Serengeti Ecosystem. In: Serengeti IV. Sustaining biodiversity in a coupled human–natural system (eds. Sinclair, A. R. E., Metzger, K. L., Mduma, S. A. R., & Fryxell, J. M.), pp. 323358. University of Chicago Press, Chicago.Google Scholar
Cheeseman, C. L. & Delaney, M.J. (1979) The population dynamics of small rodents in a tropical African grassland. Journal of Zoology 187: 451476.CrossRefGoogle Scholar
Davies, A. B., Eggleton, P., van Rensburg, B.J., & Parr, C. L. (2013) Assessing the relative efficiency of termite sampling methods along a rainfall gradient in African savannas. Biotropica 45: 474479.CrossRefGoogle Scholar
Davies, A. B., Robertson, M. P., Levick, S. R., et al. (2014) Variable effects of termite mounds on African savanna grass communities across a rainfall gradient. Journal of Vegetation Science 25: 14051416.CrossRefGoogle Scholar
Davis, A. L. V., Doube, B. M., & McLennan, P. D. (1988) Habitat associations and seasonal abundance of coprophilous Coleoptera (Staphylinidae, Hydrophilidae and Histeridae) in the Hluhluwe region of South Africa. Bulletin of Entomological Research 78: 425434.CrossRefGoogle Scholar
Deshmukh, I. (1989) How important are termites in the production ecology of African savannas? Sociobiology 15: 155168.Google Scholar
Doube, B. M. (2014) Dung down under: dung beetles for Australia. Dung Beetle Solutions, Australia.Google Scholar
Doube, B. M., Macqueen, A., & Fay, H. A. C. (1988) Effects of dung fauna on survival and size of buffalo flies (Haematobia spp.) breeding in the field in South Africa and Australia. Journal of Applied Ecology 25: 523536.CrossRefGoogle Scholar
Edwards, P. B. (2007) Introduced dung beetles in Australia 1967–2007: current status and future directions. Sydney: Landcare Australia.Google Scholar
Emmons, L. H. (2009) Long term variation in small mammal abundance in forest and savanna of Bolivian cerrado. Biotropica 41: 493502.CrossRefGoogle Scholar
Fay, H. A. C. & Doube, B. M. (1987) Aspects of the population dynamics of adults of Haematobia thirouxi potans (Bezzi) (Diptera: Muscidae) in southern Africa. Bulletin of Entomological Research 77: 135144.CrossRefGoogle Scholar
Ferrar, P. (1982) Termites of a South African savanna. IV. Subterranean populations, mass determination and biomass estimations. Oecologia 52: 147151.CrossRefGoogle ScholarPubMed
Galindo, C. & Krebs, C. J. (1987) Population regulation in deer mice: the role of females. Journal of Animal Ecology 56: 1123.CrossRefGoogle Scholar
Giller, P. S. & Doube, B. M. (1989) Experimental analysis of inter- and intraspecific competition in dung beetle communities. Journal of Animal Ecology 58: 129142.CrossRefGoogle Scholar
Gillingwater, K., Mamabolo, M. V., & Majiya, P. A. O. (2010) Prevalence of mixed Trypanosoma congolense infections in livestock and tsetse in KwaZulu-Natal, South Africa. Journal of the South African Veterinary Association 81: 219223.CrossRefGoogle ScholarPubMed
Gosling, C. M. (2014) Biotic determinants of heterogeneity in a South African savannah. PhD thesis, Groningen University.Google Scholar
Gosling, C., Cromsigt, J., Mpanza, N., & Olff, H. (2012) Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savannah. Ecosystems 15: 128139.CrossRefGoogle Scholar
Grant, C. C. & Scholes, M. C. (2006) The importance of nutrient hot-spots in the conservation and management of large wild mammalian herbivores in semi-arid savannas. Biological Conservation 130: 426437.CrossRefGoogle Scholar
Grant, W. E. & Birney, E. C. (1979) Small mammal community structure in North American grasslands. Journal of Mammalogy 60: 2336.CrossRefGoogle Scholar
Grant, W. E., Birney, E. C., French, N. R., & Swift, D. M. (1982) Structure and productivity of grassland small mammal communities related to grazing-induced changes in vegetation cover. Journal of Mammalogy 63: 248260.CrossRefGoogle Scholar
