Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T16:17:21.361Z Has data issue: false hasContentIssue false

Part IX - From field to lab

Published online by Cambridge University Press:  05 September 2015

Michio Nakamura
Affiliation:
Kyoto University, Japan
Kazuhiko Hosaka
Affiliation:
Kamakura Women’s University, Japan
Noriko Itoh
Affiliation:
Kyoto University, Japan
Koichiro Zamma
Affiliation:
Great Ape Research Institute
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Mahale Chimpanzees
50 Years of Research
, pp. 599 - 654
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abbott, D. H., Keverne, E. B., Bercovitch, F. B., et al. (2003). Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Hormones and Behavior, 43, 6782.CrossRefGoogle ScholarPubMed
Anestis, S. F. (2010). Hormones and social behavior in primates. Evolutionary Anthropology, 19, 6678.CrossRefGoogle Scholar
Bahr, N. I., Martin, R. D., and Pryce, C. R. (2001). Peripartum sex steroid profiles and endocrine correlates of postpartum maternal behavior in captive gorillas (Gorilla gorilla gorilla). Hormones and Behavior, 40, 533–41.CrossRefGoogle ScholarPubMed
Bardi, M., Shimizu, K., Fujita, S., Borgognini-Tari, S., and Huffman, M. A. (2001). Hormonal correlates of maternal style in captive macaques (Macaca fuscata, M. mulatta). International Journal of Primatology, 22, 647–62.CrossRefGoogle Scholar
Bardi, M., French, J. A., Ramirez, S. M., and Brent, L. (2004). The role of the endocrine system in baboon maternal behavior. Biological Psychiatry, 55, 724–32.CrossRefGoogle ScholarPubMed
Barrett, G. M., Shimizu, K., Bardi, M., Asaba, S., and Mori, A. (2002). Endocrine correlates of rank, reproduction, and female-directed aggression in male Japanese macaques (Macaca fuscata). Hormones and Behavior, 42, 8596.CrossRefGoogle ScholarPubMed
Beehner, J. C., Phillips-Conroy, J. E., and Whitten, P. L. (2005). Female testosterone, dominance rank, and aggression in an Ethiopian population of hybrid baboons. American Journal of Primatology, 67, 101–19.CrossRefGoogle Scholar
Beehner, J. C., Nguyen, N., Wango, E. O., Alberts, S. C., and Altmann, J. (2006). The endocrinology of pregnancy and fetal loss in wild baboons. Hormones and Behavior, 49, 688–99.CrossRefGoogle ScholarPubMed
Bentley, G. R., Vitzthum, V. J., Caceres, E., et al. (1997). Reproduction and ecology in Provincia Aroma, Bolivia: fecundity of women with low levels of salivary progesterone. American Journal of Physical Anthropology, Supplement 26, 110.Google Scholar
Boesch, C. and Boesch-Achermann, H. (2000). The Chimpanzees of the Taï Forest. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bronson, F. H. (1989). Mammalian Reproductive Biology. Chicago: The University of Chicago Press.Google Scholar
Busch, D. S. and Hayward, L. S. (2009). Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biological Conservation, 142, 2844–53.CrossRefGoogle Scholar
Cavigelli, S. and Pereira, M. (2000). Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Hormones and Behavior, 37, 246–55.CrossRefGoogle ScholarPubMed
Creel, S. (2001). Social dominance and stress hormones. Trends in Ecology & Evolution, 16, 491–7.CrossRefGoogle Scholar
Deschner, T., Heistermann, M., Hodges, K., and Boesh, C. (2003). Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Animal Behaviour, 66, 551–60.Google Scholar
Deschner, T., Heistermann, M., Hodges, K., and Boesch, C. (2004). Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Hormones and Behavior, 46, 204–15.CrossRefGoogle ScholarPubMed
Dixson, A. F. (1998). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Human Beings. Oxford: Oxford University Press.Google Scholar
Drea, C. (2007). Sex and seasonal differences in aggression and steroid secretion in Lemur catta: are socially dominant females hormonally ‘masculinized’? Hormones and Behavior, 51, 555–67.CrossRefGoogle ScholarPubMed
Ellison, P. T., Peacock, N. R., and Lager, C. (1986). Salivary progesterone and luteal function in two low-fertility populations of northeast Zaire. Human Biology, 58, 487–3.Google ScholarPubMed
Ellison, P. T., Peacock, N. R., and Lager, C. (1989). Ecology and ovarian function among lese women of the Ituri Forest, Zaire. American Journal of Physical Anthropology, 78, 519–26.CrossRefGoogle ScholarPubMed
Ellison, P. T., Panter-Brick, C., Lipson, S. F., and O’Rourke, M. T. (1993). The ecological context of human ovarian function. Human Reproduction, 8, 2248–58.CrossRefGoogle ScholarPubMed
Emery Thompson, M. (2005). Reproductive endocrinology of wild female chimpanzees (Pan troglodytes schweinfurthii): methodological considerations and the role of hormones in sex and conception. American Journal of Primatology, 67, 137–58.CrossRefGoogle ScholarPubMed
Emery Thompson, M. and Wrangham, R. W. (2008). Male mating interest varies with female fecundity in Pan troglodytes schweinfurthii of Kanyawara, Kibale National Park. International Journal of Primatology, 29, 885905.CrossRefGoogle Scholar
