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Abstract We call a semigroup right perfect if every object in the category of unitary right acts over
that semigroup has a projective cover. In this paper, we generalize results about right perfect monoids to
the case of semigroups. In our main theorem, we will give nine conditions equivalent to right perfectness
of a factorizable semigroup. We also prove that right perfectness is a Morita invariant for factorizable
semigroups.
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1. Preliminaries

Perfect and semiperfect rings with identity were introduced in [3] by Bass. Such rings
have been studied in numerous articles. Perfect monoids were defined in [9] by Isbell, who
proved that a monoid is left perfect if and only if it satisfies two conditions referred to
as (A) and (D). Fountain [6] gave more conditions that are equivalent to left perfectness.
In particular, he proved that a monoid is left perfect if and only if all of its weakly
flat (in the sense of being pullback flat) unitary left acts are projective. Subsequently, a
number of other papers related to perfect monoids or pomonoids have appeared (e.g.,
[2, 8, 10–12, 20]).
The purpose of this paper is to define (right) perfect semigroups and show that many

descriptions of right perfect monoids can be transferred to the case of factorizable semi-
groups. We say that a semigroup is right perfect if the category of all its unitary right
acts is perfect in the sense that each of its objects has a projective cover. In our main
theorem, we will give nine different conditions that are equivalent to right perfectness of
a factorizable semigroup. Some of these are familiar from the monoid case, but some of
them are new. For example, a factorizable semigroup is right perfect if and only if all
right sequence acts over it are projective.
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260 V. Laan and A. Lepik

It is well known that right perfectness and right semiperfectness are Morita invariants
for rings with identity (Corollary 27.8 and Corollary 28.6 in [1]). We prove that right
perfectness is also a Morita invariant for factorizable semigroups. Our results allow to con-
clude that the class of perfect semigroups contains all completely (0-)simple semigroups
and all nilpotent semigroups.
Throughout this paper, S denotes a nonempty semigroup (if not stated otherwise),

and S 1 is the monoid obtained from S by adjoining an external identity 1 (no matter if
S already has an identity element or not). All S -acts, subacts and ideals we consider are
nonempty, unless stated otherwise explicitly.
An act AS is called unitary if A = AS, that is, for every a ∈ A, there exist a′ ∈ A and

s ∈ S such that a = a′s. The category of unitary right S -acts with S -act homomorphisms
as morphisms will be denoted by UActS . Any S -act AS can be made an S 1-act by defining
a1 = a for every a ∈ A.
Tensor products of acts over semigroups are defined in the same way as tensor products

of acts over monoids (see [13, Construction 2.5.4]). The tensor product of a right act AS

and a left act SB is the quotient set A ⊗S B := (A × B)/ϑ, where ϑ is the smallest
equivalence relation on A×B containing the set {((as, b), (a, sb)) | a ∈ A, b ∈ B, s ∈ S}.
The ϑ-class of a pair (a, b) is denoted by a⊗ b, so A⊗S B = {a⊗ b | a ∈ A, b ∈ B}. We
will often write A⊗B instead of A⊗S B. Each right S -act AS induces in a natural way
a tensor functor A ⊗S − : SAct → Set (cf. [13, Construction 2.5.15]), where SAct is the
category of all left S -acts and Set is the category of sets. We will use the properties of
this functor to define different flatness properties of AS .
An act AS is called firm if the mapping µA : A ⊗ S → A, a ⊗ s 7→ as is bijective.

The category of firm right S -acts is denoted by FActS . The categories UActS and FActS
are full subcategories of ActS , the category of all right S -acts. In all three categories,
coproducts are disjoint unions.
A semigroup S is called firm if SS is a firm right S -act. A semigroup S is called

factorizable if S2 = S, i.e., any element in S is a product of two elements.
We will need the following result about firm acts.

Lemma 1.1. [16, Corollary 2.4] If AS is a unitary act over a factorizable
semigroup, then A⊗S S is a firm right S-act.

Let AS be a right S -act. Finitely generated subacts of AS are those of the form
FS1 := {fs | f ∈ F, s ∈ S1}, where F ⊆ A is a finite subset. An act AS is called cyclic
if there exists a ∈ A such that A = aS1 = {a} ∪ aS. An S -act is locally cyclic if all of
its finitely generated subacts are cyclic. It can be shown that AS is locally cyclic if and
only if

(∀a, a′ ∈ A)(∃a′′ ∈ A)(∃s, s′ ∈ S1)(a = a′′s ∧ a′ = a′′s′).

Essential epimorphisms are defined dually to essential monomorphisms.

Definition 1.2. An epimorphism f : P → A in a category C is called an essential
epimorphism if, for every morphism g : Q→ P in C,

fg is an epimorphism =⇒ g is an epimorphism.
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It is easy to see that the composite of two essential epimorphisms is an essential
epimorphism.

Definition 1.3. If f : P → A is an essential epimorphism in a category C, then the
object P is called a cover of the object A. If the object P is projective in C, then it is
called a projective cover of A.

Similar to Proposition 1.3 in [17], one can prove that epimorphisms in UActS are
precisely the surjective morphisms.

Lemma 1.4. Let S be a semigroup. An epimorphism f : PS → AS in UActS is
essential if and only if f |Q is not surjective for every unitary proper subact Q of PS.

Proof. Necessity. Assume that f : PS → AS is an essential epimorphism in UActS
and let Q be a unitary proper subact of PS . Then the inclusion map ι : Q → P is a
morphism in UActS and f |Q = fι. If fι was surjective, then ι would be surjective due to
essentiality of f.
Sufficiency. Let f : PS → AS and g : US → PS be morphisms in UActS such that f

and fg are surjective. It is easy to see that g(U ) is a unitary subact of PS and f |g(U) is
surjective. By assumption, g(U) = P , so g is surjective and therefore f is essential. �

Definition 1.5. We say that a semigroup S is:

• right perfect if every object of UActS has a projective cover;
• right semiperfect if every unitary cyclic right S-act has a projective cover in
UActS.

Dually, one can define left (semi)perfect semigroups. A semigroup is (semi)perfect if it
is both right and left (semi)perfect.

Remark 1.6. We have defined right semiperfect semigroups as nonadditive analogues
of right semiperfect rings (see [3]).

Remark 1.7. Note that if S is a monoid, then an act AS is unitary if and only if
a1 = a for every a ∈ A. Hence, S is right perfect in the sense of Definition 1.5 if and
only if it is right perfect in the sense of [9] and [6]. Thus, the results in those articles are
special cases of our more general approach.

Definition 1.8. (cf. [5]) A subsemigroup T of a semigroup S is called left unitary
if, for every s, t ∈ S,

t, ts ∈ T =⇒ s ∈ T.

In this paper, we will use the following conditions on a semigroup S.

Definition 1.9. A semigroup S satisfies Condition:

• (A) if every right S-act satisfies the ascending chain condition (ACC) for cyclic
subacts;
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• (D) if every left unitary subsemigroup of S contains a minimal right ideal
generated by an idempotent;

• (ML) if S satisfies the descending chain condition (DCC) for principal left ideals
of S.

2. Indecomposable and projective acts

An act is called indecomposable if it is not a disjoint union of two nonempty subacts.

Proposition 2.1. [4, Lemma 4] Every right S-act is a disjoint union of indecom-
posable subacts.

In what follows, we will call the indecomposable subacts of AS the indecomposable
components of AS . It is easy to see that each cyclic act is indecomposable. We will
need the following result about projective acts.

Theorem 2.2. [4, Lemma 2] Let S be a semigroup and let C be a full subcategory of
ActS which is closed under coproducts. Let PS =

⊔
i∈I Pi, where Pi ∈ C for every i ∈ I.

Then PS is projective in C if and only if Pi is projective in C for every i ∈ I.

Note that coproducts in ActS are disjoint unions, and both UActS and FActS are closed
under disjoint unions.

Lemma 2.3. Let e be an idempotent in a semigroup S. Then the right S-act eS is a
projective object in ActS, UActS and FActS.

Proof. By the dual of Lemma 3.1(1) in [18], the act eS is firm, thus also unitary. In
all these categories, epimorphisms are precisely the surjective morphisms. Now, in any of
these categories, we consider a morphism f : eS → BS and an epimorphism π : AS → BS .
Denote b := f(e) and choose a ∈ A such that f(e) = π(a). Consider a homomorphism
g : eS → AS defined by

g(es) := aes, s ∈ S.

Then πg = f because (πg)(es) = π(aes) = π(a)es = f(e)es = f(es). �

The last two results allow us to prove the following result.