Hagenah, N. (2006) Among rodents and rhinos. Interplay between small mammals and large herbivores in a South African savanna. PhD thesis, Wageningen University.Google Scholar
Hagenah, N., Prins, H. H. T., & Olff, H. (2009) Effects of large herbivores on murid rodents in a South African savannah. Journal of Tropical Ecology 25: 483492.CrossRefGoogle Scholar
Jedrzejewska, B. & Jedrzejewski, W. (1998) Predation in vertebrate communities. Springer, Berlin.CrossRefGoogle Scholar
Jedrzejewski, W. & Jedrzejewska, B. (1996) Rodent cycles in relation to biomass and productivity of ground vegetation and predation in the Palearctic. Acta Theriologica 41: 134.CrossRefGoogle Scholar
Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H. M., & Mahlangu, Z. (2014) Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems 17: 808819.CrossRefGoogle Scholar
Jouquet, P., Boulain, N., Gignoux, J. & Lepate, M. (2004) Association between subterranean termites and grasses in a West African savanna: spatial pattern analysis shows a significant role for Odontotermes n. pauperans. Applied Soil Ecology 27: 135164.CrossRefGoogle Scholar
Jouquet, P., Barre, P., Lepage, M., & Velde, B. (2005) Impact of subterannean fungus-growing termites on chosen soil properties in a West African savanna. Biology and Fertility of Soils 42: 365370.CrossRefGoogle Scholar
Keesing, F. (1998) Impacts of ungulates on the demography and diversity of small mammals in central Kenya. Oecologia 116: 381389.CrossRefGoogle ScholarPubMed
Keesing, F. (2000) Cryptic consumers and the ecology of an African savanna. BioScience 50: 205214.CrossRefGoogle Scholar
Korn, H. (1987) Densities and biomass of non-fossorial southern African savanna rodents during the dry season. Oecologia 72: 410413.CrossRefGoogle ScholarPubMed
Krook, K., Bond, W.J., & Hockey, P. A. R. (2007) The effect of grassland shifts on the avifauna of a South African savanna. Ostrich – Journal of African Ornithology 78: 271279.CrossRefGoogle Scholar
Leirs, H., Verhagen, R., Verheyen, W., et al. (1996a) Forecasting rodent outbreaks in Africa: an ecological basis for Mastomys control in Tanzania. Journal of Applied Ecology 33: 937943.CrossRefGoogle Scholar
Leirs, H., Verhagen, R., Verheyen, W., et al. (1996b) Spatial patterns in Mastomys natalensis in Tanzania (Rodentia, Muridae). Mammalia 60: 545555.CrossRefGoogle Scholar
Loveridge, J. P. & Moe, S. R. (2004) Termitaria as browsing hotspots for African megaherbivores in miombo woodland. Journal of Tropical Ecology 20: 337343.CrossRefGoogle Scholar
Macdonald, I. A. W. & Birkenstock, P. J. (1980) Birds of the Hluhluwe-Umfolozi Game Reserve complex. Lammergeyer 29: 156.Google Scholar
Mahlaba, T. A. M. & Perrin, M. R. (2003) Population dynamics of small mammals at Mlawula, Swaziland. African Journal of Ecology 41: 317323.CrossRefGoogle Scholar
Mobaek, R., Narmo, A. K., & Moe, S. R. (2005) Termitaria are focal feeding sites for large ungulates in Lake Mburo National Park, Uganda. Journal of Zoology 267: 97102.CrossRefGoogle Scholar
Moe, S., Mobaek, R., & Narmo, A. K. (2009) Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology 202: 3140.CrossRefGoogle Scholar
Monadjem, A. & Perrin, M. (1996) The effects of additional food on the demography of rodents in a subtropical grassland in Swaziland. Mammalia 60: 785789.Google Scholar
Monadjem, A. & Perrin, M. (1998) The effect of supplementary food on the home range of the multimammate mouse Mastomys natalensis. South African Journal of Wildlife Research 28: 13.Google Scholar
Monadjem, A. & Perrin, M. (2003) Population fluctuations and community structure in a Swaziland grassland over a three-year period. African Zoology 38: 127137.CrossRefGoogle Scholar
