We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let V be an infinite-dimensional vector space over a field F and let $I(V)$ be the inverse semigroup of all injective partial linear transformations on V. Given $\alpha \in I(V)$, we denote the domain and the range of $\alpha $ by ${\mathop {\textrm {dom}}}\,\alpha $ and ${\mathop {\textrm {im}}}\,\alpha $, and we call the cardinals $g(\alpha )={\mathop {\textrm {codim}}}\,{\mathop {\textrm {dom}}}\,\alpha $ and $d(\alpha )={\mathop {\textrm {codim}}}\,{\mathop {\textrm {im}}}\,\alpha $ the ‘gap’ and the ‘defect’ of $\alpha $. We study the semigroup $A(V)$ of all injective partial linear transformations with equal gap and defect and characterise Green’s relations and ideals in $A(V)$. This is analogous to work by Sanwong and Sullivan [‘Injective transformations with equal gap and defect’, Bull. Aust. Math. Soc.79 (2009), 327–336] on a similarly defined semigroup for the set case, but we show that these semigroups are never isomorphic.
For a given inverse semigroup, one can associate an étale groupoid which is called the universal groupoid. Our motivation is studying the relation between inverse semigroups and associated étale groupoids. In this paper, we focus on congruences of inverse semigroups, which is a fundamental concept for considering quotients of inverse semigroups. We prove that a congruence of an inverse semigroup induces a closed invariant set and a normal subgroupoid of the universal groupoid. Then we show that the universal groupoid associated to a quotient inverse semigroup is described by the restriction and quotient of the original universal groupoid. Finally we compute invariant sets and normal subgroupoids induced by special congruences including abelianization.
We present a metric condition $\TTMetric$ which describes the geometry of classical small cancellation groups and applies also to other known classes of groups such as two-dimensional Artin groups. We prove that presentations satisfying condition $\TTMetric$ are diagrammatically reducible in the sense of Sieradski and Gersten. In particular, we deduce that the standard presentation of an Artin group is aspherical if and only if it is diagrammatically reducible. We show that, under some extra hypotheses, $\TTMetric$-groups have quadratic Dehn functions and solvable conjugacy problem. In the spirit of Greendlinger's lemma, we prove that if a presentation P = 〈X| R〉 of group G satisfies conditions $\TTMetric -C'(\frac {1}{2})$, the length of any nontrivial word in the free group generated by X representing the trivial element in G is at least that of the shortest relator. We also introduce a strict metric condition $\TTMetricStrict$, which implies hyperbolicity.
For numerical semigroups with a specified list of (not necessarily minimal) generators, we describe the asymptotic distribution of factorization lengths with respect to an arbitrary modulus. In particular, we prove that the factorization lengths are equidistributed across all congruence classes that are not trivially ruled out by modular considerations.
It is shown that the Ellis semigroup of a
$\mathbb Z$
-action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymptoticity. Furthermore, the Ellis semigroup of a
$\mathbb Z$
- or
$\mathbb R$
-action for which forward proximality and backward proximality are transitive relations is shown to have at most two left minimal ideals. Finally, the notion of near simplicity of the Ellis semigroup is introduced and related to the above.
If ${\mathfrak {F}}$ is a type-definable family of commensurable subsets, subgroups or subvector spaces in a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with ${\mathfrak {F}}$. This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
Given an action
${\varphi }$
of inverse semigroup S on a ring A (with domain of
${\varphi }(s)$
denoted by
$D_{s^*}$
), we show that if the ideals
$D_e$
, with e an idempotent, are unital, then the skew inverse semigroup ring
$A\rtimes S$
can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
If $f:\tilde{\unicode[STIX]{x1D6E4}}\rightarrow \unicode[STIX]{x1D6E4}$ is a covering map between connected graphs, and $H$ is the subgroup of $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6E4},v)$ used to construct the cover, then it is well known that the group of deck transformations of the cover is isomorphic to $N(H)/H$, where $N(H)$ is the normalizer of $H$ in $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6E4},v)$. We show that an entirely analogous result holds for immersions between connected graphs, where the subgroup $H$ is replaced by the closed inverse submonoid of the inverse monoid $L(\unicode[STIX]{x1D6E4},v)$ used to construct the immersion. We observe a relationship between group actions on graphs and deck transformations of graph immersions. We also show that a graph immersion $f:\tilde{\unicode[STIX]{x1D6E4}}\rightarrow \unicode[STIX]{x1D6E4}$ may be extended to a cover $g:\tilde{\unicode[STIX]{x1D6E5}}\rightarrow \unicode[STIX]{x1D6E4}$ in such a way that all deck transformations of $f$ are restrictions of deck transformations of $g$.
Subshifts with property $(A)$ are constructed from a class of directed graphs. As special cases the Markov–Dyck shifts are shown to have property $(A)$. The semigroups that are associated to ${\mathcal{R}}$-graph shifts with Property $(A)$ are determined.
In this article, we calculate the Ellis semigroup of a certain class of constant-length substitutions. This generalizes a result of Haddad and Johnson [IP cluster points, idempotents, and recurrent sequences. Topology Proc.22 (1997) 213–226] from the binary case to substitutions over arbitrarily large finite alphabets. Moreover, we provide a class of counterexamples to one of the propositions in their paper, which is central to the proof of their main theorem. We give an alternative approach to their result, which centers on the properties of the Ellis semigroup. To do this, we also show a new way to construct an almost automorphic–isometric tower to the maximal equicontinuous factor of these systems, which gives a more particular approach than the one given by Dekking [The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheor. Verw. Geb.41(3) (1977/78) 221–239].
