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Abstract We call a semigroup right perfect if every object in the category of unitary right acts over
that semigroup has a projective cover. In this paper, we generalize results about right perfect monoids to
the case of semigroups. In our main theorem, we will give nine conditions equivalent to right perfectness
of a factorizable semigroup. We also prove that right perfectness is a Morita invariant for factorizable
semigroups.
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1. Preliminaries

Perfect and semiperfect rings with identity were introduced in [3] by Bass. Such rings
have been studied in numerous articles. Perfect monoids were defined in [9] by Isbell, who
proved that a monoid is left perfect if and only if it satisfies two conditions referred to
as (A) and (D). Fountain [6] gave more conditions that are equivalent to left perfectness.
In particular, he proved that a monoid is left perfect if and only if all of its weakly
flat (in the sense of being pullback flat) unitary left acts are projective. Subsequently, a
number of other papers related to perfect monoids or pomonoids have appeared (e.g.,
[2, 8, 10-12, 20]).

The purpose of this paper is to define (right) perfect semigroups and show that many
descriptions of right perfect monoids can be transferred to the case of factorizable semi-
groups. We say that a semigroup is right perfect if the category of all its unitary right
acts is perfect in the sense that each of its objects has a projective cover. In our main
theorem, we will give nine different conditions that are equivalent to right perfectness of
a factorizable semigroup. Some of these are familiar from the monoid case, but some of
them are new. For example, a factorizable semigroup is right perfect if and only if all
right sequence acts over it are projective.

(© The Author(s), 2023. Published by Cambridge University Press on Behalf of The
Edinburgh Mathematical Society. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited. 259

https://doi.org/10.1017/50013091523000159 Published online by Cambridge University Press

()]

Check for
updates


mailto:valdis.laan@ut.ee
mailto:alvin.lepik@ut.ee
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091523000159&domain=pdf
https://doi.org/10.1017/S0013091523000159

260 V. Laan and A. Lepik

It is well known that right perfectness and right semiperfectness are Morita invariants
for rings with identity (Corollary 27.8 and Corollary 28.6 in [1]). We prove that right
perfectness is also a Morita invariant for factorizable semigroups. Our results allow to con-
clude that the class of perfect semigroups contains all completely (0-)simple semigroups
and all nilpotent semigroups.

Throughout this paper, S denotes a nonempty semigroup (if not stated otherwise),
and S' is the monoid obtained from S by adjoining an external identity 1 (no matter if
S already has an identity element or not). All S-acts, subacts and ideals we consider are
nonempty, unless stated otherwise explicitly.

An act Ag is called unitary if A = AS, that is, for every a € A, there exist a’ € A and
s € S such that a = a’s. The category of unitary right S-acts with S-act homomorphisms
as morphisms will be denoted by UActg. Any S-act Ag can be made an S'-act by defining
al = a for every a € A.

Tensor products of acts over semigroups are defined in the same way as tensor products
of acts over monoids (see [13, Construction 2.5.4]). The tensor product of a right act Ag
and a left act gB is the quotient set A ®g B := (A x B)/d, where 9 is the smallest
equivalence relation on A x B containing the set {((as,b), (a,sb)) |a € A,b € B,s € S}.
The ¥-class of a pair (a, b) is denoted by a ® b,s0 AQs B={a®b|a € A,be B}. We
will often write A ® B instead of A ®g B. Each right S-act Ag induces in a natural way
a tensor functor A ®g — : gAct — Set (cf. [13, Construction 2.5.15]), where gAct is the
category of all left S-acts and Set is the category of sets. We will use the properties of
this functor to define different flatness properties of Ag.

An act Ag is called firm if the mapping ps : A® S — A, a ® s — as is bijective.
The category of firm right S-acts is denoted by FActg. The categories UActg and FActg
are full subcategories of Actg, the category of all right S-acts. In all three categories,
coproducts are disjoint unions.

A semigroup S is called firm if Sg is a firm right S-act. A semigroup S is called
factorizable if S? = S, i.e., any element in S is a product of two elements.

We will need the following result about firm acts.

Lemma 1.1. [16, Corollary 2.4] If Ag is a unitary act over a factorizable
semigroup, then A ®g S is a firm right S-act.

Let Ag be a right S-act. Finitely generated subacts of Ag are those of the form
FS':={fs| f € F,se S}, where F C A is a finite subset. An act Ag is called cyclic
if there exists a € A such that A = aS! = {a} UaS. An S-act is locally cyclic if all of
its finitely generated subacts are cyclic. It can be shown that Ag is locally cyclic if and
only if

(Va,a' € A)(Fa" € A)(3s,s' € SY)(a=a"sNd =d"s).
Essential epimorphisms are defined dually to essential monomorphisms.

Definition 1.2. An epimorphism f : P — A in a category C is called an essential
epimorphism if, for every morphism g: Q — P in C,

fg is an epimorphism = g is an epimorphism.
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It is easy to see that the composite of two essential epimorphisms is an essential
epimorphism.

Definition 1.3. If f : P — A is an essential epimorphism in a category C, then the
object P is called a cover of the object A. If the object P is projective in C, then it is
called a projective cover of A.

Similar to Proposition 1.3 in [17], one can prove that epimorphisms in UActg are
precisely the surjective morphisms.

Lemma 1.4. Let S be a semigroup. An epimorphism f : Ps — Ag in UActg is
essential if and only if f|q is not surjective for every unitary proper subact Q of Pg.

Proof. Necessity. Assume that f: Pg — Ag is an essential epimorphism in UActg
and let @ be a unitary proper subact of Pg. Then the inclusion map ¢ : Q@ — P is a
morphism in UActg and f|g = ft. If fu was surjective, then ¢ would be surjective due to
essentiality of f.

Sufficiency. Let f: P — Ag and g : Us — Ps be morphisms in UActg such that f
and fg are surjective. It is easy to see that g(U) is a unitary subact of Pg and f|y ) is
surjective. By assumption, g(U) = P, so ¢ is surjective and therefore f is essential. [

Definition 1.5. We say that a semigroup S is:

e right perfect if every object of UActs has a projective cover;
e right semiperfect if every unitary cyclic right S-act has a projective cover in
UActgs.

Dually, one can define left (semi)perfect semigroups. A semigroup is (semi)perfect if it
is both right and left (semi)perfect.

Remark 1.6. We have defined right semiperfect semigroups as nonadditive analogues
of right semiperfect rings (see [3]).

Remark 1.7. Note that if S is a monoid, then an act Ag is unitary if and only if
al = a for every a € A. Hence, S is right perfect in the sense of Definition 1.5 if and
only if it is right perfect in the sense of [9] and [6]. Thus, the results in those articles are
special cases of our more general approach.

Definition 1.8. (cf. [5]) A subsemigroup T of a semigroup S is called left unitary
if, for every s,t € S,

t,tselT — seT.

In this paper, we will use the following conditions on a semigroup S.

Definition 1.9. A semigroup S satisfies Condition:

o (A) if every right S-act satisfies the ascending chain condition (ACC) for cyclic
subacts;

https://doi.org/10.1017/50013091523000159 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000159

262 V. Laan and A. Lepik

e (D) if every left unitary subsemigroup of S contains a minimal right ideal
generated by an idempotent;

o (My) if S satisfies the descending chain condition (DCC) for principal left ideals
of S.

2. Indecomposable and projective acts

An act is called indecomposable if it is not a disjoint union of two nonempty subacts.

Proposition 2.1. [4, Lemma 4] Fuvery right S-act is a disjoint union of indecom-
posable subacts.

In what follows, we will call the indecomposable subacts of Ag the indecomposable
components of Ag. It is easy to see that each cyclic act is indecomposable. We will

need the following result about projective acts.

