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1. Introduction
Tameness is known for its many facets related to deep theorems in topology, Banach
space theory and model theory, such as Rosenthal’s �1-embedding theorem or the
BFT-dichotomy. It was introduced to dynamics by Köhler, under the name regularity
[34], and the joint efforts of the community helped to shed light on general structural
properties of tame dynamical systems [19, 24–26, 30, 33], see also [27] for an exposition
and numerous further references. The opposite of tame is wild, but with mathematical
modesty and to not overuse the word wild, the community simply calls wild dynamical
systems non-tame. One fascinating phenomenon is that non-tame systems are not just
not tame, but qualitatively very far from tame systems. This is most visibly reflected in
the following characterization: a Z-action defined by a homeomorphism T on a compact
metrizable space X is tame if the cardinality of its Ellis semigroup E(X, T ) is at most that
of the continuum c, whereas if it is non-tame, E(X, T ) must contain a copy of βN.

To put our results in context, it is important to say a few words about the relation between
tameness and almost automorphy—a classical notion extensively studied by Veech [40].
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2 G. Fuhrmann et al

Huang realized that tame minimal Z-actions are necessarily uniquely ergodic and almost
automorphic [30], that is, the maximal equicontinuous factor Z contains a point which has
a unique pre-image under the factor map π : X → Z . Such a point is called regular and
correspondingly, points z ∈ Z for which π−1(z) consists of more than one element are
called singular. Recently, Glasner extended Huang’s result to minimal actions of general
groups possessing an invariant measure [25]. Based on these results, it was proved in [19]
that tame minimal systems are actually regularly almost automorphic, which means that
the set of regular points has full (Haar) measure.

The vanishing, in measure, of the singular points is thus a necessary condition for
tameness, but it is far from being sufficient. For shift dynamical systems, the set of singular
points is the union of the Z-orbits of its discontinuity points: these are the points in the
maximal equicontinuous factor whose fibre contains two points which disagree on their
0-coordinate. A binary almost automorphic shift whose maximal equicontinuous factor
is an irrational rotation on the circle is non-tame if its set of discontinuity points is a
Cantor set [19, Proposition 3.3]. Note that among such systems, one easily finds examples
for which the set of singular points is a zero measure set. Furthermore, it is possible
to construct non-tame almost automorphic systems for which the set of singular points
consists of a single orbit [22]. However, in this case, the pre-image of a singular point under
the factor map has to be uncountable. These results suggest that non-tameness is related to
the smallness of the difference between X and its maximal equicontinuous factor, where
smallness is computed either via a measure or via cardinality, either in X or its maximal
equicontinuous factor. Our results largely affirm this suggestion but emphasize that this
relation is generally speaking more subtle.

We investigate the notion of tameness for the class of Toeplitz shifts, which are almost
automorphic extensions of odometers (procyclic group rotations). In this class, Oxtoby
found a first example of a minimal system which is not uniquely ergodic [37]. Jacobs
and Keane defined and studied Toeplitz shifts systematically in [32], recognising their
close relation to Toeplitz’s constructions in [39]. Toeplitz shifts have since enjoyed ample
attention due to their dynamical diversity and their relevance in measurable and topological
dynamics, see e.g. [3, 4, 9, 12, 13, 15, 23, 31, 36, 42] as well as [10] for a survey and further
references. Gjerde and Johansen [23] represent Toeplitz shifts as Bratteli–Vershik systems
where the Bratteli diagrams are appropriately constrained, and it is this representation
that is particularly useful to us. A Toeplitz shift has finite Toeplitz rank if it has such a
representation for which the number of vertices at each level of the Bratteli diagram is
uniformly bounded. Note that, on the face of it, the class of finite Toeplitz rank systems
is possibly smaller than the class of Toeplitz shifts of finite topological rank, that is, the
class of Toeplitz shifts which have some proper Bratteli–Vershik representation (which not
necessarily satisfies the constraints of Gjerde and Johansen) with a bounded number of
vertices at each level. It is known that the class of finite Topelitz rank systems is a subset
of the class of shifts with non-superlinear complexity, [8, Corollary 6.7]. We show the
following theorem.

THEOREM 1.1. Let (X, T ) be a Toeplitz shift of finite Toeplitz rank. Then (X, T ) is tame
if and only if its maximal equicontinuous factor has only countably many singular points.
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Tame or wild Toeplitz shifts 3

This result should be contrasted with the work of Aujogue [1], who shows that a family
of tiling systems is tame despite having uncountably many singular points.

As a corollary to Theorem 1.1, we get the following necessary and sufficient criterion
for tameness of substitution shifts of constant length. Note that, in this case, the property of
having only finitely many orbits of singular points can be easily read off from an associated
graph introduced in [5]. We elaborate on this in the main body of this work.