Corollary 2.4. Every nilpotent semigroup is perfect. Every nilsemigroup is semiper-
fect.

Proof. If S is nilpotent, then Sn = 0 for some n ∈ N. If AS is unitary, then, for any
a ∈ A, we can find a′ ∈ A and s1, . . . , sn ∈ S such that

a = a′sn . . . s2s1 = a′0 = a′00 = a0.
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So aS1 = {a} is a one-element subact, which is isomorphic to the act 0S = {0}. The last
is projective in UActS by Lemma 2.3. Thus,

AS =
⊔
a∈A

{a} ∼=
⊔
a∈A

0S

is a projective act by Theorem 2.2, which is a projective cover of itself (with the identity
mapping). Thus, all objects of UActS (and similarly SUAct) have projective covers and
S is perfect.
Assume now that S is a nilsemigroup. If aS 1 is a cyclic unitary act, then a = as for

some s ∈ S. For s, there exists n ∈ N such that sn = 0. It follows that a = asn = a0,
and hence, aS1 = {a} ∼= 0S, where 0S is projective. Thus, S is right semiperfect and,
similarly, it is also left semiperfect. �

Nilpotent semigroups need not be factorizable in general. For example, any semigroup
with more than one element and with zero multiplication is not factorizable.
Over a factorizable semigroup, projective acts can be described as follows. The descrip-

tion relies on Theorem 2 in [4], which generalizes a well-known characterization of
projective acts over monoids.

Theorem 2.5. Let S be a factorizable semigroup. For PS ∈ ActS, the following are
equivalent:

(1) PS is a projective object in FActS;
(2) PS is a projective object in UActS;
(3) P ∼=

⊔
i∈I eiS for some idempotents ei ∈ S, i ∈ I.

Proof. (1) ⇒ (2). Assume that PS is a projective object in FActS . Clearly, PS is
an object in UActS . We will prove that it is projective in UActS . Consider a morphism
f : PS → BS and an epimorphism π : AS → BS in UActS . By Lemma 1.1, the acts in
the diagram

are firm and π ⊗ 1S is an epimorphism in FActS because the functor − ⊗ S, as a
left adjoint, preserves epimorphisms. Using projectivity of PS , we can find a morphism
g : PS → A⊗S S such that the square commutes. Now µAg : PS → AS is a morphism in
UActS . Take any p ∈ P . Then there exist p0 ∈ P , a ∈ A and s0, s ∈ S such that p = p0s0
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and g(p) = a⊗ s. Due to the commutativity of the square, we have

π(a)⊗ s = (π ⊗ 1S)(g(p)) = (f ⊗ 1S)(µ
−1
P (p)) = (f ⊗ 1S)(p0 ⊗ s0) = f(p0)⊗ s0

in B ⊗S S. Applying the mapping µB to the equality π(a) ⊗ s = f(p0) ⊗ s0, we obtain
π(a)s = f(p0)s0. Consequently,

(πµAg)(p) = (πµA)(a⊗ s) = π(as) = π(a)s = f(p0)s0 = f(p0s0) = f(p).

We have shown that π(µAg) = f , as needed.
(2) ⇒ (3). This is a consequence of Theorem 2 in [4] because UActS satisfies the

assumptions of that theorem.
(3) ⇒ (1). By Lemma 2.3, the acts eiS are projective in FActS . A disjoint union

of firm acts is firm; thus, PS is an object of FActS . It is projective in FActS due to
Theorem 2.2. �

A right S -act AS is called (finite) limit flat (see [15, Definition 1.3]) if the functor
A⊗S − : SAct → Set preserves (finite) limits.

Proposition 2.6. The following are equivalent for an act AS over a factorizable
semigroup S:

(1) AS is an indecomposable projective object in UActS;
(2) AS is unitary and limit flat;
(3) AS

∼= eS for some idempotent e ∈ S;
(4) there exists a ∈ A and an idempotent e ∈ S such that AS = aS1, a= ae and

(∀s, t ∈ S1)(as = at =⇒ es = et).

Proof. (1) ⇐⇒ (3). This follows from Theorem 2.5 because cyclic acts are
indecomposable.
(2) ⇐⇒ (3). This is Proposition 4.4 in [15].
(3) ⇐⇒ (4). This is due to Lemma 1.1 and Corollary 1.2 in [7]. �

The properties listed in item (4) may be assumed of any generator of a cyclic projective
object in UActS .

Corollary 2.7. An act AS = aS1 is a projective object in UActS if and only if there
exists an idempotent e ∈ S such that a= ae and as= at implies es= et for all s, t ∈ S1.

Proof. Necessity. (This proof is similar to the proof of implication (ii) =⇒ (iii) in
[13, Corollary 3.17.9].) By Proposition 2.6, aS1 ∼= eS for some idempotent e ∈ S. Let
f : eS → aS1 be an isomorphism. Then there exist u ∈ S1 and v ∈ S such that f(e) = au
and f(ev) = a. Now f(e) = au = f(ev)u = f(evu) implies e = evu because f is injective.
Also, aue = f(e)e = f(e) = au. Putting z := uev ∈ S, we have z2 = (uev)(uev) =
u(evu)ev = ueev = z, so z is an idempotent.
Suppose that as = at, where s, t ∈ S1. Then f(evs) = f(ev)s = f(ev)t = f(evt), which

implies evs = evt. Therefore, zs = uevs = uevt = zt.
Sufficiency. This follows from Proposition 2.6. �
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3. Sequence acts

Let us recall the construction of a sequence act over a semigroup (cf. [15,
Construction 3.9]). A similar construction in the case of a monoid appeared already
in the proof of Lemma 1 in [6].
Let (si)i∈N ∈ SN be a sequence of elements of S. On the set

F = N× S1 = {(k, s) | k ∈ N, s ∈ S1},

we define a right S -action by (k, s)z := (k, sz), k ∈ N, s ∈ S1 and z ∈ S. This gives us a
right S -act FS . On the set F, we define a binary relation ˜ by

(k, s) ∼ (k′, s′) ⇐⇒ (∃n > k, k′)(sn . . . sks = sn . . . sk′s
′).

Then ∼ is a congruence of FS . Form the quotient act

MS = FS/∼= {[k, s] | k ∈ N, s ∈ S1},

where [k, s] denotes the ∼ -class of (k, s). We call such acts right sequence acts over
S. Note that

sk+1sk · 1 = sk+1 · sk =⇒ [k, 1] = [k + 1, sk] = [k + 1, 1]sk ∈ [k + 1, 1]S1

for each k ∈ N, so we see that M S is unitary and it is a union of a chain of its cyclic
subacts

[1, 1]S1 ⊆ [2, 1]S1 ⊆ [3, 1]S1 ⊆ · · · .

Lemma 3.1. Right sequence acts are locally cyclic (and hence indecomposable). A
right sequence act MS is cyclic if and only if MS = [k, 1]S1 for some k ∈ N.

Proof. Given any [k, s], [`, t] ∈ MS , we have that [k, s], [`, t] ∈ [max{k, `}, 1]S1.
Thus, right sequence acts are locally cyclic. It is well known that locally cyclic acts
are indecomposable.
If M S is cyclic, then M = [m,u]S1 for some u ∈ S1. By the above,

MS = [m,u]S1 = [m+ 1, smu]S
1 ⊆ [m+ 1, 1]S1,

so MS = [m+ 1, 1]S1. The converse is obvious. �

Lemma 3.2. Let S be a semigroup. Each act of the form eS, e2 = e ∈ S, is isomorphic
to a right sequence act.
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Proof. Let M S be the right sequence act constructed using the constant sequence
(e, e, . . .). For every k ∈ N,

e · 1 = e . . . e︸ ︷︷ ︸
k

·e =⇒ (k, 1) ∼ (1, e) =⇒ [k, 1] = [1, 1]e =⇒ [k, 1]S1 = [1, 1]S1,

so MS = [1, 1]S1. Consider the S -act homomorphism

f : eS → [1, 1]S1, es 7→ [1, es].

It is injective because

(1, es) ∼ (1, et) =⇒ e · es = e · et =⇒ es = et

for every s, t ∈ S, and it is surjective because

[1, s] = [2, es] = [2, e]es = [1, 1]es = [1, es] = f(es)

for every s ∈ S1. Thus, f is an isomorphism. �

Corollary 3.3. Let S be a factorizable semigroup. For S-act properties, we have the
following implications:

unitary limit flat =⇒ isomorphic to a right sequence act =⇒ unitary finite limit flat.