Theorem 2.2. [4, Lemma 2] Let S be a semigroup and let C be a full subcategory of
Actg which is closed under coproducts. Let Ps = [_|Z.€I P;, where P; € C for every i € I.
Then Pg is projective in C if and only if P; is projective in C for every i € I.

Note that coproducts in Actg are disjoint unions, and both UActg and FActg are closed
under disjoint unions.

Lemma 2.3. Let e be an idempotent in a semigroup S. Then the right S-act €S is a
projective object in Actg, UActg and FActg.

Proof. By the dual of Lemma 3.1(1) in [18], the act eS is firm, thus also unitary. In
all these categories, epimorphisms are precisely the surjective morphisms. Now, in any of
these categories, we consider a morphism f : eS — Bg and an epimorphism 7 : Ag — Bg.

Denote b := f(e) and choose a € A such that f(e) = m(a). Consider a homomorphism
g:eS — Ag defined by

g(es) :=aes, s€S.
Then wg = f because (7g)(es) = w(aes) = w(a)es = f(e)es = f(es). O
The last two results allow us to prove the following result.

Corollary 2.4. FEvery nilpotent semigroup is perfect. Fvery nilsemigroup is semiper-
fect.

Proof. If S is nilpotent, then S™ = 0 for some n € N. If Ag is unitary, then, for any
a € A, we can find @’ € A and sq,...,s, € S such that

a=a's,...505 =a'0=a00=a0.
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So aS! = {a} is a one-element subact, which is isomorphic to the act 0S = {0}. The last
is projective in UActg by Lemma 2.3. Thus,

As=| [{a}= | ] oS

a€A acA

is a projective act by Theorem 2.2, which is a projective cover of itself (with the identity
mapping). Thus, all objects of UActg (and similarly sUAct) have projective covers and
S is perfect.

Assume now that S is a nilsemigroup. If aS?! is a cyclic unitary act, then a = as for
some s € S. For s, there exists n € N such that s™ = 0. It follows that a = as™ = a0,
and hence, aS! = {a} = 05, where 0§ is projective. Thus, S is right semiperfect and,
similarly, it is also left semiperfect. 0

Nilpotent semigroups need not be factorizable in general. For example, any semigroup
with more than one element and with zero multiplication is not factorizable.

Over a factorizable semigroup, projective acts can be described as follows. The descrip-
tion relies on Theorem 2 in [4], which generalizes a well-known characterization of
projective acts over monoids.

Theorem 2.5. Let S be a factorizable semigroup. For Ps € Actg, the following are
equivalent:

(1) Ps is a projective object in FActg;
(2) Pg is a projective object in UActg;
(3) P=|J;cseiS for some idempotents e; € S, i € I.

Proof. (1) = (2). Assume that Pg is a projective object in FActg. Clearly, Pg is
an object in UActg. We will prove that it is projective in UActg. Consider a morphism
f: Ps — Bg and an epimorphism 7 : Ag — Bg in UActg. By Lemma 1.1, the acts in
the diagram

9!
Y
ARg S ——— > B®g S

are firm and 7 ® 1g is an epimorphism in FActgs because the functor — ® S, as a
left adjoint, preserves epimorphisms. Using projectivity of Pg, we can find a morphism
g: Ps — A®g S such that the square commutes. Now p 49 : Ps — Ag is a morphism in
UActg. Take any p € P. Then there exist pg € P, a € A and sg, s € S such that p = pgsg
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and g(p) = a ® s. Due to the commutativity of the square, we have

m(a)®s = (1@ 15)(9(p)) = (f © 1) (up' (p)) = (f ® 15)(po @ s0) = f(po) @ 50

in B®g S. Applying the mapping pp to the equality m(a) ® s = f(po) ® so, we obtain
m(a)s = f(po)so. Consequently,

(mag)(p) = (mpa)(a @ s) = m(as) = w(a)s = f(po)so = f(poso) = f(p)-

We have shown that 7(uag) = f, as needed.

(2) = (3). This is a consequence of Theorem 2 in [4] because UActg satisfies the
assumptions of that theorem.

(3) = (1). By Lemma 2.3, the acts e;S are projective in FActg. A disjoint union
of firm acts is firm; thus, Pg is an object of FActg. It is projective in FActg due to
Theorem 2.2. g

A right S-act Ag is called (finite) limit flat (see [15, Definition 1.3]) if the functor
A ®s — : gAct — Set preserves (finite) limits.

Proposition 2.6. The following are equivalent for an act Ag over a factorizable
semigroup S:

(1) Ag is an indecomposable projective object in UActg;

(2) Ag is unitary and limit flat;

(3) Ag = eS for some idempotent e € S;

(4) there exists a € A and an idempotent e € S such that As = aS*, a= ae and

(Vs,t € SY)(as = at = es = et).

Proof. (1) <= (3). This follows from Theorem 2.5 because cyclic acts are
indecomposable.

(2) <= (3). This is Proposition 4.4 in [15].

(3) <= (4). This is due to Lemma 1.1 and Corollary 1.2 in [7]. O

The properties listed in item (4) may be assumed of any generator of a cyclic projective
object in UActg.

Corollary 2.7. An act Ag = aS" is a projective object in UActg if and only if there
exists an idempotent e € S such that a= ae and as= at implies es= et for all s,t € S'.

Proof. Necessity. (This proof is similar to the proof of implication (ii) = (iii) in
[13, Corollary 3.17.9].) By Proposition 2.6, aS! = S for some idempotent e € S. Let
f :eS — aS! be an isomorphism. Then there exist u € S* and v € S such that f(e) = au
and f(ev) = a. Now f(e) = au = f(ev)u = f(evu) implies e = evu because [ is injective.
Also, aue = f(e)e = f(e) = au. Putting z := uev € S, we have 22 = (uev)(uev) =
u(evu)ev = ueev = z, so z is an idempotent.

Suppose that as = at, where s,t € S'. Then f(evs) = f(ev)s = f(ev)t = f(evt), which
implies evs = evt. Therefore, zs = uevs = uevt = zt.

Sufficiency. This follows from Proposition 2.6. g
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3. Sequence acts

Let us recall the construction of a sequence act over a semigroup (cf. [15,
Construction 3.9]). A similar construction in the case of a monoid appeared already
in the proof of Lemma 1 in [6].

Let (si)ien € SN be a sequence of elements of S. On the set

F=NxS8"={(k,s)|keN,se S},

we define a right S-action by (k,s)z := (k,sz), k € N, s € St and z € S. This gives us a
right S-act F'g. On the set F, we define a binary relation ~ by

(k,s) ~ (K',s") <= On=k,K)(spn...505=5p...5u5).
Then ~ is a congruence of F'g. Form the quotient act
Mg =Fg/~={[k,s] |k€eN,s € Sl}a

where [k, s] denotes the ~-class of (k, s). We call such acts right sequence acts over
S. Note that

se415k - 1= spp1-sp = [k, 1] = [k + Lsi] = [k + 1, 1si € [k +1,1]5"

for each k € N, so we see that Mg is unitary and it is a union of a chain of its cyclic
subacts

[1,1]8' € [2,1)S* C [3,1]8* C ---.

Lemma 3.1. Right sequence acts are locally cyclic (and hence indecomposable). A
right sequence act Mg is cyclic if and only if Mg = [k,1]S* for some k € N.