von Engelhard, N., Kappeler, P. M., and Heistermann, M. (2000). Androgen levels and female social dominance in Lemur catta. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 1533–9.CrossRefGoogle Scholar
Fujita, S. (2003). [Reproductive Biology in Wild Female Primates: Variability in Hormonal Profiles, Behavior and Reproductive Parameters]. Doctoral Dissertation. Kyoto: Kyoto University. In Japanese.Google Scholar
Fujita, S., Mitsunaga, F., Sugiura, H., and Shimizu, K. (2001). Measurement of urinary and fecal steroid metabolites during the ovarian cycle in captive and wild Japanese macaques, Macaca fuscata. American Journal of Primatology, 53, 167–76.Google ScholarPubMed
Hasegawa, T. and Hiraiwa-Hasegawa, M. (1983). Opportunistic and restrictive matings among wild chimpanzees in the Mahale Mountains, Tanzania. Journal of Ethology, 1, 7585.CrossRefGoogle Scholar
Hodges, J. K. and Heistermann, M. (2011). Field endocrinology: monitoring hormonal changes in free-ranging primates. In Field and Laboratory Methods in Primatology: A Practical Guide, 2nd edn., ed. Setchell, J. M. and Curtis, D. J.. Cambridge: Cambridge University Press. pp. 353–70.Google Scholar
Knott, C. (2001). Female reproductive ecology of the apes: implication for human evolution. In Reproductive Ecology and Human Evolution, ed. Ellison, P. T.. New York: Aldine de Gruyter, pp. 4291463.Google Scholar
Lynch, J. W., Ziegler, T. E., and Strier, K. B. (2002). Individual and seasonal variation in fecal testosterone and cortisol levels of wild male tufted capuchin monkeys, Cebus apella nigritus. Hormones and Behavior, 41, 275–87.Google ScholarPubMed
Machatschke, I. H., Dittami, J., and Wallner, B. (2006). Morphometric and hormonal changes during the chimpanzee menstrual cycle. Journal of Medical Primatology, 35, 331–40.CrossRefGoogle ScholarPubMed
Maestripieri, D. (1998). Parenting styles of abusive mothers in group-living rhesus macaques. Animal Behaviour, 55, 111.CrossRefGoogle ScholarPubMed
Maréchal, L., Semple, S., Majolo, B., et al. (2011). Impacts of tourism on anxiety and physiological stress levels in wild male Barbary macaques. Biological Conservation, 144, 2188–93.CrossRefGoogle Scholar
Matsumoto-Oda, A., Hamai, M., Hayaki, H., et al. (2007). Estrus cycle asynchrony in wild female chimpanzees, Pan troglodytes schweinfurthii. Behavioral Ecology and Sociobiology, 61, 661–8.Google Scholar
Möhle, U., Heistermann, M., Dittami, J., et al. (2005). Patterns of anogenital swelling size and their endocrine correlates during ovulatory cycles and early pregnancy in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar. American Journal of Primatology, 66, 351–68.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Watts, D. P., and Whitten, P. L. (2004). Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 64, 7182.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Ancrenaz, M., Sakong, R., et al. (2012). Ape conservation physiology: fecal glucocorticoid responses in wild Pongo pygmaeus morio following human visitation. PLoS ONE, 7, e33357.CrossRefGoogle ScholarPubMed
Muller, M. N. and Wrangham, R. W. (2001). The reproductive ecology of male hominoids. In Reproductive Ecology and Human Evolution, ed. Ellison, P. T.. New York: Aldine de Gruyter, pp. 397427.Google Scholar
Muller, M. N. and Wrangham, R. W. (2004a). Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis’. Animal Behaviour, 67, 113–23.CrossRefGoogle Scholar
Muller, M. N. and Wrangham, R. W. (2004b). Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii). Behavioral Ecology and Sociobiology, 55, 332–40.CrossRefGoogle Scholar
Nelson, R. J. (2000). An Introduction to Behavioral Endocrinology. Sunderland, MA: Sinauer Associates.Google Scholar
Nishida, T. (2002). [Demography.] In [The Mahale Chimpanzees: 37 Years of <Panthropology>], ed. Nishida, T., Uehara, S., and Kawanaka, K.. Kyoto: Kyoto University Press, pp. 171202. In Japanese.Google Scholar
Nishida, T., Corp, N., Hamai, M., et al. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology, 59, 99121.CrossRefGoogle ScholarPubMed
Robbins, M. M. and Czekala, N. M. (1997). A preliminary investigation of urinary testosterone and cortisol levels in wild male mountain gorillas. American Journal of Primatology, 43, 5164.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Sannen, A., Van Elsacker, L., Heistermann, M., and Eens, M. (2004). Urinary testosterone-metabolite levels and dominance rank in male and female bonobos (Pan paniscus). Primates, 45, 8996.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1983). Endocrine aspects of social instability in the olive baboon (Papio anubis). American Journal of Primatology, 5, 365–79.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1992). Cortisol concentrations and the social significance of rank instability among wild baboons. Psychoneuroendocrinology, 17, 701–9.CrossRefGoogle ScholarPubMed
Seraphin, S. B., Whitten, P. L., and Reynolds, V. (2008). The influence of age on fecal steroid hormone levels in male Budongo Forest chimpanzees (Pan troglodytes schweinfurthii). American Journal of Primatology, 70, 661–9.CrossRefGoogle ScholarPubMed