Proof. The first implication follows from Proposition 2.6 and Lemma 3.2. The second
implication holds due to Proposition 4.3 in [15]. �

In our main theorem, we will show (among other things) that factorizable right perfect
semigroups S are precisely those for which the converse of the first implication holds for
every right S -act. Note also that according to this corollary, ‘right sequence act’ could
be placed between ‘eS ’ and ‘firm fin. lim. flat’ in the figure on page 90 of [15].

4. Condition (A)

A subset X of an act AS is a set of generators if A = XS1. A set X of generators is
called independent ([6, p. 90]) if

(∀x, x′ ∈ X)
(
x ∈ x′S1 =⇒ x = x′

)
.

Lemma 4.1. Cf. [6, Lemma 2] Let AS be an act over a semigroup S satisfying
(ACC) for cyclic subacts. Then AS has an independent set of generators.
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Proof. Denote

X :=
{
x ∈ A | (∀x′ ∈ A)(xS1 ⊆ x′S1 =⇒ xS1 = x′S1)

}
.

We first show that X is a set of generators for AS . It suffices to prove that A ⊆ XS1.
Take arbitrary a ∈ A and consider the set

Pa =
{
a′S1 | a′ ∈ A, aS1 ⊆ a′S1

}
as a poset with respect to inclusion. Since aS1 ∈ Pa, by assumption, this poset must
have a maximal element a0S

1. In particular, aS1 ⊆ a0S
1. We show that a0 ∈ X.

If x′ ∈ A and a0S
1 ⊆ x′S1, then also aS1 ⊆ x′S1, so x′S1 ∈ Pa. Due to maximality of

a0S
1, we have a0S

1 = x′S1. Hence, a0 ∈ X and a ∈ a0S
1 ⊆ XS1, as needed.

Define a relation ≈ on X by

x ≈ x′ ⇐⇒ xS1 ⊆ x′S1.

It is clear by the choice of X that we have an equivalence relation.
From every ≈-class, we choose a representative and form a set X

′
of those elements.

We show that X
′
is an independent set of generators for AS . By the definition of ≈, for

every x ∈ X, there exist x′ ∈ X ′ and s ∈ S1 such that x = x′s. Since X is a set of
generators, X

′
is also a set of generators.

To prove that X
′
is independent, we suppose that x ∈ x′S1, where x, x′ ∈ X ′ ⊆ X.

Then xS1 ⊆ x′S1, which means that x ≈ x′. Now x = x′ because each ≈-class contains
precisely one element from X

′
. �

Definition 4.2. Cf. [2, Definition 4.1] We say that a semigroup S is right IC-
perfect if every unitary act AS has a cover f : BS → AS, where BS is unitary, and
indecomposable components of BS are cyclic. Such a cover will be called an IC-cover.

Note that if b = b′s, where b, b′ ∈ B and s ∈ S, then b and b
′
must be in the

same indecomposable component. Therefore, indecomposable components of BS must
be unitary. Hence,

BS =
⊔
i∈I

biS
1,

where each biS
1 is a cyclic unitary act.

The following result is inspired by Result 1.2 in [9], by Lemma 1.3 in [10] and also by
Lemma 2.2 and Theorem 5.2 in [2]. Among other things, it shows that Condition (A)
can be given a description that does not refer to acts but only uses the elements of S.

Theorem 4.3. For a semigroup S, the following are equivalent:

(1) S satisfies Condition (A);
(2) every locally cyclic right S-act is cyclic;
(3) every right sequence act over S is cyclic;
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(4) for every sequence (si)i∈N ∈ SN,

(∃k,m ∈ N)(∃u ∈ S1)(k > m+ 1 and sk . . . sm+1 = sk . . . sm+1smu);

(5) for every act AS, there exists a set {Ai | i ∈ I} of cyclic subacts of AS such that

A =
⋃
i∈I

Ai and (∀j ∈ I)

Aj 6⊆
⋃
i6=j

Ai

 ; (4.1)

(6) S is right IC-perfect.

Proof. (1) =⇒ (2). Suppose that AS is a locally cyclic act which is not cyclic. Choose
a1 ∈ A. Since AS is not cyclic, there exists b1 ∈ A \ a1S1. Using that AS is locally cyclic,
we can find a2 ∈ A and u, v ∈ S1 such that a1 = a2u and b1 = a2v. Note that a2 6∈ a1S

1

because otherwise b1 ∈ a1S
1. Thus, a1S

1 ⊂ a2S
1.

Again, a2S
1 6= A, and we can find an element b2 ∈ A\a2S1. Continuing in this manner,

we can construct a strictly increasing sequence

a1S
1 ⊂ a2S

1 ⊂ a3S
1 ⊂ · · ·

of cyclic subacts of AS , which contradicts Condition (A).
(2) =⇒ (3). Every right sequence act is locally cyclic because it is the union of an

ascending chain of its cyclic subacts.
(3) =⇒ (4). Assume that all right sequence acts over S are cyclic. Consider a sequence

(si)i∈N ∈ SN and the right sequence act

MS =
{
[k, s] | k ∈ N, s ∈ S1

}
determined by it. By assumption, M S must be cyclic. By Lemma 3.1, there exists m ∈ N
such that M = [m, 1]S1. Then (m + 1, 1) ∼ (m,u) for some u ∈ S1, which means that
there exists k > m+ 1 such that sk . . . sm+1 = sk . . . sm+1smu.
(4) =⇒ (1). Suppose that AS does not satisfy (ACC) for cyclic subacts. Then there

exists a sequence (ai)i∈N ∈ AN such that

a1S
1 ⊂ a2S

1 ⊂ a3S
1 ⊂ · · · .

Consequently, for every i ∈ N, there exists si ∈ S such that ai = ai+1si. For the sequence
(si)i∈N ∈ SN, there exist k,m ∈ N, k > m + 1 and u ∈ S1 such that sk . . . sm+1 =
sk . . . sm+1smu. Then

am+1 = am+2sm+1 = am+3sm+2sm+1 = ak+1sk . . . sm+1 = ak+1sk . . . sm+1smu

= aksk−1 . . . sm+1smu = am+1smu = amu ∈ amS
1.

It follows that am+1S
1 = amS

1, a contradiction.
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(1) =⇒ (5). Assume that S satisfies Condition (A). Consider an act AS . By
Lemma 4.1, AS has an independent set of generators X. Then, clearly, A =

⋃
x∈X xS1.

Take y ∈ X and suppose that yS1 ⊆
⋃

x 6=y xS
1. Then there exists z ∈ X \ {y} such that

y ∈ zS1. Independence of X implies y = z, a contradiction. Hence,

yS1 6⊆
⋃
x6=y

xS1.

(5) =⇒ (6). Let AS be a unitary act. By (5), there exist cyclic subacts Ai = aiS
1,

i ∈ I, such that Equation (4.1) holds. It is easy to see that each aiS
1 is unitary.

Now BS :=
⊔

i∈I aiS
1 is an act whose indecomposable components are cyclic and

unitary. Consider the S -act homomorphism

f : BS → AS , ais 7→ ais.

Suppose that f is not essential. Then there exists j ∈ I and (possibly empty) proper
subact C of ajS

1 such that f : C t
⊔

i 6=j aiS
1 → A is surjective. In particular, there

exists b ∈ C t
⊔

i 6=j aiS
1 such that f(b) = aj . We have two possibilities.

1) b ∈ C. Then b = ajs for some s ∈ S1. Hence, aj = f(b) = f(ajs) = ajs = b ∈ C,
which implies ajS

1 = C, a contradiction.
2) b ∈

⊔
i6=j aiS

1. Then ajS
1 = f(b)S1 = f(bS1) ⊆

⋃
i 6=j aiS

1, a contradiction.

(6) =⇒ (3). Assume that S is right IC-perfect and consider a right sequence act
M S determined by a sequence (si)i∈N. Since M S is unitary by the comment preceding
Lemma 3.1, it has a cover f : BS →MS , where

BS =
⊔
i∈I

biS
1.