Proof. Given any [k,s],[(,t] € Mg, we have that [k,s],[(,t] € [max{k,{},1]St.
Thus, right sequence acts are locally cyclic. It is well known that locally cyclic acts

are indecomposable.
If Mg is cyclic, then M = [m,u]S* for some u € S*. By the above,

Ms = [m,u)S* = [m+ 1, s,u]S* C [m+1,1]S*,
so Mg = [m + 1,1]S1. The converse is obvious. O

Lemma 3.2. Let S be a semigroup. Each act of the form eS, e? = e € S, is isomorphic
to a right sequence act.
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Proof. Let Mg be the right sequence act constructed using the constant sequence
(e,e,...). For every k € N,

erl=g...ce= (k1)~(l,e) = [k1]=[11e = [k, 1]S' = [1,1]S",

so Mg = [1,1]S*. Consider the S-act homomorphism
f:eS—[1,1]Y, es[1,es].
It is injective because
(l,es) ~(l,et) = e-es=e-et = es=et
for every s,t € S, and it is surjective because
[1,s] = [2,es] =[2,e]es = [1,1]es = [1,es] = f(es)
for every s € S'. Thus, f is an isomorphism. O

Corollary 3.3. Let S be a factorizable semigroup. For S-act properties, we have the
following implications:

unitary limit flat = isomorphic to a right sequence act =—> unitary finite limit flat.

Proof. The first implication follows from Proposition 2.6 and Lemma 3.2. The second
implication holds due to Proposition 4.3 in [15]. O

In our main theorem, we will show (among other things) that factorizable right perfect
semigroups S are precisely those for which the converse of the first implication holds for

every right S-act. Note also that according to this corollary, ‘right sequence act’ could
be placed between ‘eS’ and ‘firm fin. lim. flat’ in the figure on page 90 of [15].

4. Condition (A)

A subset X of an act Ag is a set of generators if A = XS!. A set X of generators is
called independent ([6, p. 90]) if

(Vo,2' € X) (z€a/'S" = z=1').

Lemma 4.1. Cf. [6, Lemma 2] Let Ag be an act over a semigroup S satisfying
(ACC) for cyclic subacts. Then Ag has an independent set of generators.
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Proof. Denote
X :={zecA|(Va' € A)(zS' C2'S" = 25" =2'5")}.

We first show that X is a set of generators for Ag. It suffices to prove that A C XS,
Take arbitrary a € A and consider the set

P, = {a’Sl |a' € A,aS' C a’Sl}

as a poset with respect to inclusion. Since aS' € P,, by assumption, this poset must
have a maximal element a¢S"'. In particular, aS* C aoS*. We show that ag € X.

If ' € A and agS' C /S, then also aS! C 2/S?, so 2'S' € P,. Due to maximality of
apS', we have apS' = 2/S'. Hence, ag € X and a € apS' C X 5!, as needed.

Define a relation ~ on X by

r~1 <« zS'C /St

It is clear by the choice of X that we have an equivalence relation.

From every =-class, we choose a representative and form a set X " of those elements.
We show that X is an independent set of generators for Ag. By the definition of =, for
every x € X, there exist 2/ € X’ and s € S! such that = 2’s. Since X is a set of
generators, X is also a set of generators.

To prove that X is independent, we suppose that z € /9!, where 2,2/ € X’ C X.
Then xS C 2’S', which means that  ~ 2’. Now z = 2’ because each ~-class contains
precisely one element from X . O

Definition 4.2. Cf. [2, Definition 4.1] We say that a semigroup S is right ZC-
perfect if every unitary act As has a cover f : Bs — Ag, where Bg is unitary, and
indecomposable components of Bs are cyclic. Such a cover will be called an ZC-cover.

Note that if b = b's, where b,/ € B and s € S, then b and b must be in the
same indecomposable component. Therefore, indecomposable components of Bg must
be unitary. Hence,

Bs = |b:S",
el

where each b;S! is a cyclic unitary act.

The following result is inspired by Result 1.2 in [9], by Lemma 1.3 in [10] and also by
Lemma 2.2 and Theorem 5.2 in [2]. Among other things, it shows that Condition (A)
can be given a description that does not refer to acts but only uses the elements of S.

Theorem 4.3. For a semigroup S, the following are equivalent:
(1) S satisfies Condition (A);

(2) every locally cyclic right S-act is cyclic;
(3) every right sequence act over S is cyclic;
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(4) for every sequence (s;)ien € SV,
Fk,m eN)Fu e SH(E=m+1 and Sg...8mi1 = Sk -+ Smi15mll);

(5) for every act Ag, there exists a set {A; | i € I} of cyclic subacts of Ag such that

A=JA and (jel)|A; 2| JAi]; (4.1)
i€l i#j

(6) S is right ZC-perfect.

Proof. (1) = (2). Suppose that Ag is a locally cyclic act which is not cyclic. Choose
a; € A. Since Ag is not cyclic, there exists by € A\ a1S*. Using that Ag is locally cyclic,
we can find as € A and u,v € S' such that a; = asu and b; = asv. Note that as & a1 S?
because otherwise b; € a;S*. Thus, a1S' C asSt.

Again, a2 St # A, and we can find an element by € A\ ayS*. Continuing in this manner,
we can construct a strictly increasing sequence

alSl C GQSl C agSl [@EEEE

of cyclic subacts of Ag, which contradicts Condition (A).

(2) = (3). Every right sequence act is locally cyclic because it is the union of an
ascending chain of its cyclic subacts.

(3) = (4). Assume that all right sequence acts over S are cyclic. Consider a sequence
(5:)ien € SN and the right sequence act

Mg ={[k,s] | k€N, se€ S5}
determined by it. By assumption, M g must be cyclic. By Lemma 3.1, there exists m € N
such that M = [m,1]S*. Then (m + 1,1) ~ (m,u) for some u € S', which means that
there exists k > m + 1 such that sx...Sm4+1 = Sk -+ Sm+1SmU.

(4) = (1). Suppose that Ag does not satisfy (ACC) for cyclic subacts. Then there
exists a sequence (a;);eN € AN such that

Cl1Sl C agSl C agSl C e
Consequently, for every ¢ € N, there exists s; € S such that a; = a;415s;. For the sequence
(5i)ien € SN, there exist k,m € N, k > m + 1 and u € S! such that sp...8,41 =

Sk - - Sm+1Smu. Then

Am+1 = Am+2Sm+1 = Om43Sm+28m+1 = Ak+15k - - - Sm4+1 = Ak+15k - - - Sm41SmU

= AKSk—1 - - - Sm+15mU = Gm41SmU = QU € amS*.

It follows that a,, 15! = a,, 5", a contradiction.
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(1) = (5). Assume that S satisfies Condition (A). Consider an act Ag. By
Lemma 4.1, Ag has an independent set of generators X. Then, clearly, A = (J, .y =S L
Take y € X and suppose that yS* C Uy xSt Then there exists z € X \ {y} such that

y € z8'. Independence of X implies y = z a contradiction. Hence,

ySt ¢ U xSt
TF£Y

(5) = (6). Let Ag be a unitary act. By (5), there exist cyclic subacts A; = a;S?,
i € I, such that Equation (4.1) holds. It is easy to see that each a;S! is unitary.

Now Bs := | J;¢; a;S' is an act whose indecomposable components are cyclic and
unitary. Consider the S-act homomorphism

f : Bg — AS, a;S — a;Ss.

Suppose that f is not essential. Then there exists 7 € I and (possibly empty) proper
subact C' of a;S" such that f : C'U|],;a;S" — A is surjective. In particular, there

exists b € C'U[;,; a;S* such that f(b) = a;. We have two possibilities.

1) b€ C. Then b = a;s for some s € S'. Hence, a; = f(b) = f(a;s) = ajs =b € C,
which implies a;S' = C, a contradiction.
2) belly a;S*. Then a;S' = f(b)S! = f(bS') C Uiz, a;S', a contradiction.