Shutt, K., Heistermann, M., Kasim, A., et al. (2014). Effects of habituation, research and ecotourism on faecal glucocorticoid metabolites in wild western lowland gorillas: implications for conservation management. Biological Conservation, 172, 72–9.CrossRefGoogle Scholar
Stavisky, R., Russell, E., Stallings, J., et al. (1995). Fecal steroid analysis of ovarian cycles in free-ranging baboons. American Journal of Primatology, 36, 285–97.CrossRefGoogle ScholarPubMed
Strier, K. B. and Ziegler, T. E. (2005). Advances in field-based studies of primate behavioral endocrinology. American Journal of Primatology, 67, 14.CrossRefGoogle ScholarPubMed
Strier, K. B., Ziegler, T. E., and Wittwer, D. J. (1999). Seasonal and social correlates of fecal testosterone and cortisol levels in wild male muriquis (Brachyteles arachnoides). Hormones and Behavior, 35, 125–34.CrossRefGoogle ScholarPubMed
Sugiyama, Y. (2004). Demographic parameters and life history of chimpanzees at Bossou, Guinea. American Journal of Physical Anthropology, 124, 154–65.CrossRefGoogle ScholarPubMed
Sugiyama, Y. and Fujita, S. (2011). The demography and reproductive parameters of Bossou females. In The Chimpanzees of Bossou and Nimba, ed. Matsuzawa, T., Humle, T., and Sugiyama, Y.. Tokyo: Springer, pp. 2334.CrossRefGoogle Scholar
Surbeck, M., Deschner, T., Schubert, G., Weltring, A., and Hohmann, G. (2012). Mate competition, testosterone and intersexual relationships in bonobos, Pan paniscus. Animal Behaviour, 83, 659–69.Google Scholar
Walker, B. G., Boersma, P. D., and Wingfield, J. C. (2005). Field endocrinology and conservation biology. Integrative and Comparative Biology, 45, 1218.CrossRefGoogle ScholarPubMed
Wallis, J. (1997). A survey of reproductive parameters in the free-ranging chimpanzees of Gombe National Park. Journal of Reproduction and Fertility, 109, 297307.CrossRefGoogle ScholarPubMed
Wasser, S. K. (1996). Reproductive control in wild baboons measured by fecal steroids. Biology of Reproduction, 55, 393–9.CrossRefGoogle ScholarPubMed
Weltring, A., Schaebs, F. S., Perry, S. E., and Deschner, T. (2012). Simultaneous measurement of endogenous steroid hormones and their metabolites with LC–MS/MS in faeces of a New World primate species, Cebus capucinus. Physiology and Behavior, 105, 510–21.Google ScholarPubMed
Whitten, P. L., Brockman, D. K., and Stavisky, R. C. (1998). Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Yearbook of Physical Anthropology, 41, 123.3.0.CO;2-H>CrossRefGoogle Scholar
Wingfield, J., Hegner, R., Dufty, A. J., and Ball, G. F. (1990). The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136, 829–46.CrossRefGoogle Scholar
Ziegler, T. E. and Wittwer, D. J. (2005). Fecal steroid research in the field and laboratory: improved methods for storage, transport, processing, and analysis. American Journal of Primatology, 67, 159–74.CrossRefGoogle ScholarPubMed

References

Baker, K. C. (2000). Advanced age influences chimpanzee behavior in small social groups. Zoo Biology, 19, 111–19.3.0.CO;2-5>CrossRefGoogle Scholar
Boesch, C. and Boesch-Achermann, H. (2000). The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Burr, D. B., Ruff, C. B., and Johnson, C. (1989). Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of macaque. American Journal of Physical Anthropology, 79, 357–67.CrossRefGoogle ScholarPubMed
Carlson, K. J., Doran-Sheehy, D. M., Hunt, K. D., et al. (2006). Locomotor behavior and long bone morphology in individual free-ranging chimpanzees. Journal of Human Evolution, 50, 394404.CrossRefGoogle ScholarPubMed
Carlson, K. J., Sumner, D. R., Morbeck, M. E., et al. (2008). Role of nonbehavioral factors in adjusting long bone diaphyseal structure in free-ranging Pan troglodytes. International Journal of Primatology, 29, 1401–20.CrossRefGoogle ScholarPubMed
Carter, M. L., Pontzer, H., Wrangham, R. W., and Peterhans, J. K. (2008). Skeletal pathology in Pan troglodytes schweinfurthii in Kibale National Park, Uganda. American Journal of Physical Anthropology, 135, 389403.CrossRefGoogle Scholar
Fenart, R. and Deblock, R. (1973). Pan paniscus et Pan troglodytes craniométrie. Etude comparative et ontogénique selon les méthodes classiques et vestibulaire. Muse Royal de L’Afrique Centrale, Tervuren, Belgique Annales, Série In-8º, Sciences Zoologiques, 204, 1593.Google Scholar
Gavan, J. A. (1971). Longitudinal, postnatal growth in chimpanzee. In The Chimpanzee, Vol. 4, Behavior, Growth, and Pathology of Chimpanzees, ed. Bourne, G. H.. Basel: Karger, pp. 46102.Google Scholar
Gunji, H., Hosaka, K., Huffman, M. A., et al. (1998). Note on some chimpanzee skeletons from the Mahale Mountains National Park. Mahale Mountains Chimpanzee Research Project Ecological Report, 109.Google Scholar
Gunji, H., Hosaka, K., Huffman, M. A., et al. (2003). Extraordinarily low bone mineral density in an old female chimpanzee (Pan troglodytes schweinfurthii) from the Mahale Mountains National Park. Primates, 44, 145–9.CrossRefGoogle Scholar