THEOREM 1.2. Let θ be a primitive aperiodic substitution of constant length. The
associated shift (Xθ , T ) is tame if and only if θ has a coincidence and the maximal
equicontinuous factor contains only finitely many orbits of singular points.

Against the background of Theorem 1.1, one might be tempted to guess that the presence
of uncountably many singular fibres implies non-tameness for general Toeplitz shifts, that
is, also for those of infinite rank. However, it turns out that in spite of Theorem 1.1, neither
the cardinality of the singular points nor that of the fibres decide whether (X, T ) is tame
or otherwise. We show the following theorem.

THEOREM 1.3. There is a tame binary Toeplitz shift whose set of discontinuity points is
a Cantor set and so its maximal equicontinuous factor has uncountably many singular
points. Moreover, there exist tame as well as non-tame binary Toeplitz shifts with a unique
singular orbit whose fibres are uncountable.

The first example shows that the aforementioned sufficient criterion for non-tameness
of almost automorphic shifts over irrational rotations of the circle, namely that the set of
discontinuity points is a Cantor set, does not generalize when we replace the circle by a
totally disconnected set. The proof of the second part of Theorem 1.3 is based on a slightly
refined version of the constructions carried out in [22], where the possible non-tameness
of systems with a unique singular orbit was already observed. Somewhat surprisingly, our
constructions allow us to deduce the fact that it is possible for a minimal system (X, T ) to
be non-tame even if it is forward tame, that is, the corresponding forward motion is tame
(see §1.1 for definitions).

In light of Theorem 1.3, it is not straightforward to identify a property that implies
non-tameness for Toeplitz shifts. Whilst stipulating that a Cantor set of singular fibres
exists is not sufficient, additionally controlling the points in such a set of fibres does the
trick. This control is granted by a property we refer to as thickness. Its definition
necessitates extending the Bratteli–Vershik diagrams associated to Toeplitz shifts, see
Definitions 2.7 and 2.10. Our main result, from which Theorems 1.1 and 1.2 follow, is
the following theorem.

THEOREM 1.4. Every thick Toeplitz shift is non-tame.

Let us close the introduction by pointing out an interesting connection between
tameness of substitution shifts and amorphic complexity, a topological invariant which
was introduced to detect complex behaviour in the zero entropy regime [21]. In the case
of symbolic systems, it coincides with the box dimension of the maximal equicontinuous
factor, the box dimension being determined through an averaging metric which is defined
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4 G. Fuhrmann et al

by the dynamics. For constant length substitution shifts on a binary alphabet, Theorem 1.2
and [20, Theorem 1.1] yield that (Xθ , T ) is tame if and only if its amorphic complexity
is 1.

The work is organized as follows. In the remainder of this section, we collect some basic
notions which are needed throughout the article. In §2, we give the Bratteli–Vershik and
Toeplitz background needed and prove Theorem 1.4. We take some time to explain our
results specified to the family of substitution shifts as this is an important family where
the proofs are simpler and motivational for the following notions. We recall the general
construction of semicocycle extensions in §3, and we obtain criteria for tameness of
almost automorphic shifts by investigating their discontinuity points and their formulation
as semicocycle extensions in §4. While our examples and main results solely deal with
symbolic shifts on finite alphabets, it turns out that the extra effort due to treating general
almost automorphic systems in that section is almost negligible. Finally, the first part of
Theorem 1.3 is proven in §5 and the second part is dealt with in the last section.

1.1. Basic notions and notation. Most of this section is standard, see e.g. [2, 6, 28]. We
provide additional references for less standard material in the text.

We denote by N the positive integers and by N0 the non-negative integers. A dynamical
system is a continuous Z-action (or N-action) on a compact metric space X. Such a
system is specified by a pair (X, T ), where T is a continuous self-map on X. Clearly,
T is invertible when dealing with a Z-action. Further, every Z-action restricts to two N

actions, its so-called forward motion given by positive powers of T, and its backward
motion given by negative powers of T. Notions such as subsystem, minimality, (topological)
factor, extension, conjugacy etc. have their standard meaning.

A Z-action is called equicontinuous if the family {T n : n ∈ Z} is equicontinuous. It
is well known, see e.g. [10], that a minimal equicontinuous system (Z , S) is a minimal
rotation, that is, there is a continuous abelian group structure on Z and an element g ∈ Z
such that the homeomorphism S is given by adding g, S(z) = z+ g. We hence refer to
such a system by (Z , +g). Minimality implies that g is a topological generator of Z , that
is, {ng : n ∈ Z} is dense in Z .