(6) = (3). Assume that S is right ZC-perfect and consider a right sequence act
M g determined by a sequence (s;);en. Since Mg is unitary by the comment preceding
Lemma 3.1, it has a cover f: Bg — Mg, where

Bg = |_| b;St.

icl

Fix an index j € I. Let f(b;) = [k, s] € Mg. Then f(b;S*) C [k, 1]S*. Consider a number
¢ > k. Suppose [/, 1] has an f-preimage in b;S! for some i #j. Then [¢,1]S* C f(b;S?),
which implies that f restricted to B\ b;S* is surjective. But that contradicts essentiality
of f. Thus, [¢,1] must have a preimage in b;S*. Let [(,1] = f(bju) for some u € S*. Now

[0.1) = f(bju) = F(bj)u = [k, shu = [k, Lsu € [k,1]S",

which implies [¢,1]S* = [k, 1]S!. Since this equality holds for every ¢ > k, we have shown
that Mg = [k, 1]S!, so Mg is cyclic. O

Remark 4.4. Condition (5) in Theorem 4.3 appears first in Lemma 2.2 of [2], but
a similar condition was used in [10]. It is kind of interesting that this condition can be
formulated in topological terms as follows.

If Ag is an act, then the set of its subacts (here including the empty subact) is a
topology on the set A because any union or intersection of subacts is a subact. The set
of all cyclic subacts is a basis for this topology. Now condition (5) says that this basis
contains a subset which is a minimal cover (in the sense of topology) for A.
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5. Condition (D)

In this section, we will prove that a factorizable semigroup satisfies Condition (D) if and
only if it is right semiperfect. The following result can be proved precisely as Lemma 4.4
in [8].

Lemma 5.1. Let T be a left unitary subsemigroup of a semigroup S. Then
(Vu,v € T) (uT" C VTl = uS' C USl).

Lemma 5.2. If a subsemigroup T of a semigroup S is left unitary, then it is a p-class
of some right congruence p on S.

Proof. Assume that T is a left unitary subsemigroup of S. Let p be the right congru-
ence on S generated by the set 7' x T. Take t € T. Then T' C [t],. We will prove that
[t]l, CT.1If s € [t],, then t ps and

/ !
t = t1$1 t252 = t383 "'tn—lsn—l = tnSn
1s1 = tasy thsn = 8

L €T and s; € S*. If 51 # 1, then s; € T because T is left unitary. Hence,
tis1 € T, both when s; # 1 and when s; = 1. If s5 # 1, then s3 € T, and so on. Thus,
for every i € {1,...,n}, either s; =1 or s; € T. It follows that s =t s, € T. O

for some t;,t/

Lemma 5.3. If S is a semigroup and aS* is a unitary cyclic S-act, then
T={seS|as=a}
is a left unitary subsemigroup of S.

Proof. Since aS! is unitary, there exist u € S* and s € S such that a = (au)s = a(us).
We see that us € T, so T is nonempty, and it is clearly a subsemigroup of S. If t,ts € T,
then as = (at)s = a(ts) = a, so s € S. Thus, T is left unitary. O

Theorem 5.4. Cf. [9], Result 1.5 and Theorem 5.2 in [20] For a factorizable
semigroup S, the following assertions are equivalent:

(1) S is right semiperfect;
(2) S satisfies Condition (D).

Proof. (1) = (2). (This is inspired by the proof of Proposition 4.6 in [8]. Differently
from that proof, we cannot assume that R is the congruence class of the identity element,
but with appropriate modifications, the proof will work.)

Let R be a left unitary subsemigroup of S. By Lemma 5.2, it is a p-class for some right
congruence p on S, say R = [t|, t € R. Then [t]S! is a cyclic subact of the right S-act
S/p. It is a unitary S-act because t,t?> € R implies [t] = [t]t.

By assumption, [t|S! has a projective cover in UActg. This must be a unitary cyclic
projective act (see the proof of Lemma 4.1 in [8]). Due to Theorem 2.5, it must be of
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the form eS, where e € S is an idempotent. Also, there exists an essential epimorphism
f:eS — [t]S! in UActs. Because of surjectivity of f, there exists eu € eS such that
[t] = f(euw). Since S is factorizable, euS is a unitary subact of eS. Now eut € euS and
[t] = [tt] = [t]t = f(euw)t = f(eut) imply that f|ec,s is surjective. Due to essentiality, we
have the equality euS = eS. It follows that ¢ = eus’ for some s’ € S. Putting s := s'e € S,
we have e = eus and s = se. Now

(su)(su) = (seu)(su) = s(eus)u = seu = su,
so su is an idempotent. In addition,
[t] = f(eu) = f(eusu) = f(eu)su = [t]su = [tsu].

Since R is left unitary, t,tsu € R implies su € R. Let us prove that suR! is a minimal
right ideal in R.

For this, we show that for every r € R, rR' C suR' implies rR' = suR'. Let r € R.
If rR! C suR?!, then 7 = sur’ for some r’ € R'. Hence, r = (su)?r’ = (su)(sur’) = sur
and

fleurt) = f(eu)rt = [t]rt = [trt] = [t]

because trt € R. Since eurS is a unitary subact of eS and f|eyrs is surjective, eurS =
eS =eSt. Now

$S = seS = seurS = surS =rS C rS* = surS' C suS! C sS,

which implies 7S = suS'. Since r, su € R, we conclude that rR' = suR' by Lemma 5.1.
(2) = (1). Assume that S satisfies Condition (D) and consider a unitary cyclic S-act
aS'. The fact that aS' is unitary means that a = atg for some to € S. Now

T:={teS|at=a}

is a left unitary subsemigroup of S by Lemma 5.3. Since S satisfies Condition (D), there
exists an idempotent e € T' (so ae = a) such that eT is a minimal right ideal in 7. We
will show that the unitary S-act eS is a projective cover for aS' in UActg.

For this, we consider the surjective S-act homomorphism

f:eS —aSt, €s — aes = as.
Suppose that B is a unitary subact of eS such that f|p is surjective. Then there exists
b € B such that f(b) = a. Since B C eS, there exists s € S such that b= es. Observe
that a = f(es) = as. Consequently, s € T and also es € T. Now, using minimality of eT
and Lemma 5.1,

esT! CeT = esT' =eT = esS'=eS = eS=bS'CBCeS = B =e¢S.

O
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6. Condition (M)

Similar to Condition (A), Condition (M) has a description in terms of sequences of
elements of S.

Proposition 6.1. A semigroup S satisfies Condition (My) if and only if
(V(s:)ien € SN)(Fn € N)(Vm > n)(Gu € S*)(usm ... 51 = 55 ... 51).

Proof. Necessity. Assume that S satisfies Condition (M ). Consider a sequence
(5i)ien € SN and denote t; := s;8;_1 ...s1 for each i € N. Since the descending chain

Sty D8y DSy D -

stabilises, there exists n € N such that S't,, = S't,, for every m > n. Hence, t,, € S't,,,
which means that us,,...s1 = S, ...s; for some v € S1.

Sufficiency. Suppose to the contrary that S does not satisfy Condition (My,). Then
we have a strictly decreasing chain of principal left ideals

Sltl Dsltg 351t3 DI

For every ¢ € N, there exists s;41 € St such that tiv1 = Sip1t;. Since we assumed that
t; # t;+1, we have s;41 € S. Also, put s; := t;. By our assumption, there exists n € N
such that for every m > n, there exists v € S* such that us,,...s1 = 8,...51. f n=1,
then there exists v € S' such that usst; = ¢, which implies uty = t;. Consequently,
Slt; = S'ts, a contradiction. Otherwise, let m > n > 1. Then s, ...s1 = s, ... 51 for
some v’ € S! and

tn = Sntn1 = SnSn_1tn-2 ="+ = 538n-1...51 = UWSmSm—_1...51 = Wtm,
whence S't,, C S't,, and therefore S't,, = S't,,, a contradiction. O

We will also need the following lemma.