Gunn, A. (2009). Essential Forensic Biology, 2nd edn. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Hamada, Y., Udono, T., Teramoto, M., and Sugawara, T. (1996). The growth pattern of chimpanzees: somatic growth and reproductive maturation in Pan troglodytes. Primates, 37, 279–95.Google Scholar
Hanamura, S., Kiyono, M., Lukasik-Braum, M., et al. (2008). Chimpanzee deaths at Mahale caused by a flu-like disease. Primates, 49, 7780.CrossRefGoogle ScholarPubMed
Huffman, M. A. (1990). Some socio-behavioral manifestations of old age. In The Chimpanzees of the Mahale Mountains, ed. Nishida, T.. Tokyo: University of Tokyo Press, pp. 237–55.Google Scholar
Hunt, K. D. (1991a). Mechanical implications of chimpanzee positional behavior. American Journal of Physical Anthropology, 86, 521–36.CrossRefGoogle ScholarPubMed
Hunt, K. D. (1991b). Positional behavior in the Hominoidea. International Journal of Primatology, 12, 95118.CrossRefGoogle Scholar
Hunt, K. D. (1992a). Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. American Journal of Physical Anthropology, 87, 83105.CrossRefGoogle ScholarPubMed
Hunt, K. D. (1992b). Social rank and body size as determinants of positional behavior in Pan troglodytes. Primates, 33, 347–57.CrossRefGoogle Scholar
Hunt, K. D. (1994a). Body size effects on vertical climbing among chimpanzees. International Journal of Primatology, 15, 855–65.CrossRefGoogle Scholar
Hunt, K. D. (1994b). The evolution of human bipedality: ecology and functional morphology. Journal of Human Evolution, 26, 183202.CrossRefGoogle Scholar
Jurmain, R. (1989). Trauma, degenerative disease, and other pathologies among the Gombe chimpanzees. American Journal of Physical Anthropology, 80, 229–37.CrossRefGoogle ScholarPubMed
Jurmain, R. (1997). Skeletal evidence of trauma in African apes, with special reference to the Gombe chimpanzees. Primates, 38, 114.CrossRefGoogle Scholar
Jurmain, R. (2000). Degenerative joint disease in African great apes: an evolutionary perspective. Journal of Human Evolution, 39, 185203.CrossRefGoogle ScholarPubMed
Kilgore, L. (1989). Dental pathologies in ten free-ranging chimpanzees from Gombe National Park, Tanzania. American Journal of Physical Anthropology, 80, 219–27.CrossRefGoogle ScholarPubMed
Kuykendall, K. (1996). Dental development in chimpanzees (Pan troglodytes): the timing of tooth calcification stages. American Journal of Physical Anthropology, 99, 135–57.Google ScholarPubMed
Matsumura, A., Gunji, H., Takahashi, Y., Nishida, T., and Okada, M. (2010). Cross-sectional morphology of the femoral neck of wild chimpanzees. International Journal of Primatology, 31, 219–38.CrossRefGoogle Scholar
Matsuzawa, T., Sakura, O., Kimura, T., Hamada, Y., and Sugiyama, Y. (1990). Case report on the death of a wild chimpanzee (Pan troglodytes verus). Primates, 31, 635–41.CrossRefGoogle Scholar
Morimoto, N., Ponce de León, M. S., and Zollikofer, C. P. E. (2011). Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff’s low. The Anatomical Record, 294, 589609.CrossRefGoogle Scholar
Nakai, M. and Zamma, K. (2004). Position and movement of the testes of wild chimpanzees at Mahale. Pan Africa News, 11(1), 46.CrossRefGoogle Scholar
Nakai, M., Itoh, N., Nakamura, M., Huffman, M. A., and Nishida, T. (2004). [Individual identification from skeletal remains: cases of wild chimpanzees of the Mahale Mountains National Park, Tanzania.] Primate Research, 20, 19. In Japanese with English abstract.CrossRefGoogle Scholar
Nishida, T. (1996). The death of Ntologi, the unparalleled leader of M group. Pan Africa News, 3(1), 34.CrossRefGoogle Scholar
Nishida, T. (2012). Chimpanzees of the Lakeshore: Natural History and Culture at Mahale. Cambridge: Cambridge University Press.Google Scholar
Peterhans, J. C. K., Wrangham, R. W., Carter, M. L., and Hauser, M. D. (1993). A contribution to tropical rain forest taphonomy: retrieval and documentation of chimpanzee remains from Kibale Forest, Uganda. Journal of Human Evolution, 25, 485514.CrossRefGoogle Scholar
Pusey, A. E., Oehlert, G. W., Williams, J. M., and Goodall, J. (2005). Influence of ecological and social factors on body mass of wild chimpanzees. International Journal of Primatology, 26, 331.CrossRefGoogle Scholar
Shi, C., Nishizawa, S., Adachi, K., and Endo, B. (1995). [A comparative morphological analysis of vertebral bodies in humans and some other mammals.] Anthropological Science, 103, 467–84. In Japanese.Google Scholar
Shimizu, D., Gunji, H., Hashimoto, H., et al. (2002). The four chimpanzee skulls collected in the Mahale Mountains, Tanzania. Anthropological Science, 110, 251–66.CrossRefGoogle Scholar
Sumner, D. R., Morbeck, M. E., and Lobick, J. J. (1989). Apparent age-related bone loss among adult female Gombe chimpanzees. American Journal of Physical Anthropology, 79, 225–34.CrossRefGoogle ScholarPubMed