Oguge, N. O. (1995) Diets, seasonal abundance and microhabitats of Praomys (Mastomys) natalensis and other small rodents in a Kenyan sub-humid grassland community. African Journal of Ecology 33: 211223.CrossRefGoogle Scholar
Okullo, P. & Moe, S. R. (2012) Termite activity, not grazing, is the main determinant of spatial variation in savanna herbaceous vegetation. Journal of Ecology 100: 232241.CrossRefGoogle Scholar
Okullo, P., Greve, P. M. K., & Moe, S. R. (2013) Termites, large herbivores, and herbaceous plant dominance structure small mammal communities in savannahs. Ecosystems 16: 10021012.CrossRefGoogle Scholar
Owen-Smith, N. (1973) The behavioural ecology of the white rhinoceros. PhD thesis, University of Wisconsin.Google Scholar
Owen-Smith, N. (1980) A quantitative assessment of the avifauna of the Umfolozi thorn savannah. Lammergeyer 30: 4960.Google Scholar
Parr, C. L., Robertson, H. G., Biggs, H. C., & Chown, S. L. (2004) Response of African savanna ants to long-term fire regimes. Journal of Applied Ecology 41: 630642.CrossRefGoogle Scholar
Parr, C. L., Gray, E., & Bond, W.J. (2012) Cascading biodiversity and functional consequences of a global change-induced biome switch. Diversity and Distributions 18: 493503.CrossRefGoogle Scholar
Ridsdill-Smith, T.J. & Edwards, P. B. (2011) Biological control: ecosystem functions provided by dung beetles. In: Ecology and evolution of dung beetles (eds Simmons, L. W. & Ridsdill-Smith, T.J.), pp. 254266. Blackwell, Oxford.Google Scholar
Schweiger, E. W., Diffendorfer, J. E., Holt, R. D., Pierotti, R., & Gaines, M. S. (2000) The interaction of habitat fragmentation, plant, and small mammal succession in an old field. Ecological Monographs 70: 383400.CrossRefGoogle Scholar
Sinclair, A. R. E., Metzger, K. L., Fryxell, J. M., et al. (2013) Asynchronous food web pathways could buffer the response of Serengeti predators to El Nino Southern Oscillation. Ecology 94: 11231130.CrossRefGoogle ScholarPubMed
Smit, R., Bokdam, J., den Ouden, J., et al. (2001) Effects of introduction and exclusion of large herbivores on small rodent communities. Plant Ecology 155: 119127.CrossRefGoogle Scholar
Stutterheim, C.J. (1980) Symbiont selection of red-billed oxpecker in the Hluhluwe-Umfolozi Game Reserve Complex. Lammergeyer 30: 2125.Google Scholar
Uys, V. (2002) A guide to the termite genera of Southern Africa. Plant Protection Research Institute Handbook No. 15. Agricultural Research Council, Pretoria.Google Scholar
van den Bossche, P., Esterhuizen, J., Nkuna, R., et al. (2006) An update of the bovine trypanosomosis situation at the edge of Hluhluwe-iMfolozi Park, KwaZulu-Natal Province, South Africa. Onderstepoort Journal of Veterinary Research 73: 7779.CrossRefGoogle ScholarPubMed
Van der Plas, F., Howison, R., Reinders, J., Fokkema, W., & Olff, H. (2013) Functional traits of trees on and off termite mounds: understanding the origin of biotically-driven heterogeneity in savannas. Journal of Vegetation Science 24: 227238.CrossRefGoogle Scholar
Walker, B. H., Emslie, R. H., Owen-Smith, R. N., & Scholes, R.J. (1987) To cull or not to cull: lessons from a southern African drought. Journal of Applied Ecology 24: 381401.CrossRefGoogle Scholar
Wright, E.J., Müller, P., & Kerr, J. D. (1989) Agents for biological control of novel hosts – assessing an aleocharine parasitoid of dung-breeding flies. Journal of Applied Ecology 26: 453461.CrossRefGoogle Scholar
Yunger, J. A. (2004) Movement and spatial organization of small mammals following vertebrate predator exclusion. Oecologia 139: 647654.CrossRefGoogle ScholarPubMed

10.7 References

Aitken, R. D. & Gale, G. W. (1921) Botanical survey of Natal and Zululand. Government Printing and Stationery Office, Pretoria.CrossRefGoogle Scholar
Archibald, S. (2008) African grazing lawns – how fire, rainfall, and grazer numbers interact to affect grass community states.Journal of Wildlife Management 72: 492501.CrossRefGoogle Scholar