Fix an index j ∈ I. Let f(bj) = [k, s] ∈MS . Then f(bjS
1) ⊆ [k, 1]S1. Consider a number

` > k. Suppose [`, 1] has an f -preimage in biS
1 for some i 6= j. Then [`, 1]S1 ⊆ f(biS

1),
which implies that f restricted to B \ bjS1 is surjective. But that contradicts essentiality
of f. Thus, [`, 1] must have a preimage in bjS

1. Let [`, 1] = f(bju) for some u ∈ S1. Now

[`, 1] = f(bju) = f(bj)u = [k, s]u = [k, 1]su ∈ [k, 1]S1,

which implies [`, 1]S1 = [k, 1]S1. Since this equality holds for every ` > k, we have shown
that MS = [k, 1]S1, so M S is cyclic. �

Remark 4.4. Condition (5) in Theorem 4.3 appears first in Lemma 2.2 of [2], but
a similar condition was used in [10]. It is kind of interesting that this condition can be
formulated in topological terms as follows.
If AS is an act, then the set of its subacts (here including the empty subact) is a

topology on the set A because any union or intersection of subacts is a subact. The set
of all cyclic subacts is a basis for this topology. Now condition (5) says that this basis
contains a subset which is a minimal cover (in the sense of topology) for A.
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5. Condition (D)

In this section, we will prove that a factorizable semigroup satisfies Condition (D) if and
only if it is right semiperfect. The following result can be proved precisely as Lemma 4.4
in [8].

Lemma 5.1. Let T be a left unitary subsemigroup of a semigroup S. Then

(∀u, v ∈ T )
(
uT 1 ⊆ vT 1 ⇐⇒ uS1 ⊆ vS1

)
.

Lemma 5.2. If a subsemigroup T of a semigroup S is left unitary, then it is a ρ-class
of some right congruence ρ on S.

Proof. Assume that T is a left unitary subsemigroup of S. Let ρ be the right congru-
ence on S generated by the set T ×T. Take t ∈ T . Then T ⊆ [t]ρ. We will prove that
[t]ρ ⊆ T . If s ∈ [t]ρ, then t ρ s and

t = t1s1 t′2s2 = t3s3 . . . t
′
n−1sn−1 = tnsn

t′1s1 = t2s2 t′nsn = s

for some ti, t
′
i ∈ T and si ∈ S1. If s1 6= 1, then s1 ∈ T because T is left unitary. Hence,

t′1s1 ∈ T , both when s1 6= 1 and when s1 = 1. If s2 6= 1, then s2 ∈ T , and so on. Thus,
for every i ∈ {1, . . . , n}, either si = 1 or si ∈ T . It follows that s = t′nsn ∈ T . �

Lemma 5.3. If S is a semigroup and aS1 is a unitary cyclic S-act, then

T = {s ∈ S | as = a}

is a left unitary subsemigroup of S.

Proof. Since aS 1 is unitary, there exist u ∈ S1 and s ∈ S such that a = (au)s = a(us).
We see that us ∈ T , so T is nonempty, and it is clearly a subsemigroup of S. If t, ts ∈ T ,
then as = (at)s = a(ts) = a, so s ∈ S. Thus, T is left unitary. �

Theorem 5.4. Cf. [9], Result 1.5 and Theorem 5.2 in [20] For a factorizable
semigroup S, the following assertions are equivalent:

(1) S is right semiperfect;
(2) S satisfies Condition (D).

Proof. (1) =⇒ (2). (This is inspired by the proof of Proposition 4.6 in [8]. Differently
from that proof, we cannot assume that R is the congruence class of the identity element,
but with appropriate modifications, the proof will work.)
Let R be a left unitary subsemigroup of S. By Lemma 5.2, it is a ρ-class for some right

congruence ρ on S, say R = [t], t ∈ R. Then [t]S1 is a cyclic subact of the right S -act
S/ρ. It is a unitary S -act because t, t2 ∈ R implies [t] = [t]t.
By assumption, [t]S1 has a projective cover in UActS . This must be a unitary cyclic

projective act (see the proof of Lemma 4.1 in [8]). Due to Theorem 2.5, it must be of
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the form eS, where e ∈ S is an idempotent. Also, there exists an essential epimorphism
f : eS → [t]S1 in UActS . Because of surjectivity of f, there exists eu ∈ eS such that
[t] = f(eu). Since S is factorizable, euS is a unitary subact of eS. Now eut ∈ euS and
[t] = [tt] = [t]t = f(eu)t = f(eut) imply that f |euS is surjective. Due to essentiality, we
have the equality euS = eS. It follows that e = eus′ for some s′ ∈ S. Putting s := s′e ∈ S,
we have e = eus and s = se. Now

(su)(su) = (seu)(su) = s(eus)u = seu = su,

so su is an idempotent. In addition,

[t] = f(eu) = f(eusu) = f(eu)su = [t]su = [tsu].

Since R is left unitary, t, tsu ∈ R implies su ∈ R. Let us prove that suR1 is a minimal
right ideal in R.
For this, we show that for every r ∈ R, rR1 ⊆ suR1 implies rR1 = suR1. Let r ∈ R.

If rR1 ⊆ suR1, then r = sur′ for some r′ ∈ R1. Hence, r = (su)2r′ = (su)(sur′) = sur
and

f(eurt) = f(eu)rt = [t]rt = [trt] = [t]

because trt ∈ R. Since eurS is a unitary subact of eS and f |eurS is surjective, eurS =
eS = eS1. Now

sS = seS = seurS = surS = rS ⊆ rS1 = surS1 ⊆ suS1 ⊆ sS,

which implies rS1 = suS1. Since r, su ∈ R, we conclude that rR1 = suR1 by Lemma 5.1.
(2) =⇒ (1). Assume that S satisfies Condition (D) and consider a unitary cyclic S -act

aS 1. The fact that aS 1 is unitary means that a = at0 for some t0 ∈ S. Now

T := {t ∈ S | at = a}

is a left unitary subsemigroup of S by Lemma 5.3. Since S satisfies Condition (D), there
exists an idempotent e ∈ T (so ae = a) such that eT is a minimal right ideal in T. We
will show that the unitary S -act eS is a projective cover for aS 1 in UActS .
For this, we consider the surjective S -act homomorphism

f : eS → aS1, es 7→ aes = as.

Suppose that B is a unitary subact of eS such that f |B is surjective. Then there exists
b ∈ B such that f(b) = a. Since B ⊆ eS, there exists s ∈ S such that b= es. Observe
that a = f(es) = as. Consequently, s ∈ T and also es ∈ T . Now, using minimality of eT
and Lemma 5.1,

esT 1 ⊆ eT =⇒ esT 1 = eT =⇒ esS1 = eS =⇒ eS = bS1 ⊆ B ⊆ eS =⇒ B = eS.

�
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6. Condition (ML)

Similar to Condition (A), Condition (M L) has a description in terms of sequences of
elements of S.

Proposition 6.1. A semigroup S satisfies Condition (ML) if and only if

(∀(si)i∈N ∈ SN)(∃n ∈ N)(∀m > n)(∃u ∈ S1)(usm . . . s1 = sn . . . s1).

Proof. Necessity. Assume that S satisfies Condition (M L). Consider a sequence
(si)i∈N ∈ SN and denote ti := sisi−1 . . . s1 for each i ∈ N. Since the descending chain

S1t1 ⊇ S1t2 ⊇ S1t3 ⊇ · · ·

stabilises, there exists n ∈ N such that S1tn = S1tm for every m >n. Hence, tn ∈ S1tm,
which means that usm . . . s1 = sn . . . s1 for some u ∈ S1.
Sufficiency. Suppose to the contrary that S does not satisfy Condition (ML). Then

we have a strictly decreasing chain of principal left ideals

S1t1 ⊃ S1t2 ⊃ S1t3 ⊃ · · · .

For every i ∈ N, there exists si+1 ∈ S1 such that ti+1 = si+1ti. Since we assumed that
ti 6= ti+1, we have si+1 ∈ S. Also, put s1 := t1. By our assumption, there exists n ∈ N
such that for every m >n, there exists u ∈ S1 such that usm . . . s1 = sn . . . s1. If n =1,
then there exists u ∈ S1 such that us2t1 = t1, which implies ut2 = t1. Consequently,
S1t1 = S1t2, a contradiction. Otherwise, let m > n > 1. Then sn . . . s1 = u′sm . . . s1 for
some u′ ∈ S1 and

tn = sntn−1 = snsn−1tn−2 = · · · = snsn−1 . . . s1 = u′smsm−1 . . . s1 = u′tm,

whence S1tn ⊆ S1tm and therefore S1tn = S1tm, a contradiction. �

We will also need the following lemma.

Lemma 6.2. Cf. [6, Lemma 1] If all right sequence acts over a semigroup S are
projective, then S satisfies Condition (ML).

Proof. We will employ Proposition 6.1. Consider a sequence (si)i∈N and the right
sequence act M S determined by it. By assumption, M S is projective. Hence, for the
surjective homomorphism

π : N× S1 = FS →MS , (k, s) 7→ [k, s],

there exists a homomorphism µ :MS → FS such that πµ = 1M .
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Let µ([1, 1]) = (k, s) ∈ N× S1. Then

[1, 1] = (πµ)([1, 1]) = π(k, s) = [k, s].