Let $T_{n}(\mathbb{F})$ be the semigroup of all upper triangular $n\times n$ matrices over a field $\mathbb{F}$. Let $UT_{n}(\mathbb{F})$ and $UT_{n}^{\pm 1}(\mathbb{F})$ be subsemigroups of $T_{n}(\mathbb{F})$, respectively, having $0$s and/or $1$s on the main diagonal and $0$s and/or $\pm 1$s on the main diagonal. We give some sufficient conditions under which an involution semigroup is nonfinitely based. As an application, we show that $UT_{2}(\mathbb{F}),UT_{2}^{\pm 1}(\mathbb{F})$ and $T_{2}(\mathbb{F})$ as involution semigroups under the skew transposition are nonfinitely based for any field $\mathbb{F}$.
Consider the action of
$\operatorname{GL}(n,\mathbb{Q}_{p})$
on the
$p$
-adic unit sphere
${\mathcal{S}}_{n}$
arising from the linear action on
$\mathbb{Q}_{p}^{n}\setminus \{0\}$
. We show that for the action of a semigroup
$\mathfrak{S}$
of
$\operatorname{GL}(n,\mathbb{Q}_{p})$
on
${\mathcal{S}}_{n}$
, the following are equivalent: (1)
$\mathfrak{S}$
acts distally on
${\mathcal{S}}_{n}$
; (2) the closure of the image of
$\mathfrak{S}$
in
$\operatorname{PGL}(n,\mathbb{Q}_{p})$
is a compact group. On
${\mathcal{S}}_{n}$
, we consider the ‘affine’ maps
$\overline{T}_{a}$
corresponding to
$T$
in
$\operatorname{GL}(n,\mathbb{Q}_{p})$
and a nonzero
$a$
in
$\mathbb{Q}_{p}^{n}$
satisfying
$\Vert T^{-1}(a)\Vert _{p}<1$
. We show that there exists a compact open subgroup
$V$
, which depends on
$T$
, such that
$\overline{T}_{a}$
is distal for every nonzero
$a\in V$
if and only if
$T$
acts distally on
${\mathcal{S}}_{n}$
. The dynamics of ‘affine’ maps on
$p$
-adic unit spheres is quite different from that on the real unit spheres.
Let R be a Mori domain with complete integral closure
$\widehat R$
, nonzero conductor
$\mathfrak f = (R: \widehat R)$
, and suppose that both v-class groups
${{\cal C}_v}(R)$
and
${{\cal C}_v}(3\widehat R)$
are finite. If
$R \mathfrak f$
is finite, then the elasticity of R is either rational or infinite. If
$R \mathfrak f$
is artinian, then unions of sets of lengths of R are almost arithmetical progressions with the same difference and global bound. We derive our results in the setting of v-noetherian monoids.
Let X be a monoid scheme. We will show that the stalk at any point of X defines a point of the topos of quasi-coherent sheaves over X. As it turns out, every topos point of is of this form if X satisfies some finiteness conditions. In particular, it suffices for M/M× to be finitely generated when X is affine, where M× is the group of invertible elements.
This allows us to prove that two quasi-projective monoid schemes X and Y are isomorphic if and only if and are equivalent.
The finiteness conditions are essential, as one can already conclude by the work of A. Connes and C. Consani [3]. We will study the topos points of free commutative monoids and show that already for ℕ∞, there are ‘hidden’ points. That is to say, there are topos points which are not coming from prime ideals. This observation reveals that there might be a more interesting ‘geometry of monoids’.
The direct product
$\mathbb{N}\times \mathbb{N}$
of two free monogenic semigroups contains uncountably many pairwise nonisomorphic subdirect products. Furthermore, the following hold for
$\mathbb{N}\times S$
, where
$S$
is a finite semigroup. It contains only countably many pairwise nonisomorphic subsemigroups if and only if
$S$
is a union of groups. And it contains only countably many pairwise nonisomorphic subdirect products if and only if every element of
$S$
has a relative left or right identity element.
We say that two elements of a group or semigroup are $\Bbbk$-linear conjugates if their images under any linear representation over $\Bbbk$ are conjugate matrices. In this paper we characterize $\Bbbk$-linear conjugacy for finite semigroups (and, in particular, for finite groups) over an arbitrary field $\Bbbk$.
This paper provides short proofs of two fundamental theorems of finite semigroup theory whose previous proofs were significantly longer, namely the two-sided Krohn-Rhodes decomposition theorem and Henckell’s aperiodic pointlike theorem. We use a new algebraic technique that we call the merge decomposition. A prototypical application of this technique decomposes a semigroup $T$ into a two-sided semidirect product whose components are built from two subsemigroups $T_{1}$, $T_{2}$, which together generate $T$, and the subsemigroup generated by their setwise product $T_{1}T_{2}$. In this sense we decompose $T$ by merging the subsemigroups $T_{1}$ and $T_{2}$. More generally, our technique merges semigroup homomorphisms from free semigroups.
First, we prove a theorem on dynamics of actions of monoids by endomorphisms of semigroups. Second, we introduce algebraic structures suitable for formalizing infinitary Ramsey statements and prove a theorem that such statements are implied by the existence of appropriate homomorphisms between the algebraic structures. We make a connection between the two themes above, which allows us to prove some general Ramsey theorems for sequences. We give a new proof of the Furstenberg–Katznelson Ramsey theorem; in fact, we obtain a version of this theorem that is stronger than the original one. We answer in the negative a question of Lupini on possible extensions of Gowers’ Ramsey theorem.
Let C be a set of positive integers. In this paper, we obtain an algorithm for computing all subsets A of positive integers which are minimals with the condition that if x1 + … + xn is a partition of an element in C, then at least a summand of this partition belongs to A. We use techniques of numerical semigroups to solve this problem because it is equivalent to give an algorithm that allows us to compute all the numerical semigroups which are maximals with the condition that has an empty intersection with the set C.