An equicontinuous factor of (X, T ) is maximal if any other equicontinuous factor of
(X, T ) factors through it. Here, (X, T ) is an almost one-to-one extension of a system
(Y , S) if the associated factor map π : X → Y is almost one-to-one, that is, if {x ∈ X :
π−1({π(x)}) = {x}} is Gδ-dense in X. A system (X, T ) is almost automorphic if it is
an almost one-to-one extension of a minimal equicontinuous factor. Almost automorphic
systems are necessarily minimal and for minimal systems, {x ∈ X : π−1({π(x)}) = {x}}
is a dense Gδ if it is non-empty. Given an almost automorphic system π : (X, T ) →
(Z , +g), we call the points z ∈ Z with a unique π -preimage regular, and those which
have multiple preimages singular. Correspondingly, we call a π -fibre π−1(z) regular if it
is a singleton and otherwise singular. A point x ∈ X in a regular fibre is also called an
injectivity point.

In §3, we discuss a natural representation of almost automorphic Z-actions as (bilateral)
shifts. Here, by shift, we mean a subsystem of the system (KZ, σ) given by the set of
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Tame or wild Toeplitz shifts 5

K-valued bilateral sequences (xn)n∈Z ∈ KZ, equipped with the product topology, where K
is a compact metric space and σ is the left shift, σ(x)n = xn+1.

The theory of topological independence allows for an alternative characterization of
(non-)tameness which turns out to be particularly convenient in explicit computations and
does not explicitly involve the Ellis semigroup [33]. Given a system (X, T ) and subsets
A0, A1 ⊆ X, we say that J ⊆ Z is an independence set for (A0, A1) if for each finite
subset I ⊆ J and every choice function ϕ ∈ {0, 1}I , there exists x ∈ X such that T i(x) ∈
Aϕ(i) for each i ∈ I . By combining the results from [33] and the aforementioned shift
representation of almost automorphic systems, we obtain the following characterization of
non-tameness which we actually understand as its definition in the following proposition.

PROPOSITION 1.5. (Cf. [33, Proposition 6.4] and [22, Proposition 3.1]) A shift (X, σ) ⊆
(KZ, σ) is non-tame (or wild) if and only if there are disjoint compact sets V0, V1 ⊆ K

and a sequence of integers (tn)n∈N such that for each choice function ϕ ∈ {0, 1}N, there is
(xn)n ∈ X for which xtn ∈ Vϕ(n) for all n ∈ N.

We call the infinite sequence (tn) of the proposition an independence sequence for the
pair (V0, V1) and note that its elements must be pairwise distinct. In the terminology of
[33], the elements of (tn) form an independence set for the pair of cylinder sets

[Vi] = {x ∈ X : x0 ∈ Vi} (i = 0, 1).

In line with the above characterization of non-tameness, we call a shift (X, σ) forward
non-tame if it allows for an infinite independence sequence (for some disjoint cylinder sets)
of positive integers. Similar to the characterization of non-tameness of Z-actions given in
the introduction, this is the case if and only if the Ellis semigroup of the N-action given by
the forward motion of (X, σ) contains a copy of βN.

Remark 1.6. In the case of symbolic shifts, that is, when K = {a0, . . . , an} is finite, it is
important to note that V0 and V1 can be chosen to be singletons {ak} and {a�}, respectively,
and we simply write [ak], [a�] for the corresponding cylinder sets. Indeed, with [33,
Proposition 6.4], we have that if there exist V0 and V1 as in Proposition 1.5, then there
are x ∈ [V0] and y ∈ [V1] such that for any pair of neighbourhoods Ux and Uy of x and y,
respectively, there is an infinite independence set. One may hence choose disjoint cylinder
sets Ux = [∗ · · · ∗ ak ∗ · · · ∗] and Uy = [∗ · · · ∗ a� ∗ · · · ∗] (where ∗ is a placeholder and
ak �= a�) to see that actually, we have an independence sequence for ({ak}, {a�}).

In particular, to prove tameness (or forward tameness) of binary shifts, that is, where
K = {a, b}, it suffices to show that ([a], [b]) does not allow for an infinite independence
set (of positive integers).

2. Toeplitz shifts
Our main goal in this work is to characterize those Toeplitz shifts which are tame. In the
first two parts of this section, we define Toeplitz shifts, and in particular a simple and
ubiquitous subclass, which is defined by (primitive, aperiodic) substitutions of constant
length which have a coincidence. While our results are far more general, we will later use
examples from this class to illustrate our constructions. These constructions are carried
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6 G. Fuhrmann et al

out in §2.4, where we turn to the Bratteli–Vershik representation of Toeplitz shifts to prove
Theorems 1.1, 1.2 and 1.4.