Archibald, S. & Bond, W.J. (2004) Grazer movements: spatial and temporal responses to burning in a tall-grass African savanna. International Journal of Wildland Fire 13: 377385.CrossRefGoogle Scholar
Archibald, S., Bond, W. J., Stock, W. D., & Fairbanks, D. H. K. (2005) Shaping the landscape: fire–grazer interactions in an African savanna. Ecological Applications 15: 96109.CrossRefGoogle Scholar
Archibald, S., Roy, D. P., van Wilgen, B. W., & Scholes, R.J. (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology 15: 613630.CrossRefGoogle Scholar
Archibald, S., Nickless, A., Govender, N., Scholes, R.J., & Lehsten, V. (2010a) Climate and the inter-annual variability of fire in southern Africa. Global Ecology and Biogeography 19: 794809.CrossRefGoogle Scholar
Archibald, S., Scholes, R. J., Roy, D. P., Roberts, G., & Boschetti, L. (2010b) Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire 19: 861878.CrossRefGoogle Scholar
Archibald, S., Staver, A. C., & Levin, S. A. (2012) Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences 109: 847852.CrossRefGoogle ScholarPubMed
Archibald, S., Lehmann, C. E., Gómez-Dans, J. L., & Bradstock, R. A. (2013) Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences 110: 64426447.CrossRefGoogle ScholarPubMed
Balfour, D. A. & Howison, O. E. (2001) Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. African Journal of Range and Forage Science 19: 4553.CrossRefGoogle Scholar
Berry, A. & Macdonald, I. A. W. (1979) Fire regime characteristics in the Hluhluwe–Corridor–Umfolozi Game Reserve Complex in Zululand. Area description and an analysis of causal factors and seasonal incidence of fire in the central complex with particular reference to the period 1955 to 1978. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Biggs, H. C. & Potgieter, A. L. F. (1999) Overview of the fire management policy of the Kruger National Park. Koedoe 42: 101111.CrossRefGoogle Scholar
Biggs, H. C. & Rogers, K. H. (2003) An adaptive system to link science, monitoring and management in practice. In The Kruger experience: ecology and management of savanna heterogeneity (eds.du Toit, J. T., Rogers, K. H., & Biggs, H. C.), pp. 5980. Island Press, Washington, DC.Google Scholar
Bond, W.J. (2005) Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. Journal of Vegetation Science 16: 261266.Google Scholar
Bond, W. J. & Archibald, S. (2003) Confronting complexity: fire policy choices in South African savanna parks. International Journal of Wildland Fire 12: 381389.CrossRefGoogle Scholar
Bond, W.J. & Midgley, G. F. (2012) Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 601612.CrossRefGoogle ScholarPubMed
Bond, W.J. & Van Wilgen, B. W. (1996) Fire and plants. Population and Community Biology series Vol. 14, Chapman and Hall, London.CrossRefGoogle Scholar
Bond, W.J., Smythe, K. A. & Balfour, D. A. (2001) Acacia species turnover in space and time in an African savanna. Journal of Biogeography 28: 117128.CrossRefGoogle Scholar
Bradstock, R. A. (2010) A biogeographic model of fire regimes in Australia: contemporary and future implications. Global Ecology and Biogeography 19: 145158.CrossRefGoogle Scholar
Brockett, B. H., Biggs, H. C., & Van Wilgen, B. W. (2001) A patch mosaic burning system for conservation areas in southern African savannas. International Journal of Wildland Fire 10: 169183.CrossRefGoogle Scholar
Browne, C. & Bond, W. (2011) Firestorms in savanna and forest ecosystems: curse or cure? Veld & Flora 97: 6263.Google Scholar
Burkepile, D. E., Burns, C. E., Tambling, C.J., et al. (2013) Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom-up and top-down forces. Ecosphere 4: 119.CrossRefGoogle Scholar
Coetsee, C., February, E. C., & Bond, W.J. (2008) Nitrogen availability is not affected by frequent fire in a South African savanna. Journal of Tropical Ecology 24: 647654.CrossRefGoogle Scholar