Tutin, C. E. G. (1996). Reproductive success story: variability among chimpanzees and comparisons with gorillas. In Chimpanzee Cultures, ed. Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., and Heltne, P. G.. Cambridge, MA: Harvard University Press, pp. 181–93.Google Scholar
Uehara, S. and Nishida, T. (1987). Body weights of wild chimpanzees (Pan troglodytes schweinfurthii) of the Mahale Mountains National Park, Tanzania. American Journal of Physical Anthropology, 72, 315–21.CrossRefGoogle ScholarPubMed
Yasui, K. and Takahata, Y. (1983). Skeletal observation of a wild chimpanzee infant (Pan troglodytes schweinfurthii) from the Mahale Mountains, Tanzania. African Study Monographs, 4, 129–38.Google Scholar
Zihlman, A. L., Morbeck, M. E., and Goodall, J. (1990). Skeletal biology and individual life history of Gombe chimpanzees. Journal of Zoology, 221, 3761.CrossRefGoogle Scholar
Zihlman, A., Bolter, D., and Boesch, C. (2004). Wild chimpanzee dentition and its implications for assessing life history in immature hominin fossils. Proceedings of the National Academy of Science of the United States of America, 101, 10541–3.Google ScholarPubMed
Zihlman, A. L., Bolter, D. R., and Boesch, C. (2007). Skeletal and dental growth and development in chimpanzees of the Taï National Park, Côte D’Ivoire. Journal of Zoology, 273, 6373.CrossRefGoogle Scholar

References

Becquet, C., Patterson, N., Stone, A., Przeworski, M., and Reich, D. (2007). Genetic structure of chimpanzee populations. PLoS Genetics, 3(4), e66.CrossRefGoogle ScholarPubMed
Boesch, C. and Boesch-Achermann, H. (2000). The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Boesch, C., Kohou, G., Nene, H., and Vigilant, L. (2006). Male competition and paternity in wild chimpanzees of Taï Forest. American Journal of Physical Anthropology, 130, 103–15.CrossRefGoogle ScholarPubMed
Constable, J., Ashley, M., Goodall, J., and Pusey, A. (2001). Noninvasive paternity assignment in Gombe chimpanzees. Molecular Ecology, 10, 1279–300.CrossRefGoogle ScholarPubMed
Douadi, M. I., Gatti, S., Levrero, F., et al. (2007). Sex-biased dispersal in western lowland gorillas (Gorilla gorilla gorilla). Molecular Ecology, 16, 2247–59.CrossRefGoogle ScholarPubMed
Eriksson, J., Siedel, H., Lukas, D., et al. (2006). Y-chromosome analysis confirms highly sex-biased dispersal and suggests a low male effective population size in bonobos (Pan paniscus). Molecular Ecology, 15, 939–49.CrossRefGoogle ScholarPubMed
Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 4750.Google Scholar
Gagneux, P., Wills, C., Gerloff, U., et al. (1999). Mitochondrial sequences show diverse evolutionary histories of African hominoids. Evolution, 96, 5077–82.Google ScholarPubMed
Garner, T. W., Pearman, P. B., and Angelone, S. (2004). Genetic diversity across a vertebrate species’ range: a test of the central–peripheral hypothesis. Molecular Ecology, 13, 1047–53.CrossRefGoogle Scholar
Goldberg, T. L. and Ruvolo, M. (1997a). The geographic apportionment of mitochondrial genetic diversity in East African chimpanzees, Pan troglodytes schweinfurthii. Molecular Biology and Evolution, 14, 976–84.Google ScholarPubMed
Goldberg, T. L. and Ruvolo, M. (1997b). Molecular phylogenetics and historical biogeography of East African chimpanzees. Biological Journal of the Linnean Society, 61, 301–24.CrossRefGoogle Scholar
Goldberg, T. L. and Wrangham, R.W. (1997). Genetic correlates of social behaviour in wild chimpanzees: evidence from mitochondrial DNA. Animal Behaviour, 54, 559–70.CrossRefGoogle Scholar
Gonder, M. K., Locatelli, S., Ghobrial, L., et al. (2011). Evidence from Cameroon reveals differences in the genetic structure and histories of chimpanzee populations. Proceedings of the National Academy of Sciences of the USA, 108, 4766–71.CrossRefGoogle ScholarPubMed
Goodall, J. (1983). Population dynamics during a 15 year period in one community of free-living chimpanzees in the Gombe National Park, Tanzania. Zeitschrift für Tierpsychologie, 61, 160.CrossRefGoogle Scholar
Hashimoto, C., Furuichi, T., and Takenaka, O. (1996). Matrilineal kin relationship and social behavior of wild bonobos (Pan paniscus): Sequencing the D-loop region of mitochondrial DNA. Primates, 37, 305–18.CrossRefGoogle Scholar
Hayakawa, S. and Takenaka, O. (1999). Urine as another potential source for template DNA in polymerase chain reaction (PCR). American Journal of Primatology, 48, 299304.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Hoffmann, A. A. and Blows, M. W. (1994). Species borders: ecological and evolutionary perspectives. Trends in Ecology & Evolution, 9, 223–7.CrossRefGoogle ScholarPubMed
Inoue, E., Inoue-Murayama, M., Nishida, T., Vigilant, L., and Takenaka, O. (2007a). [Paternity analyses in a wild chimpanzee group.] DNA Polymorphism, 15, 54–8. In Japanese.Google Scholar
Inoue, E., Inoue-Murayama, M., Takenaka, O., and Nishida, T. (2007b). Wild chimpanzee infant urine and saliva sampled noninvasively usable for DNA analyses. Primates, 48, 156–9.CrossRefGoogle ScholarPubMed