2.1. Odometers and Toeplitz shifts. Given a sequence (�n) of natural numbers, we work
with the group

Z(�n) :=
∏
n

Z/�nZ,

where the group operation is given by coordinate-wise addition with carry. For a detailed
exposition of equivalent definitions of Z(�n), we refer the reader to [10]. Endowed with the
product topology over the discrete topology on each Z/�nZ, the group Z(�n) is a compact
metrizable topological group, where the unit z = . . . 001, which we simply write as
z = 1, is a topological generator. We write elements (zn) of Z(�n) as left-infinite sequences
. . . z2z1, where zn ∈ Z/�nZ, so that addition in Z(�n) has the carries propagating to the left
as usual in Z. If �n = � is constant, then Z(�n) = Z� is the classical ring of �-adic integers.

With the above notation, an odometer is a dynamical system (Z , +1), where Z = Z(�n)

for some sequence (�n). A Toeplitz shift is a symbolic shift (X, σ), X ⊆ AZ with A finite,
which is an almost automorphic extension of an odometer and hence minimal.

2.2. Constant length substitutions. A special class of almost automorphic extensions of
odometers is the class of primitive aperiodic constant length substitutions which possess
a coincidence. Since we illustrate our theory mainly with examples from this class, and
because the proof of our main result simplifies for this class, we give the reader both a
brief exposition of substitutions and also a flavour of our main result for this important
class of almost automorphic extensions.

Let A be a finite set, referred to as an alphabet. A substitution of (constant) length �
over A is a map θ : A → A�. We can write such a substitution as follows: there are �maps
θi : A → A, 0 ≤ i ≤ �− 1 such that θ(a) = θ0(a) | · · · | θ�−1(a) for all a ∈ A, where |
is to separate the concatenated letters.

We use concatenation to extend θ to a map on finite and infinite words in A. We say that
θ is primitive if there is some k ∈ N such that for any a, a′ ∈ A, the word θk(a) contains
at least one occurrence of a′. We say that a finite word is allowed for θ if it appears as a
subword in some θk(a), a ∈ A, k ∈ N.

LetXθ ⊆ AZ be the set of bi-infinite sequences all of whose finite subwords are allowed
for θ . Then (Xθ , σ) is the substitution shift defined by θ . Primitivity of θ implies that
(Xθ , σ) is minimal. We say that a primitive substitution is aperiodic if Xθ does not
comprise σ -periodic sequences. This is the case if and only if Xθ is an infinite space.

The shift (Xθ , σ) of a primitive aperiodic substitution of constant length � factors
onto the odometer (Z�, +1). Indeed, for any n ≥ 1, the space Xθ can be partitioned
into �n clopen subsets σ i(θn(Xθ )), i = 0, . . . , �n − 1, and the factor map is given by
Xθ 
 x �→ . . . z2z1 ∈ Z�, where zn is the unique i such that x ∈ σ i(θn(Xθ )) [7]. The
maximal equicontinuous factor of (Xθ , σ) is therefore a covering of (Z�, +1) and the
degree of this covering is called the height of the substitution. The height h is always finite.
Given θ , there is a primitive aperiodic substitution θ ′, referred to as the pure base of θ ,
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which is of the same length �, has height 1 and is such that (Xθ , σ) is a Z/hZ-suspension
over (Xθ ′ , σ). That is, Xθ ∼= Xθ ′ × Z/∼ with (x, n+ h) ∼ (σ (x), n) and the action is
induced by id × (+1). There is an explicit construction of θ ′ which, in fact, equals θ if
h = 1. Clearly, the maximal equicontinuous factor of the pure base system is (Z�, +1).
For all details, see [7].

Let θ have as pure base the substitution θ ′ defined on the alphabet A′. We say
that θ has a coincidence if for some k ∈ N and some i1, . . . , ik ∈ {0, . . . , �− 1}, we
have |θ ′

i1
. . . θ ′

ik
(A′)| = 1. The importance of this notion lies in the theorem of Dekking

stating that the substitution shift (Xθ , σ) is almost automorphic if and only if θ has a
coincidence [7].

We shall see below that the question of whether (Xθ , σ) is tame or not is governed
by the cardinality of the set of orbits of singular points in the maximal equicontinuous
factor of (Xθ , σ). Since Xθ ∼= Xθ ′ × Z/∼, the orbits of singular points in the maximal
equicontinuous factor of (Xθ , σ) are in one-to-one correspondence with the orbits of
singular points in the maximal equicontinuous factor of the pure base system (Xθ ′ , σ). We
may therefore just determine the cardinality of the latter. There is an effective procedure
which achieves this [5]. We recapitulate a slightly modified version here in the only
case which concerns us, which is when θ has a coincidence and, by going over to the
pure base of the substitution if needed, its height is 1.