Lemma 6.2. Cf. [6, Lemma 1] If all right sequence acts over a semigroup S are
projective, then S satisfies Condition (My,).

Proof. We will employ Proposition 6.1. Consider a sequence (s;);en and the right
sequence act Mg determined by it. By assumption, Mg is projective. Hence, for the
surjective homomorphism

W:NXSIZF5—>MS7 (k,S)*—)[k’,S],

there exists a homomorphism p : Mg — Fs such that mp = 1.
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Let pu([1,1]) = (k,s) € N x S'. Then

[17 1] = (WN)([L 1]) = W(kvs) = [k7 8]'

273

Since (1,1) ~ (k, s), there exists n > k such that s,,...s1-1 =8, ...8;-s. Let m >n and

put u([m—l— 1,1]) = (r,¢) for some r € N and ¢ € St Note that (1,1) ~ (m+1,8p,...

because
Sm+1---811=8m+1"Sm-..51.
Now

(k,s) = u([1,1]) = u([m+1 S v es1]) = pllm 4 1 1)s 51

)
= (r,¢)sm - - = (r,csm...51),
whence k=r and s = c¢s,, ... 8. Putting v :=s,,...sgc € S, we have
Sp.--81=2S8p...88=Sn...SkCSm ...581 = USy, - .. 81,

as needed.

7. Pullback flatness

81)

Definition 7.1. A right S-act Ag is called pullback flat if the functor AQg — : gAct —

Set preserves pullbacks.

Since pullbacks are finite limits, every finite limit flat act is pullback flat.

We will need the following conditions (introduced first for acts over monoids in [21])

and the following theorem.

(P) If as = a's’ for some a,a’ € A and s,s’ € S, then there exist a” € A and u,v € S

such that

https://doi.org/10.1017/50013091523000159 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000159

274 V. Laan and A. Lepik

(E) If as = as’ for some a € A and s,s" € S, then there exist ' € A and u € S such
that

a=au, us=us.

Theorem 7.2. [15, Theorem 3.5] Let Ag be a unitary act over a semigroup S. Then
Ag is pullback flat if and only if it satisfies both Condition (P) and Condition (E).

Proposition 7.3. A cyclic S-act aS? is unitary and pullback flat if and only if
(Vs,t € SM(as = at = (Fu € S)(a = au A us = ut)).

Proof. Necessity. Let A = aS' be unitary and pullback flat. Take s, € S such
that as=at. Since aS' is unitary, a=av for some v € S. Then a(vs) = a(vt), where
vs,vt € S. By Theorem 7.2, aS?! satisfies Condition (E), so there exists w € S such that
a=aw and w(vs) = w(vt). Putting v := wv, we have a = au and us = ut.

Sufficiency. By assumption, there exists v € S such that a = au, thus aS! is unitary.
That aS? satisfies Condition (E) follows immediately from the assumption. To prove
Condition (P), suppose that (as;)s = (as2)s’, where s1,s2 € S! and s,s’ € S. By
assumption, there exists u € S such that a=au and us;s = usss’. Now as; = a(usy)
and ase = a(usz), where usy,uss € S. O

Lemma 7.4. Cf. [6, Lemma 3] Let Ag be a unitary pullback flat act which satisfies
(ACC) for cyclic subacts. If Ag is indecomposable, then it is cyclic.

Proof. Take any z € A and consider the set
P, :={bS'|bec A, xS* CbS'}

as a poset with respect to inclusion. Since xS € P,, we have P, # (), so by assumption,
there exists a maximal element aS! € P,. In particular, 5! C aS'. Consider the set
Y := A\ aS*. Assume for a contradiction that Y # (). Now, Ag is a union of its subacts
aS! and YS'. Since Ag is indecomposable,

aSt Ny st #£0,

which means that there exist ¥y € Y and s, t € S* such that as = yt.

On the one hand, if t=1, then y = as € aS', a contradiction. On the other hand,
suppose s = 1. The equality a = yt implies that 2S5 C aS' C yS!. It follows that yS' € P,
and aS! = yS! due to maximality. So again, we must have y € aS*, which is impossible.
Thus, we must have s,t € S.

Since Ag is a unitary pullback flat act, by Theorem 7.2, it satisfies Condition (P).
Hence, there exist ' € A and u,v € S such that a = a’u, y = a’v and us=vt. We
conclude that aS* C a/S*. It follows that a’S' € P,, so aS! = a’S' due to maximality.
Now, for some z € S', ¢’ = az and therefore y = a/v = azv, whence y € aS!, a

contradiction. Thus, Y = () and A = aS? is cyclic, as required. g
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Corollary 7.5. If a semigroup S satisfies Condition (A), then every unitary pullback
flat S-act is a disjoint union of cyclic unitary pullback flat subacts.

Proof. Assume that S satisfies Condition (A) and let Ag be unitary and pullback
flat. By Proposition 2.1,

A=A,

icl

where A; is an indecomposable subact of Ag for every ¢ € I. It is clear by Theorem 7.2
that the A; are pullback flat. Since S satisfies Condition (A), each A; satisfies (ACC) for
cyclic subacts. We see that the A; satisfy all assumptions of Lemma 7.4, so they must
be cyclic. O

Lemma 7.6. Cf. [6, Lemma 5 and Lemma 4] If a factorizable semigroup S
satisfies either Condition (D) or Condition (M), then every unitary cyclic pullback flat
right S-act is projective.

Proof. Let Ag = aS! be a unitary cyclic pullback flat S-act. By Lemma 5.3, the set
T ={s €S |as=a}is a left unitary subsemigroup of S. If S satisfies Condition (D),
then T contains a minimal right ideal eT, where e € T is an idempotent. If S satisfies
Condition (Mp), then the set

I={S't|teT}

of principal left ideals of S contains a minimal element S'e for some element e € 7. In
both cases, it suffices to prove that condition (4) of Proposition 2.6 is satisfied.

Assume that as = at for some s,t € S'. Since aS"' is pullback flat, by Proposition 7.3,
there exists u € S such that a = au and us = ut. The equality au = ae implies that a = av
and vu = ve for some v € S. Note that u,v € T.

First, let S satisfy Condition (D). By Lemma 8.12 in [5], Te is a minimal left ideal of
T. Tt follows that

Tvu CTuNTe C Te,

whence Te = Tvu C Tu due to minimality. Therefore, e = wu for some w € T. We
conclude that es = wus = wut = et, as needed.

Second, assume S satisfies Condition (My,). Since T is a subsemigroup, vu € T and
Slvu € I. The equality vu=wve implies S'vu C Sle. We have S'vu = S'e due to

minimality and e=wvu for some w € S!. This implies es = wvus = wout = et.
In particular, al = ae implies that el = ee by the previous argument, so e is an
idempotent. O
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8. Condition (K)

Definition 8.1. Cf. [11, Definition 1.6] We say that a subsemigroup T of S is left
collapsible if T! is a left collapsible submonoid of ', that is,

(Vt,t' € TY)(3u € T)(ut = ut’).

Condition (K) for monoids was introduced by Kilp in [11] and used later in [12].
We use it for semigroups in the following form.

Definition 8.2. A semigroup S satisfies Condition (K) if every left collapsible
subsemigroup of S has a left zero.

Proposition 8.3. Cf. [11, Theorem 2.3] A factorizable semigroup S satisfies
Condition (K) if and only if every unitary cyclic pullback flat right S-act is projective.

Proof. Necessity. Suppose S satisfies Condition (K). Let aS* be unitary pullback
flat and let T = {s € S | as = a}. If t,#' € T*, then at = at’. By Proposition 7.3, there
exists u € S such that a = au and ut = ut’. In particular, v € T. We have shown that
T' is a left collapsible submonoid of S'.