Inoue, E., Inoue-Murayama, M., Vigilant, L., Takenaka, O., and Nishida, T. (2008a). Relatedness in wild chimpanzees: influence of paternity, male philopatry, and demographic factors. American Journal of Physical Anthropology, 137, 256–62.CrossRefGoogle ScholarPubMed
Inoue, E., Inoue-Murayama, M., Vigilant, L., Takenaka, O., and Nishida, T. (2008b). [Y-STR polymorphism in a wild chimpanzee group.] DNA Polymorphism, 16, 21–4. In Japanese.Google Scholar
Inoue, E., Tashiro, Y., Ogawa, H., et al. (2013). Gene flow and genetic diversity of chimpanzees in Tanzanian habitats. Primate Conservation, 26, 6774.CrossRefGoogle Scholar
Inskipp, T. (2005). Chimpanzee (Pan troglodytes). In: World Atlas of Great Apes and their Conservation, ed. Caldecott, J. and Miles, L.. Berkeley, CA: University of California Press, pp.5381.Google Scholar
Kawamoto, Y., Shotake, T., Nozawa, K., et al. (2007). Postglacial population expansion of Japanese macaques (Macaca fuscata) inferred from mitochondrial DNA phylogeography. Primates, 48, 2740.CrossRefGoogle ScholarPubMed
Kayser, M. and Sajantila, A. (2001). Mutation at Y-STR loci: implications for paternity testing and forensic analysis. Forensic Science International, 118, 116–21.CrossRefGoogle ScholarPubMed
Keele, B. F., Jones, J. H., Terio, K. A., et al. (2009). Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature, 460, 515–19.CrossRefGoogle ScholarPubMed
Kurihara, R., Yamamoto, T., Uchihi, R., et al. (2004). Mutations in 14 Y-STR loci among Japanese father–son haplotypes. International Journal of Legal Medicine, 118, 125–31.CrossRefGoogle ScholarPubMed
Langergraber, K. E., Mitani, J. C., and Vigilant, L. (2007). The limited impact of kinship on cooperation in wild chimpanzees. Proceedings of the National Academy of Sciences of the USA, 104, 7786–90.CrossRefGoogle ScholarPubMed
Lukas, D., Reynolds, V., Boesch, C., and Vigilant, L. (2005). To what extent does living in a group mean living with kin? Molecular Ecology, 14, 2181–96.CrossRefGoogle Scholar
Morin, P. A., Moore, J. J., Chakraborty, R., et al. (1994). Kin selection, social structure, gene flow, and the evolution of chimpanzees. Science, 265, 1193–201.CrossRefGoogle ScholarPubMed
Morin, P. A., Chambers, K. E., Boesch, C., and Vigilant, L. (2001). Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Molecular Ecology, 10, 1835–44.CrossRefGoogle ScholarPubMed
Nater, A., Nietlisbach, P., Arora, N., et al. (2011). Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant orangutans (genus: Pongo). Molecular Biology and Evolution, 28, 2275–88.CrossRefGoogle ScholarPubMed
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Nietlisbach, P., Arora, N., Nater, A., et al. (2012). Heavily male-biased long-distance dispersal of orang-utans (genus: Pongo), as revealed by Y-chromosomal and mitochondrial genetic markers. Molecular Ecology, 21, 3173–86.CrossRefGoogle ScholarPubMed
Nishida, T. and Kawanaka, K. (1972). Inter-unit-group relationships among wild chimpanzees of the Mahali Mountains. Kyoto University African Studies, 7, 131–69.Google Scholar
Nishida, T., Hiraiwa-Hasegawa, M., and Hasegawa, T. (1985). Group extinction and female transfer in wild chimpanzees in the Mahale National Park, Tanzania. Zeitschrift für Tierpsychologie, 67, 284301.CrossRefGoogle Scholar
Nishida, T., Takasaki, H., and Takahata, Y. (1990). Demography and reproductive profiles. In The Chimpanzees of the Mahale Mountains, ed. Nishida, T.. Tokyo: University of Tokyo Press. pp. 6397.Google Scholar
Nishida, T., Corp, N., Hamai, M., et al. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology, 59, 99121.CrossRefGoogle ScholarPubMed
Nsubuga, A. M., Robbins, M. M., Roeder, A. D., et al. (2004). Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology, 13, 2089–94.CrossRefGoogle ScholarPubMed
Oates, J. F., Tutin, C. E. G., Humle, T., et al. (2008). Pan troglodytes. The IUCN Red List of Threatened Species. Version 2013.1. Available at: www.iucnredlist.org. Accessed August 30, 2013.Google Scholar
Piel, A. K., Stewart, F. A., Pintea, L., et al. (2013). The Malagarasi River does not form an absolute barrier to chimpanzee movement in Western Tanzania. PLoS ONE, 8(3), e58965.CrossRefGoogle Scholar
Pusey, A. E. (1979). Intercommunity transfer of chimpanzees in Gombe National Park. In The Great Apes, ed. Hamburg, D. and McCown, E.. Menlo Park, CA: Benjamin/Cummings. pp. 465–79.Google Scholar
Sakamaki, T. and Nakamura, M. (2007). Preliminary survey of unhabituated chimpanzees in the Mahale Mountains National Park, Tanzania: Behavioral diversity across neighboring unit-groups and intergroup relationships. In Formation of a Strategic Base for Biodiversity Studies, The 21st Century COE Program of Kyoto University, pp. 278–80.Google Scholar
Stone, A. C., Battistuzzi, F. U., Kubatko, L. S., et al. (2010). More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3277–88.CrossRefGoogle Scholar
Takahata, H. and Takahata, Y. (1989). Inter-group transfer of an immature male of the common chimpanzee and his social interactions in the non-natal group. African Study Monographs, 9, 209–20.Google Scholar