Consider the graph Gθ whose vertices are the sets

{A} ∪ {A := θw1 · · · θwk (A) : k ≥ 1, w1, . . . , wk ∈ {0, 1, . . . , �− 1}, and |A| > 1}
and whose edges are defined as follows: if A and B are vertices in Gθ , then there is an
oriented edge from B to A, labelled i, if and only if θi(A) = B. An infinite path in Gθ
defines a point . . . z2z1 ∈ Z�, where zi is the label of the ith edge in the path.

We define 	̂θ to be the set of all sequences (zi) ∈ Z� obtained as above from infinite
paths in Gθ . If θ is minimal, aperiodic and has a coincidence, then 	̂θ is non-empty. The
Z-orbit of 	̂θ under +1 equals {z ∈ Z� : |π−1(z)| > 1}, which is the set of singular points
in Z�. This set is a proper subset of Z�, as (Xθ , σ) is almost automorphic.

Recall that a cycle on an oriented graph is a finite path which is closed and minimal in
the sense that it is not the concatenation of smaller closed paths.

LEMMA 2.1. Let θ be a primitive aperiodic substitution of constant length with pure
base θ ′. Its maximal equicontinuous factor contains either finitely many, or uncountably
many orbits of singular points. The latter is the case if and only if Gθ ′ contains two distinct
cycles which share a common vertex.

Proof. Observe that besides the paths corresponding to the orbit through 0, two infinite
paths in Gθ ′ belong to the same Z-orbit of Z� if they differ only on a finite initial segment,
that is, if they are tail equivalent. Therefore, the statement comes down to showing that
there are finitely many or uncountably many distinct infinite paths up to tail equivalence
in Gθ ′ .

Clearly, Gθ ′ must contain cycles as it contains infinite paths. If we have a vertex in two
different cycles then, starting from that vertex, we can follow through the two cycles in
any order we wish and therefore the number of paths in Gθ ′ is uncountable.
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8 G. Fuhrmann et al

FIGURE 1. The graph Gθ for the substitutions from Example A (left) and Example B (right). We used blue dotted
and violet dashed lines for better comparison with Figure 2.

Now assume that there is no vertex in two different cycles. An infinite path must visit
some vertex infinitely often. As this vertex is not part of more than one cycle, the path
must eventually follow the same cycle. As there are only finitely many vertices and edges,
there can only be finitely many cycles. Hence, up to tail equivalence, there are only finitely
many infinite paths in Gθ ′ .

Let us anticipate the following important consequence of Lemma 2.1 combined with
Theorem 2.18 and the discussion in §2.3.4.

THEOREM 2.2. Let θ be a primitive aperiodic substitution of constant length with pure
base θ ′. Then (Xθ , σ) is tame if and only if it has a coincidence and Gθ ′ does not contain
two distinct cycles which share a common vertex.

Example A. Let θ be the substitution

a �→ aaca

b �→ abba

c �→ aaba,

on the alphabet A = {a, b, c}. It is primitive, aperiodic and has trivial height. Its graph Gθ
is depicted on the left-hand side in Figure 1. Note that {a, c} is not a vertex in Gθ because
it cannot be expressed as {a, c} = θw1 · · · θwk (A) for any word w1 · · · wk . Here, Gθ has
two different cycles at {a, b}, so by Theorem 2.2, (Xθ , σ) is non-tame.

Example B. We modify slightly the above example and define θ as

a �→ aaca

b �→ abba

c �→ acba,

on the alphabet A = {a, b, c}. It still is primitive, aperiodic and has trivial height. The
graph Gθ is shown on the right in Figure 1, and as it has only one cycle about any vertex,
by Theorem 2.2, (Xθ , σ) is tame.

2.3. The Bratteli–Vershik representation of a Toeplitz shift. In this section, we briefly
discuss the Bratteli–Vershik representation of Toeplitz shifts. As Bratteli–Vershik systems
are well documented in the literature, we keep this to a minimum. Interested readers may
consult classical references on Bratteli–Vershik systems, such as [29]. In particular, since
we will only be concerned with Bratteli–Vershik systems that are conjugate to Toeplitz
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shifts, we refer the reader to the work by Gjerde and Johansen [23]; unless stated otherwise,
we adopt the latter’s notational conventions.

2.3.1. Bratteli–Vershik systems. A Bratteli diagram is an infinite graph B = (V , E),
where the vertex set V = ⊔

n≥0 Vn and the edge set E = ⊔
n≥0 En are equipped with

a range map r : E → V and a source map s : E → V such that:
(1) V0 = {v0} is a singleton;
(2) Vn and En are finite sets;
(3) r(En) = Vn+1, s(En) = Vn;
(4) r−1(v) �= ∅ for all v �= v0.