Since (1, 1) ∼ (k, s), there exists n > k such that sn . . . s1 ·1 = sn . . . sk ·s. Let m >n and
put µ([m+1, 1]) = (r, c) for some r ∈ N and c ∈ S1. Note that (1, 1) ∼ (m+1, sm . . . s1)
because

sm+1 . . . s1 · 1 = sm+1 · sm . . . s1.

Now

(k, s) = µ([1, 1]) = µ([m+ 1, sm . . . s1]) = µ([m+ 1, 1])sm . . . s1

= (r, c)sm . . . s1 = (r, csm . . . s1),

whence k = r and s = csm . . . s1. Putting u := sn . . . skc ∈ S, we have

sn . . . s1 = sn . . . sks = sn . . . skcsm . . . s1 = usm . . . s1,

as needed. �

7. Pullback flatness

Definition 7.1. A right S-act AS is called pullback flat if the functor A⊗S− : SAct →
Set preserves pullbacks.

Since pullbacks are finite limits, every finite limit flat act is pullback flat.
We will need the following conditions (introduced first for acts over monoids in [21])

and the following theorem.

(P) If as = a′s′ for some a, a′ ∈ A and s, s′ ∈ S, then there exist a′′ ∈ A and u, v ∈ S
such that

a = a′′u, a′ = a′′v, us = vs′.
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(E) If as = as′ for some a ∈ A and s, s′ ∈ S, then there exist a′ ∈ A and u ∈ S such
that

a = a′u, us = us′.

Theorem 7.2. [15, Theorem 3.5] Let AS be a unitary act over a semigroup S. Then
AS is pullback flat if and only if it satisfies both Condition (P) and Condition (E).

Proposition 7.3. A cyclic S-act aS1 is unitary and pullback flat if and only if

(∀s, t ∈ S1)(as = at =⇒ (∃u ∈ S)(a = au ∧ us = ut)).

Proof. Necessity. Let A = aS1 be unitary and pullback flat. Take s, t ∈ S1 such
that as = at. Since aS 1 is unitary, a = av for some v ∈ S. Then a(vs) = a(vt), where
vs, vt ∈ S. By Theorem 7.2, aS 1 satisfies Condition (E), so there exists w ∈ S such that
a = aw and w(vs) = w(vt). Putting u := wv, we have a = au and us = ut.
Sufficiency. By assumption, there exists u ∈ S such that a = au, thus aS 1 is unitary.

That aS 1 satisfies Condition (E) follows immediately from the assumption. To prove
Condition (P), suppose that (as1)s = (as2)s

′, where s1, s2 ∈ S1 and s, s′ ∈ S. By
assumption, there exists u ∈ S such that a = au and us1s = us2s

′. Now as1 = a(us1)
and as2 = a(us2), where us1, us2 ∈ S. �

Lemma 7.4. Cf. [6, Lemma 3] Let AS be a unitary pullback flat act which satisfies
(ACC) for cyclic subacts. If AS is indecomposable, then it is cyclic.

Proof. Take any x ∈ A and consider the set

Px := {bS1 | b ∈ A, xS1 ⊆ bS1}

as a poset with respect to inclusion. Since xS1 ∈ Px, we have Px 6= ∅, so by assumption,
there exists a maximal element aS1 ∈ Px. In particular, xS1 ⊆ aS1. Consider the set
Y := A \ aS1. Assume for a contradiction that Y 6= ∅. Now, AS is a union of its subacts
aS 1 and YS 1. Since AS is indecomposable,

aS1 ∩ Y S1 6= ∅,

which means that there exist y ∈ Y and s, t ∈ S1 such that as = yt.
On the one hand, if t =1, then y = as ∈ aS1, a contradiction. On the other hand,

suppose s =1. The equality a = yt implies that xS1 ⊆ aS1 ⊆ yS1. It follows that yS1 ∈ Px

and aS1 = yS1 due to maximality. So again, we must have y ∈ aS1, which is impossible.
Thus, we must have s, t ∈ S.
Since AS is a unitary pullback flat act, by Theorem 7.2, it satisfies Condition (P).

Hence, there exist a′ ∈ A and u, v ∈ S such that a = a′u, y = a′v and us = vt. We
conclude that aS1 ⊆ a′S1. It follows that a′S1 ∈ Px, so aS

1 = a′S1 due to maximality.
Now, for some z ∈ S1, a′ = az and therefore y = a′v = azv, whence y ∈ aS1, a
contradiction. Thus, Y = ∅ and A = aS1 is cyclic, as required. �
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Corollary 7.5. If a semigroup S satisfies Condition (A), then every unitary pullback
flat S-act is a disjoint union of cyclic unitary pullback flat subacts.

Proof. Assume that S satisfies Condition (A) and let AS be unitary and pullback
flat. By Proposition 2.1,

A =
⊔
i∈I

Ai,

where Ai is an indecomposable subact of AS for every i ∈ I. It is clear by Theorem 7.2
that the Ai are pullback flat. Since S satisfies Condition (A), each Ai satisfies (ACC) for
cyclic subacts. We see that the Ai satisfy all assumptions of Lemma 7.4, so they must
be cyclic. �

Lemma 7.6. Cf. [6, Lemma 5 and Lemma 4] If a factorizable semigroup S
satisfies either Condition (D) or Condition (ML), then every unitary cyclic pullback flat
right S-act is projective.

Proof. Let AS = aS1 be a unitary cyclic pullback flat S -act. By Lemma 5.3, the set
T = {s ∈ S | as = a} is a left unitary subsemigroup of S. If S satisfies Condition (D),
then T contains a minimal right ideal eT, where e ∈ T is an idempotent. If S satisfies
Condition (ML), then the set

I = {S1t | t ∈ T}

of principal left ideals of S contains a minimal element S1e for some element e ∈ T . In
both cases, it suffices to prove that condition (4) of Proposition 2.6 is satisfied.
Assume that as = at for some s, t ∈ S1. Since aS 1 is pullback flat, by Proposition 7.3,

there exists u ∈ S such that a = au and us = ut. The equality au = ae implies that a = av
and vu = ve for some v ∈ S. Note that u, v ∈ T .
First, let S satisfy Condition (D). By Lemma 8.12 in [5], Te is a minimal left ideal of

T. It follows that

Tvu ⊆ Tu ∩ Te ⊆ Te,

whence Te = Tvu ⊆ Tu due to minimality. Therefore, e =wu for some w ∈ T . We
conclude that es = wus = wut = et, as needed.
Second, assume S satisfies Condition (ML). Since T is a subsemigroup, vu ∈ T and

S1vu ∈ I. The equality vu = ve implies S1vu ⊆ S1e. We have S1vu = S1e due to
minimality and e =wvu for some w ∈ S1. This implies es = wvus = wvut = et.
In particular, a1 = ae implies that e1 = ee by the previous argument, so e is an
idempotent. �
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8. Condition (K)

Definition 8.1. Cf. [11, Definition 1.6] We say that a subsemigroup T of S is left
collapsible if T1 is a left collapsible submonoid of S1, that is,

(∀t, t′ ∈ T 1)(∃u ∈ T 1)(ut = ut′).

Condition (K) for monoids was introduced by Kilp in [11] and used later in [12].
We use it for semigroups in the following form.

Definition 8.2. A semigroup S satisfies Condition (K) if every left collapsible
subsemigroup of S has a left zero.

Proposition 8.3. Cf. [11, Theorem 2.3] A factorizable semigroup S satisfies
Condition (K) if and only if every unitary cyclic pullback flat right S-act is projective.

Proof. Necessity. Suppose S satisfies Condition (K). Let aS 1 be unitary pullback
flat and let T = {s ∈ S | as = a}. If t, t′ ∈ T 1, then at = at′. By Proposition 7.3, there
exists u ∈ S such that a = au and ut = ut′. In particular, u ∈ T . We have shown that
T 1 is a left collapsible submonoid of S 1.
By assumption, T has a left zero e. We will check condition (4) of Proposition 2.6.

We know that a = ae. Suppose that as = at, s, t ∈ S1. Then there exists u ∈ S such that
a = au and us = ut. Then u ∈ T , eu = e and es = eus = eut = et.
Sufficiency. Assume that every unitary cyclic pullback flat right S -act is projective.