Vigilant, L., Hofreiter, M., Siedel, H., and Boesch, C. (2001). Paternity and relatedness in wild chimpanzee communities. Proceedings of the National Academy of Sciences of the USA, 98, 12890–5.CrossRefGoogle ScholarPubMed
Yoshikawa, M., Ogawa, H., Sakamaki, T., and Idani, G. (2008). Population density of chimpanzees in Tanzania. Pan Africa News, 15, 1720.CrossRefGoogle Scholar

References

Ashford, R. W., Reid, G. D. F., and Wrangham, R. W. (2000). Intestinal parasites of the chimpanzee Pan troglodytes, in Kibale Forest, Uganda. Annals of Tropical Medicine and Parasitology, 94, 173–9.CrossRefGoogle ScholarPubMed
Bakuza, S. J. and Nkwengulila, G. (2009). Variation over time in parasite prevalence among free-ranging chimpanzees at Gombe National Park, Tanzania. International Journal of Primatology, 30, 4353.CrossRefGoogle Scholar
Barbora, K. (2010). Ecology and Parasite Fauna of Chimpanzees of Dry Habitats with Emphasis to Chimpanzees of Ugalla–Tongwe Forest Reserve, Tanzania. Bachelor’s thesis. Brno, Czech Republic: Faculty of Science Department of Botany and Zoology, Masaryk University.Google Scholar
Bezjian, M., Gillespie, T. R., Chapman, C. A., and Greiner, E. C. (2008). Coprologic evidence of gastrointestinal helminths of forest baboons, Papio anubis, in Kibale National Park, Uganda. Journal of Wildlife Diseases, 44, 878–87.CrossRefGoogle ScholarPubMed
Bhagwant, S. (2004). Human Bertiella studeri (family Anoplocephalidae) infection of probable Southeast Asian origin in Mauritian children and an adult. American Journal of Tropical Medicine and Hygiene, 70, 225–8.CrossRefGoogle ScholarPubMed
Brown, H. W. (1927). Studies on the rate of development and viability of the eggs of Ascaris lumbricoides and Trichuris trichiura under field conditions. The Journal of Parasitology, 14, 115.CrossRefGoogle Scholar
File, S. K. (1976). Probstmayria gombensis sp. n. (Nematoda: Atractidae) from the chimpanzee. Journal of Parasitology, 62, 256–8.CrossRefGoogle Scholar
Gasser, R. B., Woods, W. G., Huffman, M. A., et al. (1999). Molecular separation of Oesophagostomum stephanostomum and Oesophagostomum bifurcum (Nematoda: Strongyloidea) from non-human primates. International Journal of Parasitology, 29, 1087–91.CrossRefGoogle ScholarPubMed
Gillespie, T. R., Lonsdorf, E. V., Canfield, E. P., et al. (2010). Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. American Journal of Physical Anthropology, 143, 534–44.CrossRefGoogle ScholarPubMed
Graczyk, T. K., Bosco-Nizeyi, J., Ssebide, B., et al. (2002). Anthropozoonotic Giardia duodenalis genotype (assemblage) A infections in habitats of free-ranging human-habituated gorillas, Uganda. Journal of Parasitology, 88, 905–9.CrossRefGoogle ScholarPubMed
Hasegawa, H., Kano, T., and Mulavwa, M. (1983). A parasitological survey on the feces of pygmy chimpanzees, Pan paniscus, at Wamba, Zaïre. Primates, 24, 419–23.CrossRefGoogle Scholar
Hasegawa, H., Huffman, M. A., and Chapman, C. A. (2009). Useful diagnostic references and images of protozoans, helminths, and nematodes commonly found in wild primates. In Primate Parasite Ecology, ed. Huffman, M. A. and Chapman, C. A.. Cambridge: Cambridge University Press, pp. 507–13.Google Scholar
Hasegawa, H., Sato, H., Fujita, S., et al. (2010). Molecular identification of the causative agent of human strongyloidiasis acquired in Tanzania: Dispersal and diversity of Strongyloides spp. and their hosts. Parasitology International, 59, 407–13.Google ScholarPubMed
Howells, M. E., Pruetz, J., and Gillespie, T. R. (2011). Patterns of gastro-intestinal parasites and commensals as an index of population and ecosystem health: the case of sympatric western chimpanzees (Pan troglodytes verus) and guinea baboons (Papio hamadryas papio) at Fongoli, Senegal. American Journal of Primatology, 73, 173–9.CrossRefGoogle ScholarPubMed
Huffman, M. A., Nishida, T., and Uehara, S. (1990). Intestinal parasites and medical plant use in wild chimpanzees: possible behavioral adaptation for the control of parasites. Mahale Mountains Chimpanzee Research Project Ecological Report, 72, 114.Google Scholar
Huffman, M. A., Gotoh, S., Izutsu, D., et al. (1993). Further observations on the use of the medicinal plant, Vernonia amygdalina (Del), by a wild chimpanzee, its possible affect on parasite load, and its phytochemistry. African Study Monograph, 14, 227–40.Google Scholar
Huffman, M. A., Page, J. E., Sukhdeo, M. V. K., et al. (1996). Leaf-swallowing by chimpanzees, a behavioral adaptation for the control of strongyle nematode infections. International Journal of Primatology, 72, 475503.CrossRefGoogle Scholar
Huffman, M. A., Gotoh, S., Turner, L. A., et al. (1997). Seasonal trends in intestinal nematode infection and medical plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates, 38, 111–25.CrossRefGoogle Scholar