The pair (Vn, En) or just Vn is called the nth level of the diagram B. A finite or infinite
sequence of edges (γn : γn ∈ En) such that r(γn) = s(γn+1) is called a finite or infinite
path, respectively. The source map and the range map extend to paths in the obvious way.
For a Bratteli diagram B, let XB be the set of infinite paths (γn)n≥0 starting at the top
vertex v0. Given a path (γn)n≥0 and m ≥ 0, we call (γn)n≥m a tail of (γn) and (γn)n≤m a
head of (γn). Two paths (γn) and (γ ′

n) are called tail equivalent (or cofinal) if they share a
common tail.

We shall constantly use the telescoping procedure. Let B be a Bratteli diagram and
n0 = 0 < n1 < n2 < · · · be a strictly increasing sequence of integers. The telescoping of
B to (nk) is the Bratteli diagram B ′, whose k-level vertex set is V ′

k := Vnk , and where the
set of edges between v ∈ V ′

k and w ∈ V ′
k+1 are in one-to-one correspondence with the set

of paths in B between v ∈ Vnk and w ∈ Vnk+1 . There is then an obvious bijection between
XB and XB ′ .

A Bratteli diagram B has rank d if there is a telescoping B ′ of B such that B ′ has exactly
d vertices at each level. We say that B is simple if for any level m, there is n > m such that
for any two vertices v ∈ En and w ∈ Vm, there is a path with source w and range v. This
is equivalent to saying that by telescoping, we can arrive at a Bratteli diagram B ′ such that
any two vertices in consecutive levels are connected by an edge.

Recall also that the path space XB comes with a totally disconnected compact
metrizable topology, and if B is simple and |En| > 1 infinitely often, then XB is a
Cantor set.

Definition 2.3. We say that B = (V , E) has the equal path number property if there is a
sequence (�n)n≥0 such that for each v ∈ Vn+1, there are �n edges with range v. We call
(�n)n≥0 the characteristic sequence of B.

An ordered Bratteli diagram is a Bratteli diagram together with a total order on each set
of edges which end at the same vertex. In other words, for each r−1(v), v ∈ V , the order
naturally defines a bijection ω : r−1(v) → {0, . . . , |r−1(v)| − 1}. We refer to ω(e) also
as the label of e. Under certain circumstances, given in detail in [23], this order induces a
proper order ω on XB . In a nutshell, the successor of an infinite path (γn)n≥0 ∈ XB with
respect to ω, when this exists, is a tail-equivalent path whose order labelling corresponds
to an addition of 1 to that of (γn)n≥0. The notion of a predecessor is defined analogously.
The order being proper means that there is a unique path (the maximal path) which has
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no successor in this order, and a unique path (the minimal path) which has no predecessor.
In this case, one can define the Vershik map ϕω : XB → XB , which sends a non-maximal
path to its successor and which sends the unique maximal path to the unique minimal
path. It is a homeomorphism and thus defines a dynamical system (XB , ϕω) referred
to as a Bratteli–Vershik system. If (B, ω) is a properly ordered Bratteli diagram and
B ′ = (V ′, E′) is the telescoping of B to levels (nk), then the order ω defines a natural
proper order ω′ on B ′, and (XB , ϕω) is topologically conjugate to (XB ′ , ϕω′). Properly
ordered simple Bratteli diagrams define minimal Bratteli–Vershik systems. Conversely,
any Cantor minimal dynamical system (X, T ) is conjugate to a Bratteli–Vershik system
where B is simple [29]; the latter is called a Bratteli–Vershik representation of (X, T ).
Not every such dynamical system has a Bratteli–Vershik representation with finite rank,
but if this is the case, one says that (X, T ) has finite topological rank. More precisely,
the topological rank of such a system is the smallest rank among its Bratteli–Vershik
representations.

2.3.2. Toeplitz Bratteli–Vershik systems. We now focus on Bratteli diagrams which
have the equal path number property. Here, if v ∈ Vn, then |r−1(v)| = �n. Recall that a
Bratteli–Vershik system is expansive if and only if there is k ∈ N such that for distinct
x, y ∈ XB , the head of length k of φnω(x) differs from that of φnω(y) for some n ∈ Z.
Downarowicz and Maass [14] show that a simple properly ordered Bratteli–Vershik system
with finite topological rank is expansive if and only if its topological rank is strictly larger
than 1. A simple properly ordered Bratteli–Vershik system with topological rank 1 is an
odometer.

THEOREM 2.4. [23] The family of expansive, simple, properly ordered Bratteli–Vershik
systems with the equal path number property coincides with the family of Toeplitz shifts up
to conjugacy.

In view of this result, we call an expansive simple properly ordered Bratteli–Vershik
system with the equal path number property a Toeplitz Bratteli–Vershik system. Moreover,
we say that a Toeplitz shift has finite Toeplitz rank if it is conjugate to a Toeplitz
Bratteli–Vershik system which has finite rank. Note that having finite Toeplitz rank is
stronger than having a Toeplitz shift with finite topological rank as we cannot rule out
that a Toeplitz system with infinite Toeplitz rank has a Bratteli–Vershik representation of
finite rank but without the equal path number property.