By assumption, T has a left zero e. We will check condition (4) of Proposition 2.6.
We know that a = ae. Suppose that as = at, s,t € S'. Then there exists v € S such that
a=au and us =ut. Then u € T, eu=e and es = eus = eut = et.

Sufficiency. Assume that every unitary cyclic pullback flat right S-act is projective.
Let T C S be a left collapsible subsemigroup of S. Then by definition P := T is a left
collapsible submonoid of S!. By Lemma 2.1 in [11], the relation p, defined by

spt < (Ip,q € P)(ps = qt),

is a right congruence on the monoid S'. In particular, 1pp for all p € P. The cyclic
Stact S*/p=1],S* is pullback flat.

It turns out that S'/p = [1],S! is also a cyclic unitary pullback flat S-act. Since T
is nonempty, we can choose to € T C S. If [1],s = [1],¢t, s,t € S', then Condition (E)
implies that there exists u € S' such that [1], = [1],u and us=ut. If it happens that
u=1, then still [1], = [1], to and tos = tot. By Proposition 7.3, S /p is a unitary pullback
flat S-act.

By assumption, [1],S! is projective. Using Corollary 2.7, we know that there exists
e € E(S) such that [1], = [1],e and [1],s = [1],¢t implies es=et for all s,t € S'. In
other words, 1 pe and s pt implies es = et for all s, € S*. From 1 pe, we obtain p,q € P
such that p = ge. Let € P be arbitrary. Then 1 pr, which implies e = er, and therefore
pr = ger = ge = p. Thus, p is a left zero for P. If p=1, then 1 = ge = qee = e, which
contradicts the fact that e € S. Thus, p € T and p is a left zero for T. O

Corollary 8.4. If S is factorizable, then Condition (My) implies Condition (K).

Proof. This follows from Proposition 8.3 and Lemma 7.6. g
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9. The main theorem
Our main theorem is the following.

Theorem 9.1. For a factorizable semigroup S, the following are equivalent:

S is right perfect;

S is right ZC-perfect and right semiperfect;

S satisfies both Condition (A) and Condition (D);

S satisfies both Condition (A) and Condition (My);

S satisfies both Condition (A) and Condition (K);

every right sequence act over S is projective in UActg;

every finite limit flat right S-act is projective in UActg;
every unitary pullback flat right S-act is projective in UActg;
every finite limit flat right S-act is limit flat;

every right sequence act over S is limit flat.

=~ o~~~
O © 00~ O Ui Wi+
N N N S S S S S N

—~

Proof. (1) = (2). If a semigroup S is right perfect, then it is clearly right semiperfect.
If f:]]),c;esS — Ag is a projective cover for a unitary act Ag, then its indecomposable
components e; S, i € I, are cyclic and unitary. Hence, S is also right ZC-perfect.

(2) = (1) Let Ag be a unitary S-act. Since S is ZC-perfect, there exists a cover
g : Bs — As, where Bg = | |;; b;S' is a disjoint union of unitary cyclic subacts.
Semiperfectness of S gives a unitary projective cover f; : P; — b;S! for each i € I.
Then Ps := | |,c; P; is a unitary projective act by Theorem 2.5 and

f: Ps — Bg, x> filx) ifzep

is a surjective homomorphism of right S-acts. We will show that f is essential.

Suppose that @ is a proper subact of Pg. Then there exists ¢ € I such that Q; := QNP;
is a proper (possibly empty) subact of P;. Hence, filg, : Qi — b;S! is not surjective
because f, is essential. But then also f|g is not surjective because the preimages of
elements of b;S' can only come from P;. Thus, f is an essential epimorphism. Hence,
gf : Ps — Ag is an essential epimorphism and Pg is a projective cover for Ag.

(2) < (3). This follows from Theorem 5.4 and Theorem 4.3.

(6) = (3). Assume that all right sequence acts are projective. Since they are indecom-
posable (see Lemma 3.1), unitary and projective, they must be cyclic. Hence, S satisfies
Condition (A) by Theorem 4.3.

We will prove that S satisfies Condition (D). The proof of this implication is inspired
by the proof of Theorem 6.2 in [8].

Let T be a left unitary subsemigroup of S. Take any ¢t € T. We will prove that the
principal right ideal tT! of T contains an idempotent. By the assumption, the right
sequence act M g, determined by the constant sequence (t) € SV, is projective. Since M g
is indecomposable, it must be cyclic. From Lemma 3.1, we conclude that there exists
i € N such that M = [i,1]S*. By Corollary 2.7, there exists > = e € S such that
[i,1] = [i, €] and

(Va,y € SY)([i,z] = [i,y] = ex = ey). (9.1)
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From [i,1]S' C [i + 1,1]S' € Mg = [i,1]S?, we conclude that [i,1]S' = [i + 1,1]S.
Hence, there exists z € S such that [i + 1,1] = [i, 2]. We have the diagram

M = [i,1]5*
T s

(i,1)S" —— (i +1,1)5"

@

with 1-generated free S-acts (i,1)S! and (i + 1,1)S* and with right S-act homomor-
phisms defined by

afi,s) == (i + 1,ts),

Bli+1,8):=[i+1,s] = [i, 29],

7([i, s]) == (i, es),
Yi=arf:(i+1,1)8 = (i +1,1)S

Note that 7 is well defined due to the implication (9.1).
Denoting h := tez, since [i + 1,t] = [¢, 1], we have that

(Bat)([i,z]) = (Ba)(i,ez) = B(i + 1,tez) = [i + 1,tez] = [i + 1,t]ez = [i, 1]ez
[i,e]z = [i,1]z = [, 2]

and
V(i +1,1) = (YarB)(i+1,1) = (Yar)([i + 1,1]) = (arBa7)([i, 2])
= (ar)([i,2]) = (a7B)(i + 1,1) = ¢ (i + 1,1) = (a7)([i, 2])
=a(i,ez) = (i+ 1,tez) = (i + 1, h).
Hence,

(i+1,h) =9 +1,1) = (i +1,h) =i+ 1L, Dh = (i + 1, h)h = (i + 1,h%),
which yields h? = h. The equalities [i+1,1] = [4, 2] and [i, 1] = [i, €] imply that t* = t"T1z
and t"™ = t"e for some m,n € N. Since T is a left unitary subsemigroup, z,e € T and

we have an idempotent h € tT.
Now consider a chain

61T1 2 62T1 2 €3T1 2

of principal right ideals of T generated by idempotents e; € T. By Lemma 5.1, we have
a chain

6151 2 6251 2 6351 2
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Similar to the proof of Theorem 6.2 in [8], we can find idempotents g; € S such that
S'g128'ga 2 8%gs 0 -,

e;S* = ¢;5" and gi119; = git1 = gigit1 for every i € N.

By Lemma 6.2, S satisfies Condition (M ). Thus, there exists n € N such that Stg; =
S1giiq for every i > n. Now g; = g;gi+1 = giy1; therefore, g; = g;11 and ;5! = ;115!
for every i > n. By Lemma 5.1, it follows that e;7" = ;11T for every i > n. We have
shown that T satisfies the DCC for principal right ideals generated by idempotents.

Suppose that T does not have a minimal principal right ideal. Take any by € T. Then
b T contains an idempotent e; and byT' O e;T" . Since e;T! is not a minimal ideal,
there exists by € T such that e;7" D byT'. In this way, we get an infinite descending
chain

biTr DeyTr D baTr D exT D bsT DesT! > -
of principal right ideals of T, where e; € E(T). Thus, we also have a chain
€1T1 D €2T1 D €3T1 Do,

a contradiction. It follows that 7" has a minimal principal right ideal bT. As it contains
an idempotent e, we have b7 = eT"! due to minimality.