Let T ⊆ S be a left collapsible subsemigroup of S. Then by definition P := T 1 is a left
collapsible submonoid of S 1. By Lemma 2.1 in [11], the relation ρ, defined by

s ρ t ⇐⇒ (∃p, q ∈ P )(ps = qt),

is a right congruence on the monoid S 1. In particular, 1 ρ p for all p ∈ P . The cyclic
S 1-act S1/ρ = [1]ρ S

1 is pullback flat.
It turns out that S1/ρ = [1]ρ S

1 is also a cyclic unitary pullback flat S -act. Since T
is nonempty, we can choose t0 ∈ T ⊆ S. If [1]ρ s = [1]ρ t, s, t ∈ S1, then Condition (E)
implies that there exists u ∈ S1 such that [1]ρ = [1]ρ u and us = ut. If it happens that
u =1, then still [1]ρ = [1]ρ t0 and t0s = t0t. By Proposition 7.3, S1/ρ is a unitary pullback
flat S -act.
By assumption, [1]ρ S

1 is projective. Using Corollary 2.7, we know that there exists
e ∈ E(S) such that [1]ρ = [1]ρe and [1]ρs = [1]ρt implies es = et for all s, t ∈ S1. In
other words, 1 ρ e and s ρ t implies es = et for all s, t ∈ S1. From 1 ρ e, we obtain p, q ∈ P
such that p= qe. Let r ∈ P be arbitrary. Then 1 ρ r, which implies e = er, and therefore
pr = qer = qe = p. Thus, p is a left zero for P. If p=1, then 1 = qe = qee = e, which
contradicts the fact that e ∈ S. Thus, p ∈ T and p is a left zero for T. �

Corollary 8.4. If S is factorizable, then Condition (ML) implies Condition (K).

Proof. This follows from Proposition 8.3 and Lemma 7.6. �
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9. The main theorem

Our main theorem is the following.

Theorem 9.1. For a factorizable semigroup S, the following are equivalent:

(1) S is right perfect;
(2) S is right IC-perfect and right semiperfect;
(3) S satisfies both Condition (A) and Condition (D);
(4) S satisfies both Condition (A) and Condition (ML);
(5) S satisfies both Condition (A) and Condition (K);
(6) every right sequence act over S is projective in UActS;
(7) every finite limit flat right S-act is projective in UActS;
(8) every unitary pullback flat right S-act is projective in UActS;
(9) every finite limit flat right S-act is limit flat;

(10) every right sequence act over S is limit flat.

Proof. (1) ⇒ (2). If a semigroup S is right perfect, then it is clearly right semiperfect.
If f :

⊔
i∈I eiS → AS is a projective cover for a unitary act AS , then its indecomposable

components eiS, i ∈ I, are cyclic and unitary. Hence, S is also right IC-perfect.
(2) ⇒ (1) Let AS be a unitary S -act. Since S is IC-perfect, there exists a cover

g : BS → AS , where BS =
⊔

i∈I biS
1 is a disjoint union of unitary cyclic subacts.

Semiperfectness of S gives a unitary projective cover fi : Pi → biS
1 for each i ∈ I.

Then PS :=
⊔

i∈I Pi is a unitary projective act by Theorem 2.5 and

f : PS → BS , x 7→ fi(x) if x ∈ Pi

is a surjective homomorphism of right S -acts. We will show that f is essential.
Suppose that Q is a proper subact of PS . Then there exists i ∈ I such that Qi := Q∩Pi

is a proper (possibly empty) subact of P i . Hence, fi|Qi
: Qi → biS

1 is not surjective
because f i is essential. But then also f |Q is not surjective because the preimages of
elements of biS

1 can only come from P i . Thus, f is an essential epimorphism. Hence,
gf : PS → AS is an essential epimorphism and PS is a projective cover for AS .
(2) ⇔ (3). This follows from Theorem 5.4 and Theorem 4.3.
(6) ⇒ (3). Assume that all right sequence acts are projective. Since they are indecom-

posable (see Lemma 3.1), unitary and projective, they must be cyclic. Hence, S satisfies
Condition (A) by Theorem 4.3.
We will prove that S satisfies Condition (D). The proof of this implication is inspired

by the proof of Theorem 6.2 in [8].
Let T be a left unitary subsemigroup of S. Take any t ∈ T . We will prove that the

principal right ideal tT 1 of T contains an idempotent. By the assumption, the right
sequence act M S , determined by the constant sequence (t) ∈ SN, is projective. Since M S

is indecomposable, it must be cyclic. From Lemma 3.1, we conclude that there exists
i ∈ N such that M = [i, 1]S1. By Corollary 2.7, there exists e2 = e ∈ S such that
[i, 1] = [i, e] and

(∀x, y ∈ S1)([i, x] = [i, y] =⇒ ex = ey). (9.1)
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From [i, 1]S1 ⊆ [i + 1, 1]S1 ⊆ MS = [i, 1]S1, we conclude that [i, 1]S1 = [i + 1, 1]S1.
Hence, there exists z ∈ S1 such that [i+ 1, 1] = [i, z]. We have the diagram

with 1-generated free S -acts (i, 1)S1 and (i + 1, 1)S1 and with right S -act homomor-
phisms defined by

α(i, s) := (i+ 1, ts),

β(i+ 1, s) := [i+ 1, s] = [i, zs],

τ([i, s]) := (i, es),

ψ := ατβ : (i+ 1, 1)S1 → (i+ 1, 1)S1.

Note that τ is well defined due to the implication (9.1).
Denoting h := tez, since [i+ 1, t] = [i, 1], we have that

(βατ)([i, z]) = (βα)(i, ez) = β(i+ 1, tez) = [i+ 1, tez] = [i+ 1, t]ez = [i, 1]ez

= [i, e]z = [i, 1]z = [i, z]

and

ψ2(i+ 1, 1) = (ψατβ)(i+ 1, 1) = (ψατ)([i+ 1, 1]) = (ατβατ)([i, z])

= (ατ)([i, z]) = (ατβ)(i+ 1, 1) = ψ(i+ 1, 1) = (ατ)([i, z])

= α(i, ez) = (i+ 1, tez) = (i+ 1, h).

Hence,

(i+ 1, h) = ψ2(i+ 1, 1) = ψ(i+ 1, h) = ψ(i+ 1, 1)h = (i+ 1, h)h = (i+ 1, h2),

which yields h2 = h. The equalities [i+1, 1] = [i, z] and [i, 1] = [i, e] imply that tn = tn+1z
and tm = tme for some m,n ∈ N. Since T is a left unitary subsemigroup, z, e ∈ T and
we have an idempotent h ∈ tT 1.
Now consider a chain

e1T
1 ⊇ e2T

1 ⊇ e3T
1 ⊇ · · ·

of principal right ideals of T generated by idempotents ei ∈ T . By Lemma 5.1, we have
a chain

e1S
1 ⊇ e2S

1 ⊇ e3S
1 ⊇ · · · .
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Similar to the proof of Theorem 6.2 in [8], we can find idempotents gi ∈ S such that

S1g1 ⊇ S1g2 ⊇ S1g3 ⊇ · · · ,

eiS
1 = giS

1 and gi+1gi = gi+1 = gigi+1 for every i ∈ N.
By Lemma 6.2, S satisfies Condition (M L). Thus, there exists n ∈ N such that S1gi =

S1gi+1 for every i > n. Now gi = gigi+1 = gi+1; therefore, gi = gi+1 and eiS
1 = ei+1S

1

for every i > n. By Lemma 5.1, it follows that eiT
1 = ei+1T

1 for every i > n. We have
shown that T satisfies the DCC for principal right ideals generated by idempotents.
Suppose that T does not have a minimal principal right ideal. Take any b1 ∈ T . Then

b1T
1 contains an idempotent e1 and b1T

1 ⊇ e1T
1. Since e1T

1 is not a minimal ideal,
there exists b2 ∈ T such that e1T

1 ⊃ b2T
1. In this way, we get an infinite descending

chain

b1T
1 ⊇ e1T

1 ⊃ b2T
1 ⊇ e2T

1 ⊃ b3T
1 ⊇ e3T

1 ⊃ · · ·

of principal right ideals of T, where ei ∈ E(T ). Thus, we also have a chain

e1T
1 ⊃ e2T

1 ⊃ e3T
1 ⊃ · · · ,

a contradiction. It follows that T has a minimal principal right ideal bT 1. As it contains
an idempotent e, we have bT 1 = eT 1 due to minimality.
(4) ⇒ (5). By Corollary 8.4.
(5) ⇒ (6). Assume that S satisfies both Condition (A) and Condition (K). By

Theorem 4.3, every right sequence act M S is cyclic. Due to Corollary 3.3, every M S is
unitary and finite limit flat, hence also pullback flat. By Proposition 8.3,M S is projective.
(6) ⇒ (4). By Lemma 6.2, S satisfies Condition (M L). We show that S satisfies

Condition (A) using Theorem 4.3. Take any sequence (si)i∈N ∈ SN and consider the right
sequence act M S determined by it. By assumption, it is projective. It is also indecom-
posable; hence, by Proposition 2.6, there exists an S -isomorphism f : MS → eS, where
e ∈ E(S) is some idempotent. Then there exists [m, s] ∈M such that f([m, s]) = e. Also,
there exists s′ ∈ S such that f([m+ 1, 1]) = es′. Now

f([m+ 1, 1]) = f([m, s])s′ = f([m, ss′]) =⇒ [m+ 1, 1] = [m, ss′].