LEMMA 2.5. [23] Let (XB , ϕω) be a Toeplitz Bratteli–Vershik system with characteristic
sequence (�n). The level-wise application of the edge order map

ω : (XB , ϕω) → (Z(�n), +1), ω((γn)) = (ω(γn))

is a factor map to the maximal equicontinuous factor.

For Bratteli diagrams that have the equal path number property, it is standard to describe
the ordering ω using a sequence of constant length morphisms. To describe the ordering
of the edge set En between Vn and Vn+1, we use the morphism

θ(n) : Vn+1 → V �nn (2.1)
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which, when written as a concatenation of maps θ(n) = θ
(n)
0 | · · · |θ(n)�n−1, where θ(n)i :

Vn+1 → Vn (similarly as in §2.2), is given by

θ
(n)
i (v) = s(e), with e ∈ ω−1(i) ∩ r−1(v),

that is, the ith morphism reads the source of the unique edge with range v and label i.
If (B, ω) has the equal path number property and B ′ = (V ′, E′) is the telescoping of

B to levels (nk), then B ′ also has the equal path number property, and the corresponding
morphism

θ
′(k) : V ′

k+1 → V ′
k
�′k (2.2)

is given by the composition

θ
′(k) = θ(nk) · · · θ(nk+1−1).

We can again write θ
′(k) as a succession of maps θ

′(k)
i : V ′

k+1 → V ′
k which are each a

composition of maps θ(n)in : Vn+1 → Vn, nk ≤ n < nk+1, where the labels in are those of
the edges in (B, ω) which constitute the edge e ∈ E′

k with label i. More precisely,

θ
′(k)
i = θ

(nk)
ink

· · · θ(nk+1−1)
ink+1−1

where i =
nk+1−1∑
n=nk

in

n−1∏
m=nk

�m

(with the understanding that
∏nk−1
m=nk �m = 1). For instance, if we telescope level n with

level n+ 1, we get θ ′(n) = θ(n)θ(n+1) and

θ ′(n)
i+j�n = θ

(n)
i θ

(n+1)
j for 0 ≤ i < �n, 0 ≤ j < �n+1.

By telescoping if necessary, we can assume that �n > 1 for each n. For otherwise,
�n = 1 for almost all n and this implies that XB is not a Cantor space.

2.3.3. Shift interpretation. There is a strong connection between expansive Bratteli–
Vershik systems and shifts [14]. Suppose (XB , ϕω) is expansive and k ∈ N is such that
the heads of length k suffice to separate orbits of distinct elements in XB . Given a path
x ∈ XB , associate the bi-infinite sequence whose nth entry consists of the head of length
k of ϕnω(x). Let (Xk , σ) be the shift whose space consists of all such sequences of length-k
heads. Then (Xk , σ) and (XB , φω) are conjugate. By telescoping the diagram to the kth
level, we may assume that k = 1. Given a Toeplitz Bratteli–Vershik system, we may (and
will throughout this article) therefore assume that

p1 : (XB , ϕω) → (X1, σ), (γ�)�≥0 �→ ((ϕnω(γ ))0)n∈Z (2.3)

is a conjugacy.
If there is only one edge between the top vertex v0 and each vertex in V1, then the

range map r is a bijection between E0 and V1 so that (XB , φω) is conjugate to a shift
over the alphabet V1. We denote the respective conjugacy also by r. Observe that this
situation can always be enforced by insertion of an extra level. Namely, we introduce
an intermediate vertex set V between V0 and V1, which is in one-to-one correspondence
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with E0. We introduce one edge from v0 to each vertex of V and then for each e ∈ E0 = V ,
an edge with source e and range r(e) ∈ V1 with the same order label as e. Clearly, the
resulting Bratteli–Vershik system is topologically conjugate to the old one. For Toeplitz
Bratteli–Vershik systems, this means that �0 = 1.

The following lemma is elementary to verify; its proof follows from the built-in
recognizability of Bratteli–Vershik systems, by which we mean that for each n, the towers
defined by the first n levels of B form a partition of p1(XB), where p1 is defined in equation
(2.3) and which we assume, without loss of generality, to be a conjugacy. Given a sequence
(xn) and n < m, we denote by x[n,m[ the finite word xnxn+1 · · · xm−1.