Huffman, M. A., Pebsworth, P., Bakuneeta, C., et al. (2009). Chimpanzee–parasite ecology at Budongo Forest (Uganda) and the Mahale Mountains (Tanzania): influence of climatic differences on self-medicative behavior. In Primate Parasite Ecology, ed. Huffman, M. A. and Chapman, C. A.. Cambridge: Cambridge University Press, pp. 331–50.Google Scholar
Kaur, T., Singh, J., and Lindsay, D. S. (2010). Prevalence of Troglodytella abrassarti Brumpt and Joyeux, 1912 in wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park in Western Tanzania. Journal of Parasitology, 96, 209–10.CrossRefGoogle ScholarPubMed
Kawabata, M. and Nishida, T. (1991). A preliminary note on the intestinal parasites of wild chimpanzees in the Mahale Mountains, Tanzania. Primates, 32, 275–8.CrossRefGoogle Scholar
Kim, J. C., Abee, C. R., and Wolf, R. H. (1978). Balantidiosis in a chimpanzee (Pan troglodytes). Laboratory Animals, 12, 231–3.CrossRefGoogle Scholar
Kooriyama, T., Hasegawa, H., Shimozuru, M., et al. (2012). Parasitology of five primates in Mahale Mountains National Park, Tanzania. Primates, 53, 365–75.CrossRefGoogle ScholarPubMed
McGrew, W. C., Tutin, C. E. G., Collins, D. A., and File, S. K. (1989). Intestinal parasites of sympatric Pan troglodytes and Papio spp. at two sites: Gombe (Tanzania) and Mt. Assirik (Senegal). American Journal of Primatology, 14, 147–55.Google Scholar
Muehlenbein, M. P. (2005). Parasitological analyses of the male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 65, 167–79.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P. and Watts, D. P. (2010). The costs of dominance: testosterone, cortisol and intestinal parasites in wild male chimpanzees. BioPsychoSocial Medicine, 4, 21.CrossRefGoogle ScholarPubMed
Muller, M. N. and Wrangham, R. W. (2004). Dominance, aggression and testosterone in wild chimpanzees: a test of the ‘challenge hypothesis’. Animal Behaviour, 67, 113–23.CrossRefGoogle Scholar
Muehlenbein, M. P., Watts, D. P., and Whitten, P. L. (2004). Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 64, 7182.CrossRefGoogle ScholarPubMed
Murray, S., Stem, C., Boudreau, B., and Goodall, J. (2000). Intestinal parasites of baboons (Papio cynocephalus anubis) and chimpanzees (Pan troglodytes) in Gombe National Park. Journal of Zoo and Wildlife Medicine, 31, 176–8.Google Scholar
Nigi, H., Nishida, T., Itoh, N., and Sakamaki, T. (1998). Helminthic parasites infection in wild chimpanzees in the Mahale Mountains National Park, Tanzania, in dry season. In Resource Use Patterns and Social Structure among Chimpanzees, ed. Nishida, T.. Kyoto: Nisshindo Printer, pp. 5762.Google Scholar
Petrzelková, K. J., Hasegawa, H., Appleton, C. C., et al. (2010). Gastrointestinal parasites of the chimpanzee population introduced onto Rubondo Island National Park, Tanzania. American Journal of Primatology, 72, 307–16.CrossRefGoogle ScholarPubMed
Polderman, A. M., Anemana, S. D., and Asigri, V. (1999). Human oesophagostomiasis: a regional public health problem in Africa. Parasitology Today, 15, 129–30.CrossRefGoogle ScholarPubMed
Pomajbíková, K., Petrželková, K. J., Petrášová, J., et al. (2012). Distribution of the entodiniomorphid ciliate Troglocorys cava Tokiwa, Modrý, Ito, Pomajbíková, Petrželková, & Imai, 2010, (Entodiniomorphida: Blepharocorythidae) in wild and captive chimpanzees. Journal of Eukaryotic Microbiology, 59, 97–9.CrossRefGoogle Scholar
Pomajbikova, K., Obornik, M., Horak, A., et al. (2013). Novel insights into the genetic diversity of Balantidium and Balantidium-like cyst-forming ciliates. PLoS Neglected Tropical Disease, 7, e2140.CrossRefGoogle ScholarPubMed
Profousová, I., Mihaliková, K., Laho, T., et al. (2011). The ciliate, Troglodytella abrassarti, contributes to polysaccharide hydrolytic activities in the chimpanzee colon. Folia Microbiologica (Praha), 56, 339–43.CrossRefGoogle ScholarPubMed
Stunkard, H. W., Koivastik, T., and Healy, G. R. (1964). Infection of a child in Minnesota by Bertiella studeri (Cestoda: Anoplocephalidae). American Journal of Tropical Medicine and Hygiene, 13, 402–9.CrossRefGoogle ScholarPubMed
Terio, K. A., Kinsel, M. J., Raphael, J., et al. (2011). Pathologic lesions in chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania, 2004–2010. Journal of Zoo and Wildlife Medicine, 42, 597607.CrossRefGoogle ScholarPubMed
Thomas, H. W. (1910). The pathological report of a case of oesophagostomiasis in man. Annals of Tropical Medicine and Hygiene, 4, 5788.Google Scholar
Vallo, P., Petrželková, K. J., Profousová, I., et al. (2012). Molecular diversity of entodiniomorphid ciliate Troglodytella abrassarti and its coevolution with chimpanzees. American Journal of Physical Anthropology, 148, 525–33.CrossRefGoogle ScholarPubMed
Yamashita, J. (1963). Ecological relationships between parasites and primates. I. Helminth parasites and primates. Primates, 3, 196.CrossRefGoogle Scholar
Yoshikawa, M., Ogawa, H., Sakamaki, T., and Idani, G. (2008). Population density of chimpanzees in Tanzania. Pan Africa News, 15, 1720.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×