Thus, there exists k > m+ 1 such that

sk . . . sm+1 = sk . . . sm+1smss
′.

(3) ∨ (4) ⇒ (8). Let AS be a unitary pullback flat act. Using Condition (A), by
Corollary 7.5, we conclude that AS =

⊔
i∈I Ai, where Ai is a cyclic unitary pullback flat

act for every i ∈ I. We have by Lemma 7.6 that each Ai is projective when S satisfies
either Condition (D) or Condition (ML). Thus, AS is projective due to Theorem 2.2.
(8) ⇒ (7). Since pullbacks are finite limits, each finite limit act is pullback flat.
(7) ⇒ (6). Every right sequence act M S satisfies Condition (E) by Lemma 3.10 in [15].

It is easy to see that M S satisfies Condition (LC): if a, a′ ∈M , then there exist a′′ ∈M
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and u, v ∈ S such that a = a′′u and a′ = a′′v. By Theorem 4.2 in [15], right sequence
acts are finite limit flat. We also know that they are unitary. By assumption, they are
projective.
(7)⇔ (9). A finite limit flat act AS must satisfy Condition (LC) by Theorem 4.2 in [15].

This implies that AS is indecomposable. By Proposition 2.6, AS is an indecomposable
projective in UActS if and only if it is a unitary limit flat act.
(6) ⇔ (10). Let M S be a right sequence act. Then M S is limit flat if and only if

MS
∼= eSS for some idempotent e ∈ S by Proposition 4.4 in [15]. In other words, a right

sequence act over a factorizable semigroup is limit flat if and only if it is projective. �

Remark 9.2. 1. Condition (4) in Theorem 9.1 is important because together with
Theorem 4.3 and Proposition 6.1, it shows that perfectness of a factorizable semigroup
S can be verified by checking two conditions that are formulated in terms of sequences
of elements of S. These conditions are internal to S and do not refer to any categories.
2. If S is factorizable and right perfect, then any right sequence act over S is projective.

In particular, S must contain at least one idempotent.

It is easy to check that Rees matrix semigroups (with zero) over a group satisfy both
Condition (A) and Condition (ML) (and their duals). Thus, we have the following result.

Corollary 9.3. Cf. [2, Corollary 3.13] Every completely (0-)simple semigroup is
perfect.

10. Morita invariance

Recall that semigroups S and T are called Morita equivalent if the categories FActS
and FActT are equivalent (see [18]). A Morita invariant is a property that is shared by
all Morita equivalent semigroups. In this section, we will prove that right semiperfectness,
right IC-perfectness and right perfectness are Morita invariants on the class of factorizable
semigroups. For this, we need to examine essential epimorphisms in UActS and FActS .

Proposition 10.1. Let S be a semigroup and AS ∈ UActS. Then µA is an essential
epimorphism in UActS.

Proof. Since AS is unitary, µA is surjective, and it is easy to see that A⊗SS is unitary.
Let U ⊆ A⊗ S be a unitary subact and consider the diagram

US
ι−→ A⊗S S

µA−→ AS

in UActS , where ι is the embedding. Suppose µAι is surjective. By Lemma 1.4, it suffices
to show that ι is surjective, that is, U = A ⊗ S. Take a ⊗ s ∈ A ⊗ S. By surjectivity of
µAι, there exist a′ ∈ A and s′ ∈ S such that a′ ⊗ s′ ∈ U and a = (µAι)(a

′ ⊗ s′) = a′s′.
Now

a⊗ s = a′s′ ⊗ s = a′ ⊗ s′s = (a′ ⊗ s′)s ∈ US ⊆ U.

Thus, ι is surjective, as required. �
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Proposition 10.2. Let S be a factorizable semigroup. For a morphism f : PS → AS

in FActS, the following are equivalent:

(1) f is an essential epimorphism in UActS;
(2) f is an essential epimorphism in FActS.

Proof. (1) ⇒ (2). This is clear.
(2) ⇒ (1). Let U ⊆ PS be a unitary subact and let ι : U → P be the embedding.

Suppose fι is surjective. By Lemma 1.4, it suffices to show that ι is surjective, that is,
U =P. According to Lemma 1.1, U ⊗S S is a firm right S -act. Consider the diagram

U ⊗S S
µU−→ US

ι−→ PS
f−→ AS .

Since µU is surjective, fιµU is a surjective morphism in FActS . Also, ιµU is a morphism
in FActS . Then ιµU is surjective due to essentiality of f. It follows that ι is surjective. �

Proposition 10.3. The following are equivalent for a factorizable semigroup S:

(1) every cyclic act in UActS has a projective cover;
(2) every cyclic act in FActS has a projective cover.

Proof. (1) ⇒ (2). Take a cyclic act aS1 ∈ FActS . Since aS 1 is unitary, it has a cyclic
projective cover f : eS → aS1 in UActS (note that a cover of a cyclic act must be cyclic).
Recall that eS is firm (see Lemma 2.3). Consider a diagram

BS
g−→ eS

f−→ aS1

in FActS . If fg is surjective, then g must be surjective because this diagram is also in
UActS and f is an essential epimorphism in UActS . Thus, f is an essential epimorphism
in FActS .
(2) ⇒ (1). Take a cyclic act aS1 ∈ UActS . By Lemma 1.1, aS1 ⊗S S is firm. Since aS 1

is unitary, there exist s ∈ S and u ∈ S1 such that a = (au)s. Then

aS1 ⊗S S = (au⊗ s)S1.

The inclusion ⊇ is clear. On the other hand, if v ∈ S1 and t ∈ S, then

av ⊗ t = (au)sv ⊗ t = au⊗ svt = (au⊗ s)vt ∈ (au⊗ s)S1.

Therefore, aS1 ⊗S S is a cyclic right S -act.
By assumption, there exists a projective cover f : eS → aS1 ⊗ S in FActS . By

Proposition 10.2, f is also an essential epimorphism in UActS . Proposition 10.1 implies
that µaS1 : aS1 ⊗ S → aS1 is an essential epimorphism in UActS . Therefore,

eS
µ
aS1f−−−−→ aS1

is a projective cover in UActS . �
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Having a projective cover is a purely categorical property; thus, it is preserved by
equivalence functors. Also, indecomposability is a categorical property: an act is inde-
composable if it is not a coproduct of two noninitial objects (the initial object is just
the empty act). However, for cyclicity, there is no obvious categorical description. Still,
cyclic acts are preserved under tensor multiplication functors coming from certain Morita
contexts.

Definition 10.4. [22] A Morita context is a six-tuple (S, T, SPT , TQS , θ, φ), where
S and T are semigroups, SPT ∈ SActT and TQS ∈ TActS are biacts and

θ : S(P ⊗Q)S → SSS , φ : T (Q⊗ P )T → TTT

are biact homomorphisms such that for every p, p′ ∈ P and q, q′ ∈ Q, we have

θ(p⊗ q)p′ = pφ(q ⊗ p′) and qθ(p⊗ q′) = φ(q ⊗ p)q′.

This context is called unitary if SPT and TQS are unitary biacts, meaning that SP =
P = PT and TQ = Q = QS.

By Theorem 5.9 in [14], two firm semigroups S and T are Morita equivalent if and
only if they are connected by a unitary Morita context with surjective mappings θ and
φ.

Proposition 10.5. Let S and T be firm semigroups connected by a unitary Morita
context (S, T, SPT , TQS , θ, φ) with surjective mappings. Then the functors

−⊗ SPT : FActS → FActT and −⊗TQS : FActT → FActS

take cyclic acts to cyclic acts.