Coetsee, C., Bond, W.J., & February, E. C. (2010) Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162: 10271034.CrossRefGoogle Scholar
Cox, J. T. & Durrett, R. (1988) Limit theorems for the spread of epidemics and forest fires. Stochastic Processes and their Applications 30: 171191.CrossRefGoogle Scholar
East, R. (1984) Rainfall, soil nutrient status and biomass of large African savanna mammals. African Journal of Ecology 22: 245270.CrossRefGoogle Scholar
Fritz, H. & Duncan, P. (1994) On the carrying capacity for large ungulates of African savanna ecosystems. Proceedings of the Royal Society of London B: Biological Sciences 256: 7782.Google ScholarPubMed
Gill, A. M. (1975) Fire and the Australian flora: a review. Australian Forestry 38: 425.CrossRefGoogle Scholar
Govender, N., Trollope, W. S., & Van Wilgen, B. W. (2006) The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa.Journal of Applied Ecology 43: 748758.CrossRefGoogle Scholar
Hantson, S., Pueyo, S., & Chuvieco, E. (2015) Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography 24: 7786.CrossRefGoogle Scholar
Hartshorn, A. S., Coetsee, C., & Chadwick, O. A. (2009) Pyromineralization of soil phosphorus in a South African savanna. Chemical Geology 267: 2431.CrossRefGoogle Scholar
Hempson, G. P., Archibald, S., & Bond, W.J. (2015a) A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350: 10561061.CrossRefGoogle ScholarPubMed
Hempson, G. P., Archibald, S., Bond, W.J., et al. (2015b) Ecology of grazing lawns in Africa. Biological Reviews 90: 979994.CrossRefGoogle ScholarPubMed
Henkel, J. S. (1937) Report on the plant and animal ecology of the Hluhluwe Game Reserve, with special reference to tsetse flies. The Natal Witness, Pietermaritzburg, South Africa.Google Scholar
Hennenberg, K.J., Fischer, F., Kouadio, K., et al. (2006) Phytomass and fire occurrence along forest savanna transects in the Comoe National Park, Ivory Coast.Journal of Tropical Ecology 22: 303311.CrossRefGoogle Scholar
Higgins, S. I., Bond, W.J., & Trollope, W. S. (2000) Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna.Journal of Ecology 88: 213229.CrossRefGoogle Scholar
Hoffmann, W. A. & Solbrig, O. T. (2003) The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management 180: 273286.CrossRefGoogle Scholar
Hoffmann, W. A., Orthen, B., & Nascimento, P. K. V. D. (2003) Comparative fire ecology of tropical savanna and forest trees. Functional Ecology 17: 720726.CrossRefGoogle Scholar
Holdo, R. M., Mack, M. C., & Arnold, S. G. (2012) Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem.Journal of Vegetation Science 23: 352360.CrossRefGoogle Scholar
Keeley, J. E. & Rundel, P. W. (2005) Fire and the Miocene expansion of C4 grasslands. Ecology Letters 8: 683690.CrossRefGoogle Scholar
Korontzi, S., Justice, C. O., & Scholes, R. J. (2003) Influence of timing and spatial extent of savanna fires in southern Africa on atmospheric emissions.Journal of Arid Environments 54: 395404.CrossRefGoogle Scholar
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., & Bond, W. J. (2011) Deciphering the distribution of the savanna biome. New Phytologist 191: 197209.CrossRefGoogle ScholarPubMed
Little, J. K., Prior, L. D., Williamson, G.J., Williams, S. E., & Bowman, D. M. (2012) Fire weather risk differs across rain forest–savanna boundaries in the humid tropics of north-eastern Australia. Austral Ecology 37: 915925.CrossRefGoogle Scholar
Macdonald, I. A. W. & Frame, G. W. (1988) The invasion of introduced species into nature reserves in tropical savannas and dry woodlands. Biological Conservation 44: 6793.CrossRefGoogle Scholar
Maurin, O., Davies, T. J., Burrows, J. E., et al. (2014) Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytologist 204: 201214.CrossRefGoogle ScholarPubMed