(4) = (5). By Corollary 8.4.

(5) = (6). Assume that S satisfies both Condition (A) and Condition (K). By
Theorem 4.3, every right sequence act M g is cyclic. Due to Corollary 3.3, every Mg is
unitary and finite limit flat, hence also pullback flat. By Proposition 8.3, M g is projective.

(6) = (4). By Lemma 6.2, S satisfies Condition (M ). We show that S satisfies
Condition (A) using Theorem 4.3. Take any sequence (s;);en € S" and consider the right
sequence act Mg determined by it. By assumption, it is projective. It is also indecom-
posable; hence, by Proposition 2.6, there exists an S-isomorphism f : Mg — €S, where
e € E(S) is some idempotent. Then there exists [m, s] € M such that f([m, s]) = e. Also,
there exists s’ € S such that f([m +1,1]) = es’. Now

f([m+1,1]) = f([m, s])s’ = f([m,ss']) = [m+1,1] = [m,ss].
Thus, there exists £ > m + 1 such that

!
Sk-+-Sm+1 = Sk -+ - Sm+1SmSS .

(3) V (4) = (8). Let Ag be a unitary pullback flat act. Using Condition (A), by
Corollary 7.5, we conclude that Ag = | |,.; As, where A; is a cyclic unitary pullback flat
act for every ¢ € I. We have by Lemma 7.6 that each A; is projective when S satisfies
either Condition (D) or Condition (My). Thus, Ag is projective due to Theorem 2.2.

(8) = (7). Since pullbacks are finite limits, each finite limit act is pullback flat.

(7) = (6). Every right sequence act M g satisfies Condition (E) by Lemma 3.10 in [15].
It is easy to see that Mg satisfies Condition (LC): if a,a’ € M, then there exist o’/ € M
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and u,v € S such that ¢ = a”u and @’ = a”’v. By Theorem 4.2 in [15], right sequence
acts are finite limit flat. We also know that they are unitary. By assumption, they are
projective.

(7) < (9). A finite limit flat act Ag must satisfy Condition (LC) by Theorem 4.2 in [15].
This implies that Ag is indecomposable. By Proposition 2.6, Ag is an indecomposable
projective in UActg if and only if it is a unitary limit flat act.

(6) < (10). Let Mg be a right sequence act. Then Mg is limit flat if and only if
Mg = eSg for some idempotent e € S by Proposition 4.4 in [15]. In other words, a right
sequence act over a factorizable semigroup is limit flat if and only if it is projective. O

Remark 9.2. 1. Condition (4) in Theorem 9.1 is important because together with
Theorem 4.3 and Proposition 6.1, it shows that perfectness of a factorizable semigroup
S can be verified by checking two conditions that are formulated in terms of sequences
of elements of S. These conditions are internal to S and do not refer to any categories.

2. If S is factorizable and right perfect, then any right sequence act over S is projective.
In particular, S must contain at least one idempotent.

It is easy to check that Rees matrix semigroups (with zero) over a group satisfy both
Condition (A) and Condition (M}) (and their duals). Thus, we have the following result.

Corollary 9.3. Cf. [2, Corollary 3.13] Every completely (0-)simple semigroup is
perfect.

10. Morita invariance

Recall that semigroups S and T are called Morita equivalent if the categories FActg
and FActr are equivalent (see [18]). A Morita invariant is a property that is shared by
all Morita equivalent semigroups. In this section, we will prove that right semiperfectness,
right ZC-perfectness and right perfectness are Morita invariants on the class of factorizable
semigroups. For this, we need to examine essential epimorphisms in UActg and FActg.

Proposition 10.1. Let S be a semigroup and Ag € UActg. Then iy is an essential
epimorphism in UActg.

Proof. Since Ag is unitary, u 4 is surjective, and it is easy to see that A®g .S is unitary.
Let U C A® S be a unitary subact and consider the diagram

Us — A®s S 5 Ag
in UActg, where ¢ is the embedding. Suppose p 4t is surjective. By Lemma 1.4, it suffices
to show that ¢ is surjective, that is, U = A® S. Take a ® s € A ® S. By surjectivity of
fat, there exist ' € A and s’ € S such that ¢’ ® s’ € U and a = (uat)(a’ @ s') = d's’.
Now

a®s=ds®s=d ®ss=(d®s)seUSCU.

Thus, ¢ is surjective, as required. O
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Proposition 10.2. Let S be a factorizable semigroup. For a morphism f : Ps — Ag
in FActg, the following are equivalent:

(1) fis an essential epimorphism in UActs;
(2) fis an essential epimorphism in FActs.

Proof. (1) = (2). This is clear.

(2) = (1). Let U C Pg be a unitary subact and let ¢ : U — P be the embedding.
Suppose fi is surjective. By Lemma 1.4, it suffices to show that ¢ is surjective, that is,
U = P. According to Lemma 1.1, U ®g S is a firm right S-act. Consider the diagram

U®SSH>U3—L>PSL>A5.

Since py is surjective, fiuy is a surjective morphism in FActg. Also, tuy is a morphism
in FActg. Then tuy is surjective due to essentiality of f. It follows that ¢ is surjective. O

Proposition 10.3. The following are equivalent for a factorizable semigroup S:

(1) every cyclic act in UActg has a projective cover;
(2) every cyclic act in FActs has a projective cover.

Proof. (1) = (2). Take a cyclic act aS* € FActs. Since aS! is unitary, it has a cyclic
projective cover f : eS — aS! in UActs (note that a cover of a cyclic act must be cyclic).
Recall that eS is firm (see Lemma 2.3). Consider a diagram

Bg L5 eS8 L> asS?!

in FActg. If fg is surjective, then g must be surjective because this diagram is also in
UActg and f is an essential epimorphism in UActg. Thus, f is an essential epimorphism
in FActg.

(2) = (1). Take a cyclic act aS* € UActs. By Lemma 1.1, aS' ®g S is firm. Since aS*
is unitary, there exist s € S and u € S* such that a = (au)s. Then

aS' @5 S = (au ® s)S*t.
The inclusion D is clear. On the other hand, if v € S* and t € S, then
av @t = (au)sv @t = au ® svt = (au @ s)vt € (au @ s)S.

Therefore, aS* ®g S is a cyclic right S-act.

By assumption, there exists a projective cover f : eS — aS!' ® S in FActg. By

Proposition 10.2, f is also an essential epimorphism in UActg. Proposition 10.1 implies
that p, 1 : aS* ® S — aS' is an essential epimorphism in UActg. Therefore,

roa1f
eS —45 ", 48t

is a projective cover in UActg. g
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Having a projective cover is a purely categorical property; thus, it is preserved by
equivalence functors. Also, indecomposability is a categorical property: an act is inde-
composable if it is not a coproduct of two noninitial objects (the initial object is just
the empty act). However, for cyclicity, there is no obvious categorical description. Still,
cyclic acts are preserved under tensor multiplication functors coming from certain Morita
contexts.

Definition 10.4. [22] A Morita context is a siz-tuple (S, T, sPr,7Qs,0,$), where
S and T are semigroups, sPr € gActy and rQgs € rActg are biacts and

0:s(P®Q)s — sSs, ¢:7(Q®P)r — rTr

are biact homomorphisms such that for every p,p’ € P and q,q' € QQ, we have

Op@q)p’ =pplq@p’) and qd(p@q')=d(q@p)d.

This context is called unitary if sPr and 1Qgs are unitary biacts, meaning that SP =
P=Pl andTQ =Q =Q5.

By Theorem 5.9 in [14], two firm semigroups S and T are Morita equivalent if and
only if they are connected by a unitary Morita context with surjective mappings 6 and

0.