Proof. As in Proposition 3.16 of [18], one can prove that − ⊗ SPT : FActS → FActT
and − ⊗ TQS : FActT → FActS are equivalence functors inverse to each other (see also
Theorem 5.9 in [14]). We will prove that −⊗SPT takes cyclic acts to cyclic acts. The same
is true for −⊗ TQS , so cyclic acts will correspond to each other under these functors.
Consider a cyclic act aS1 ∈ FActS . We will prove that aS1 ⊗S PT is cyclic. Since aS 1

is unitary, there exists s ∈ S such that as = a. Using surjectivity of θ, we can find ps ∈ P
and qs ∈ Q such that s = θ(ps ⊗ qs). We will prove that

aS1 ⊗S PT = (a⊗ ps)T
1.

The inclusion (a⊗ ps)T
1 ⊆ aS1 ⊗S PT is clear. To prove the converse, we note that

au⊗ p = asu⊗ p = a⊗ sup = a⊗ θ(ps ⊗ qs)up = a⊗ psφ(qs ⊗ up)

= (a⊗ ps)φ(qs ⊗ up) ∈ (a⊗ ps)T
1

for every u ∈ S1 and p ∈ P . �
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Proposition 10.6. Let S be a factorizable semigroup. Then the functors

−⊗S SS⊗S : FActS → FActS⊗S and −⊗S⊗SSS : FActS⊗S → FActS

are inverse equivalence functors which take cyclic acts to cyclic acts.

Proof. By Proposition 4.9 in [16], these functors are inverse equivalence functors. We
also recall that S⊗S is considered as a semigroup with the multiplication (s⊗t)(u⊗v) =
st⊗ uv, and the action of SS⊗S is s(u⊗ v) = suv.
Let aS1 ∈ FActS be cyclic. We want to show that aS1 ⊗S SS⊗S is a cyclic S ⊗ S-act.

Suppose a = (au)s for some u ∈ S1 and s ∈ S. We will prove that

aS1 ⊗S SS⊗S = (au⊗ s)(S ⊗ S)1.

On the one hand,

(au⊗ s)(S ⊗ S)1 ⊆ (aS1 ⊗S S)(S ⊗ S)1 = aS1 ⊗S S.

Conversely, suppose that av⊗ t ∈ aS1⊗S SS⊗S . Since S is factorizable, t = s1s2 for some
s1, s2 ∈ S. Hence,

av ⊗ t = ausv ⊗ t = au⊗ svt = au⊗ svs1s2 = au⊗ (s(vs1 ⊗ s2))

= (au⊗ s)(vs1 ⊗ s2) ∈ (au⊗ s)(S ⊗ S)1.

Let now a(S⊗S)1 ∈ FActS⊗S be cyclic. We want to show that a(S⊗S)1 ⊗S⊗S SS is a
cyclic S -act. Since a(S⊗S)1 is unitary, a = a(s1⊗ s2) for some s1, s2 ∈ S. We will prove
that

a(S ⊗ S)1 ⊗S⊗S SS = (a⊗ s1s2)S
1.

The inclusion ⊇ is clear. Conversely, let a(u1 ⊗ u2) ⊗ s ∈ a(S ⊗ S)1 ⊗S⊗S SS , where
u1, u2, s ∈ S. Then

a(u1 ⊗ u2)⊗ s = a(s1 ⊗ s2)(u1 ⊗ u2)⊗ s = a(s1s2 ⊗ u1u2)⊗ s = a⊗ (s1s2 ⊗ u1u2)s

= a⊗ s1s2u1u2s = (a⊗ s1s2)u1u2s ∈ (a⊗ s1s2)S
1.

�

Our first theorem about invariants is the following.

Theorem 10.7. Right semiperfectness is a Morita invariant for factorizable semi-
groups.

Proof. Suppose S and T are Morita equivalent factorizable semigroups. Equivalently,
by Proposition 4.9 in [16], S ⊗ S and T ⊗ T are Morita equivalent firm semigroups.
According to Theorem 5.9 in [14], there exists a unitary Morita context with bijective
mappings connecting S ⊗ S and T ⊗ T . Consequently,
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S is right semiperfect ⇐⇒ all cyclic objects in UActS have a projective cover

(by Proposition 10.3) ⇐⇒ all cyclic objects in FActS have a projective cover

(by Proposition 10.6) ⇐⇒ all cyclic objects in FActS⊗S have a projective cover

(by Proposition 10.5) ⇐⇒ all cyclic objects in FActT⊗T have a projective cover

(by Proposition 10.6) ⇐⇒ all cyclic objects in FActT have a projective cover

(by Proposition 10.3) ⇐⇒ all cyclic objects in UActT have a projective cover

⇐⇒ T is right semiperfect.

�

Proposition 10.8. The following are equivalent for a factorizable semigroup S:

(1) every act in UActS has an IC-cover;
(2) every act in FActS has an IC-cover.

Proof. (1) ⇒ (2) Take AS ∈ FActS and let

BS :=
⊔
i∈I

biS
1 f−→ AS

be an IC-cover in UActS . By Lemma 1.1, B⊗S S is firm. The indecomposable compo-
nents of B are unitary. Hence, for every i ∈ I, there exist ui ∈ S1 and si ∈ S such that
bi = (biui)si. Then

B ⊗S S =

(⊔
i∈I

biS
1

)
⊗S S =

⊔
i∈I

(biS
1 ⊗S S) =

⊔
i∈I

(biui ⊗ si)S
1.

The acts (biui ⊗ si)S
1 are indecomposable because they are cyclic.

Consider the diagram

B ⊗ S
µB−→ BS

f−→ AS .

By Proposition 10.1, µB is essential in UActS . Thus, the composition fµB is an essential
epimorphism in UActS . Since fµB is also a morphism in FActS , it is essential in FActS
by Proposition 10.2.
(2) ⇒ (1) Take AS ∈ UActS . Then A⊗S S is firm by Lemma 1.1. By assumption, there

exists an IC-cover

CS :=
⊔
i∈I

ciS
1 f−→ A⊗S S

in FActS . Then f is an essential epimorphism in UActS by Proposition 10.2. By
Proposition 10.1, µA is essential in UActS . Therefore, µAf : CS → AS is an IC-cover in
UActS . �
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Theorem 10.9. Right IC-perfectness is a Morita invariant for factorizable semi-
groups.

Proof. Let S and T be factorizable semigroups and F : FActS → FActT an equivalence
functor that takes cyclic acts to cyclic acts. Suppose that AS ∈ FActS has an IC-cover

f :
⊔
i∈I

biS
1 → AS .

Since F preserves coproducts and essential epimorphisms,

F (f) :
⊔
i∈I

F (biS
1) ∼= F

(⊔
i∈I

biS
1

)
→ F (AS)

is an IC-cover of F (AS), where F (biS
1) ∈ FActS are cyclic acts (and hence indecom-

posable). So F (AS) also has an IC-cover. If F has an inverse equivalence functor G,
which also takes cyclic acts to cyclic acts, then we can prove that AS has an IC-cover if
and only if F (AS) has an IC-cover.
Let now S and T be as in the proof of Theorem 10.7. Then

S is right IC-perfect ⇐⇒ all objects in UActS have an IC-cover
(by Proposition 10.8) ⇐⇒ all objects in FActS have an IC-cover
(by Proposition 10.6) ⇐⇒ all objects in FActS⊗S have an IC-cover
(by Proposition 10.5) ⇐⇒ all objects in FActT⊗T have an IC-cover
(by Proposition 10.6) ⇐⇒ all objects in FActT have an IC-cover
(by Proposition 10.8) ⇐⇒ all objects in UActT have an IC-cover

⇐⇒ T is right IC-perfect.

�

Corollary 10.10. Right perfectness and perfectness are Morita invariants for factor-
izable semigroups.

Proof. Let S and T be Morita equivalent factorizable semigroups. Then FActS and
FActT are equivalent categories. By Theorem 10.7, Theorem 10.9 and Theorem 9.1, it
follows that right perfectness is a Morita invariant.
From Remark 4.12 in [16] we know that also SFAct and TFAct are equivalent categories.

If now S is left perfect, then the duals of the proofs of Theorem 10.7 and Theorem 10.9
yield that T is also left perfect. It follows that perfectness is a Morita invariant. �

We saw that completely simple semigroups are perfect. This fact can also be concluded
from Morita invariance of perfectness in case of factorizable semigroups.

Corollary 10.11. Completely simple semigroups are perfect.
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Proof. Clearly, groups are perfect semigroups. Factorizable semigroups Morita
equivalent to a given group are precisely Rees matrix semigroups over that
group [19]. �
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