McKenzie, D., Miller, C. & Falk, D. A. (2011) The landscape ecology of fire. Springer, Berlin.CrossRefGoogle Scholar
Mills, A.J. & Fey, M. V. (2004) Frequent fires intensify soil crusting: physicochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma 121: 4564.CrossRefGoogle Scholar
Mucina, L. & Rutherford, M. C. (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria.Google Scholar
Norton-Griffiths, M. (1979) The influence of grazing, browsing, and fire on the vegetation dynamics of the Serengeti. In: Serengeti: dynamics of an ecosystem (eds Sinclair, A. R. E. & Norton-Griffiths, M.), pp. 310352. University of Chicago Press, Chicago.Google Scholar
Ojima, D. S., Schimel, D. S., Parton, W.J., & Owensby, C. E. (1994) Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24: 6784.CrossRefGoogle Scholar
Osborne, C. P. (2008) Atmosphere, ecology and evolution: what drove the Miocene expansion of C(4) grasslands? Journal of Ecology 96: 3545.CrossRefGoogle ScholarPubMed
Parr, C. L. & Anderson, A. N. (2006) Patch mosaic burn for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation Biology 20: 16101619.CrossRefGoogle Scholar
Pellegrini, A. F. A., Hedin, L. O., Staver, A. C., & Govender, N. (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96: 12751285.CrossRefGoogle ScholarPubMed
Polley, H. W.,Johnson, H. B., & Mayeux, H. S. (1994) Increasing CO2: comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75: 976988.CrossRefGoogle Scholar
Radke, J. (2013) Fire and firestorms. In: Encyclopedia of natural hazards SE – 134 (ed. Bobrowsky, P. T.), pp. 323324. Encyclopedia of Earth Sciences series. Springer Dordrecht.CrossRefGoogle Scholar
Reich, P. B., Peterson, D. W., Wedin, D. A., & Wrage, K. (2001) Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82: 17031719.Google Scholar
Sankaran, M., Hanan, N. P., Scholes, R.J., et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846849.CrossRefGoogle ScholarPubMed
Scheffer, M. & Carpenter, S. R. (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648656.CrossRefGoogle Scholar
Scholes, R.J. & Archer, S. R. (1997) Tree–grass interactions in savannas. Annual Review of Ecological Systematics 28: 517544.CrossRefGoogle Scholar
Scholes, R.J. & Walker, B. H. (1993) An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Scholes, R. J., Archibald, S., Colvin, C., et al. (2010) Global change risk analysis: understanding and reducing key risks to ecosystem services associated with climate change in South Africa. p. 21.Google Scholar
Scott, J. D. (1955) Principles of pasture management. In: The grasses and pastures of South Africa (ed. Meredith, D.), pp. 601623. Central News Agency, Johannesburg.Google Scholar
Simon, M. F. & Pennington, T. (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian cerrado. International Journal of Plant Sciences 173: 711723.CrossRefGoogle Scholar
Skowno, A. L., Midgley, J.J., Bond, W.J., & Balfour, D. (1999) Secondary succession in Acacia nilotica (L.) savanna in the Hluhluwe Game Reserve, South Africa. Plant Ecology 145: 19.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Stock, W. D., van Rensburg, S.J., & Waldram, M. S. (2009) Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications 19: 19091919.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Cramer, M. D., & Wakeling, J. L. (2012) Top-down determinants of niche structure and adaptation among African Acacias. Ecology Letters 15: 673679.CrossRefGoogle ScholarPubMed
Strydom, T., Rowe, T., Riddell, E., Govender, N., & Lorentz, S. (2014) Pyrohydrology in African savannas. Report 2146/1/14. Water Research Commission, Pretoria.Google Scholar
Sullivan, A. L. (2008) Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18: 387403.CrossRefGoogle Scholar