Proposition 10.5. Let S and T be firm semigroups connected by a unitary Morita
context (S, T, sPr,1Qs, 0, @) with surjective mappings. Then the functors

— ® sPr:FActgs — FActy and — ®7Qg : FActy — FActg

take cyclic acts to cyclic acts.

Proof. As in Proposition 3.16 of [18], one can prove that — ® ¢Pr : FActs — FActr
and — ® 7Qg : FActy — FActg are equivalence functors inverse to each other (see also
Theorem 5.9 in [14]). We will prove that —® s Py takes cyclic acts to cyclic acts. The same
is true for — ® 7Qg, so cyclic acts will correspond to each other under these functors.

Consider a cyclic act aS' € FActg. We will prove that aS' ®g Pr is cyclic. Since aS*
is unitary, there exists s € S such that as = a. Using surjectivity of 8, we can find ps € P
and g5 € @ such that s = 0(ps ® ¢s). We will prove that

aS' ®@s Pr = (a ® ps)T".
The inclusion (a ® ps)T' C aS! ®g Pr is clear. To prove the converse, we note that

au@p=asu®@p=a® sup=a® §(ps D qgs)up = a @ psp(qs ® up)
= (a® ps)d(gs ® up) € (a @ ps)T*

for every v € S* and p € P. g
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Proposition 10.6. Let S be a factorizable semigroup. Then the functors
— ®g Ssws : FActs — FActsgs and — ®@sgsSs : FActsgs — FActg

are inverse equivalence functors which take cyclic acts to cyclic acts.

Proof. By Proposition 4.9 in [16], these functors are inverse equivalence functors. We
also recall that S®S is considered as a semigroup with the multiplication (s®t)(u®v) =
st ® uv, and the action of Ssgg is s(u ® v) = suw.

Let aS! € FActs be cyclic. We want to show that aS! ®g Sses is a cyclic S ® S-act.
Suppose a = (au)s for some u € S* and s € S. We will prove that

asS! ®s Ssps = (au ® $)(S ® S)l
On the one hand,
(au®s)(S®S)! C (aS* @5 9)(S® S)' =aS* ®s S.

Conversely, suppose that av ®t € aS* ®s5 Ssgs. Since S is factorizable, t = 555 for some
s1,82 € S. Hence,
av @t = ausv @t = au ® svt = au ® svs182 = au ® (s(vs] ® $2))
= (au @ s)(vs; ® s2) € (au® s)(S ® S) .
Let now a(S® S)! € FActsgs be cyclic. We want to show that a(S® S)! ®sgs Sg is a

cyclic S-act. Since a(S ® 9)! is unitary, a = a(s; ® s2) for some s1, 52 € S. We will prove
that

a(S ® S)! ®ses Ss = (a ® s152)S".

The inclusion 2 is clear. Conversely, let a(u; ® uz) ® s € a(S ® S)! ®sgs Ss, where
u1, Uz, s € S. Then
a(u; @ ug) ® s =a(s; ® $2)(u1 @u2) ® s =a(s152 @uiuz) ® s = a® (5152 ® ujuz)s

=a® $152u1U2s = (a ® s182)uruzs € (a® 5189)St.

Our first theorem about invariants is the following.

Theorem 10.7. Right semiperfectness is a Morita invariant for factorizable semi-
groups.

Proof. Suppose S and T are Morita equivalent factorizable semigroups. Equivalently,
by Proposition 4.9 in [16], S ® S and T ® T are Morita equivalent firm semigroups.
According to Theorem 5.9 in [14], there exists a unitary Morita context with bijective
mappings connecting S ® S and T ® T'. Consequently,
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S is right semiperfect all cyclic objects in U Actg have a projective cover

by Proposition 10.3 all cyclic objects in F'Acts have a projective cover
by Proposition 10.6

( )
( ) all cyclic objects in F' Actsgs have a projective cover
(by Proposition 10.5)
( )
( )

all cyclic objects in F'Actrgr have a projective cover
by Proposition 10.6 all cyclic objects in F'Acty have a projective cover

by Proposition 10.3 all cyclic objects in U Actr have a projective cover

Freeret

T is right semiperfect.

Proposition 10.8. The following are equivalent for a factorizable semigroup S:

(1) every act in UActg has an ZC-cover;
(2) every act in FActg has an ZC-cover.

Proof. (1) = (2) Take Ag € FActg and let

BS = |_| b151 i) AS
iel
be an ZC-cover in UActg. By Lemma 1.1, B®g S is firm. The indecomposable compo-

nents of B are unitary. Hence, for every ¢ € I, there exist u; € S! and s; € S such that
bi = (bluz)sz Then

B®sg S = <|_| bi5'1> ®s S = |_|(bi51 ®g S) = U(biui ® 5;)St.

i€l icl iel

The acts (bju; ® s;)S! are indecomposable because they are cyclic.
Consider the diagram

B®S£)BSL)AS.

By Proposition 10.1, g is essential in UActg. Thus, the composition fup is an essential
epimorphism in UActg. Since fup is also a morphism in FActg, it is essential in FActg
by Proposition 10.2.

(2) = (1) Take As € UActs. Then A®g S is firm by Lemma 1.1. By assumption, there
exists an ZC-cover

Cs:=| |as' L Aws s
il

in FActs. Then f is an essential epimorphism in UActg by Proposition 10.2. By
Proposition 10.1, p4 is essential in UActg. Therefore, puaf : Cs — Ag is an ZC-cover in
UActg. O
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Theorem 10.9. Right ZC-perfectness is a Morita invariant for factorizable semi-
groups.

Proof. Let S and T be factorizable semigroups and F' : FActg — FActy an equivalence
functor that takes cyclic acts to cyclic acts. Suppose that Ag € FActg has an ZC-cover

fo| |biSt — As.

icl

Since F' preserves coproducts and essential epimorphisms,

F(f):| |F:s") = F <|_| bi51> — F(Ag)

i€l i€l

is an ZC-cover of F(Ag), where F(b;S') € FActg are cyclic acts (and hence indecom-
posable). So F(Ag) also has an ZC-cover. If F has an inverse equivalence functor G,
which also takes cyclic acts to cyclic acts, then we can prove that Ag has an ZC-cover if
and only if F/(Ag) has an ZC-cover.

Let now S and T be as in the proof of Theorem 10.7. Then

S is right ZC-perfect <= all objects in UActg have an ZC-cover

(by Proposition 10.8 all objects in FActg have an ZC-cover

by Proposition 10.6 all objects in FActggs have an ZC-cover

(

(

(by Proposition 10.6 all objects in FActy have an ZC-cover
(

by Proposition 10.8 all objects in UActy have an ZC-cover

) =
) =
by Proposition 10.5) <= all objects in FActrgr have an ZC-cover
) =
) =
<= T is right ZC-perfect.

O

Corollary 10.10. Right perfectness and perfectness are Morita invariants for factor-
izable semigroups.

Proof. Let S and T be Morita equivalent factorizable semigroups. Then FActg and
FActr are equivalent categories. By Theorem 10.7, Theorem 10.9 and Theorem 9.1, it
follows that right perfectness is a Morita invariant.

From Remark 4.12 in [16] we know that also gsFAct and rFAct are equivalent categories.
If now S is left perfect, then the duals of the proofs of Theorem 10.7 and Theorem 10.9
yield that T is also left perfect. It follows that perfectness is a Morita invariant. O

We saw that completely simple semigroups are perfect. This fact can also be concluded
from Morita invariance of perfectness in case of factorizable semigroups.

Corollary 10.11. Completely simple semigroups are perfect.
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Proof. Clearly, groups are perfect semigroups. Factorizable semigroups Morita
equivalent to a given group are precisely Rees matrix semigroups over that
group [19]. O
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