Tainton, N. M. (1985) Recent trends in grazing management philosophy in South Africa. Journal of the Grassland Society of Southern Africa 2: 46.CrossRefGoogle Scholar
Tainton, N. M., Groves, R. H., & Nash, R. (1977) Time of mowing and burning veld: short term effects on production and tiller development. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa 12: 5964.CrossRefGoogle Scholar
te Beest, M., Cromsigt, J. P. G. M., Ngobese, J., & Olff, H. (2012) Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biological Invasions 14: 607618.CrossRefGoogle Scholar
Tomor, B. M. & Owen-Smith, N. (2002) Comparative use of burnt and unburnt grassland by grazing ungulates in the Nylsvley nature reserve, South Africa. African Journal of Ecology 40: 201204.CrossRefGoogle Scholar
Trollope, W. S. W. (1974) Role of fire in preventing bush encroachment in the Eastern Cape. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa 9: 6772.CrossRefGoogle Scholar
Trollope, W. S. W. & Tainton, N. M. (2007) Effect of fire intensity on the grass and bush components of the Eastern Cape thornveld. African Journal of Range and Forage Science 3: 3742.Google Scholar
Trollope, W. S. W., Trollope, L. A., Biggs, H. C., Pienaar, D., & Potgieter, A. L. F. (1998) Long-term changes in the woody vegetation of the Kruger National Park, with special reference to the effects of elephants and fire. Koedoe 41: 103112.CrossRefGoogle Scholar
Turner, M. G., Gardner, R. H., Dale, V. H., & O'Neill, R. V. (1989) Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121129.CrossRefGoogle Scholar
Twidwell, D., Rogers, W. E., Fuhlendorf, S. D., et al. (2013) The rising Great Plains fire campaign: citizens’ response to woody plant encroachment. Frontiers in Ecology and the Environment 11: 6471.CrossRefGoogle Scholar
Van Wilgen, B. W., Govender, N., Biggs, H. C., Ntsala, D., & Funda, X. N. (2004) Response of savanna fire regimes to changing fire-management policies in a large African national park. Conservation Biology 18: 15331540.CrossRefGoogle Scholar
Van Wilgen, B. W., Govender, N. & MacFadyen, S. (2008) An assessment of the implementation and outcomes of recent changes to fire management in the Kruger National Park. Koedoe 50: 2231.CrossRefGoogle Scholar
Vincent, J. (1970) The history of Umfolozi Game Reserve, Zululand, as it relates to management. Lammergeyer 11: 748.Google Scholar
Wakeling, J. L. & Bond, W.J. (2007) Disturbance and the frequency of root suckering in an invasive savanna shrub, Dichrostachys cinerea. African Journal of Range and Forage Science 24: 7376.CrossRefGoogle Scholar
Wakeling, J. L., Staver, A. C., & Bond, W. J. (2011) Simply the best: the transition of savanna saplings to trees. Oikos 120: 14481451.CrossRefGoogle Scholar
Waldram, M. S., Bond, W.J., & Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Ward, C. J. (1962) Report on scrub control in the Hluhluwe Game Reserve. Lammergeyer 2: 5762.Google Scholar
Wigley, B.J., Bond, W.J., & Hoffman, M. (2010) Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biology 16: 964976.CrossRefGoogle Scholar
Williams, R. J. & Bradstock, R. A. (2009) Large fires and their ecological consequences: introduction to the special issue. International Journal of Wildland Fire 17: 685687.CrossRefGoogle Scholar
Wilsey, B.J. (1996) Variation in use of green flushes following burns among African ungulate species: the importance of body size. African Journal of Ecology 34: 3238.CrossRefGoogle Scholar
Yates, C. P., Edwards, A. C., & Russell-Smith, J. (2008) Big fires and their ecological impacts in Australian savannas: size and frequency matters. International Journal of Wildland Fire 17: 768781.CrossRefGoogle Scholar
Yoganand, K. & Owen-Smith, N. (2014) Restricted habitat use by an African savanna herbivore through the seasonal cycle: key resources concept expanded. Ecography 37: 969982.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×