LEMMA 2.6. Let (XB , ϕω) be a Toeplitz Bratteli–Vershik system with characteristic
sequence (�n) where �0 = 1. Set �(n) = ∏n−1

k=0 �k . For all γ ∈ XB and n ∈ N, we have

r ◦ p1(γ )[−z(n),�(n)−z(n)[ = θ(1) · · · θ(n) ◦ r(γn),

where z(n) = ∑n−1
k=0 ω(γk)�

(k). In particular,

{x0 : x ∈ r ◦ p1(ω
−1(z))} ⊆

⋂
n

θ(1)z1
· · · θ(n)zn (Vn+1). (2.4)

2.3.4. Toeplitz Bratteli–Vershik diagrams for constant length substitutions. A stationary
Toeplitz Bratteli–Vershik system is one where for all n ≥ 1, Vn = V1, En = E1, and the
order structure onEn is the same as that onE1. In this case, the morphisms θ(n) of equation
(2.2) all agree and hence define a single morphism θ : V1 → V

�1
1 . If the range map is a

bijection between E0 and V1 (there is a single edge between v0 and each of the vertices
of V1), we can identify the space X1 with the substitution shift space Xθ of θ . In other
words, a stationary Toeplitz Bratteli–Vershik system for whichE0 ∼= V1 defines a primitive
substitution of constant length.

The converse, associating a Toeplitz Bratteli–Vershik system to a primitive substitution
θ of constant length � over an alphabet A, is subtle. The natural approach [41], which
consists of defining a stationary Bratteli–Vershik system by setting Vn = A and defining
the edges and their order with θ(n) = θ as in equation (2.2), works well if all substitution
words start with the same letter and end with the same letter, that is, θ0(a) and θ�−1(a)

are independent of a. Indeed, if that is the case, then the order on the Bratteli diagram is
proper. However, for general θ , the respectively defined order may fail to be proper and
the arguments in [41] only give a measurable Bratteli–Vershik representation. While there
are classical methods to rewrite the substitution to obtain a stationary Bratteli–Vershik
representation for (Xθ , σ) [16, 17], those procedures do not necessarily give a Toeplitz
Bratteli–Vershik representation. Instead, one needs to follow the approach of [23] to obtain
a properly ordered Toeplitz Bratteli–Vershik system such that (X1, σ) equals (Xθ , σ).

2.4. The extended Bratteli diagram. In this section, we introduce the notion of the
extended Bratteli diagram and its essential thickness, concepts which are fundamental
for the proofs of Theorems 1.4 and 1.1. The extended Bratteli diagram can be seen as a
generalization of the graph Gθ , introduced in §2 for constant length substitution shifts.
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Definition 2.7. Let (B, ω) be an ordered Bratteli diagram with the equal path number
property and characteristic sequence (�n)n≥0. The extended Bratteli diagram is an infinite
graph which satisfies the properties (1)–(3) of a Bratteli diagram, but not necessarily
property (4). The extended Bratteli diagram B̃ = (Ṽn, Ẽn) associated to B has the
following vertices and edges.
(1) The level n vertex set Ṽn is the set of all non-empty subsets of Vn.
(2) For 0 ≤ i < �n, Ẽn contains an edge labelled i with source A ∈ Ṽn and range

B ∈ Ṽn+1 if and only if θ(n)i (B) = A.

Identifying singleton sets with the element they contain, we see that B̃ contains B as
a sub-diagram. The labelling of the edges defines an order on B̃ which extends the order
on B. We also consider the space X

B̃
of infinite paths over B̃ starting at the top vertex v0.

Clearly, X
B̃

contains XB . The edge order map ω from Lemma 2.5 extends to a map from
X
B̃

to the maximal equicontinuous factor Z�n which we denote by the same letter ω. Due
to the lack of property (4), the vertices in the extended diagram need not to have any
outgoing edges. Infinite paths ignore such vertices and we call vertices extendable if they
are traversed by a path in X

B̃
.

To a path γ in X
B̃

, we associate the sequence of maps

θ(n)γ := θ
(n)
ω(γ )n

: Ṽn+1 → Ṽn (2.5)

and the sequence of subsets An := s(γ (n)) ⊆ Vn. Then θ(n)ω(γ )n(An+1) = An. Recall that
we can arrange for �0 = 1 in the characteristic sequence of the original Toeplitz Bratteli
system. This implies that in the extended Bratteli diagram, the top vertex is linked to any
vertex of Ṽ1 by exactly one edge.

We remark that in the case where the ordered diagram B is stationary, that is, En = E1

and θ(n) = θ(1) for n ≥ 1, then the graph Gθ(1) defined in §2 is an abbreviated form of the
extended Bratteli diagram (B̃, ω̃). The extended Bratteli diagram will also be stationary
and so can be described by the edge and order structure of its first level. The only other
difference is that in Gθ(1) , we chose to exclude vertices indexing one-element sets, as Gθ(1)
is only to identify the singular fibres.

Note that since |θ(n)i (A)| ≤ |A| for each n and i, a path inX
B̃

must pass through vertices
of non-decreasing cardinality. This motivates the following definition.

Definition 2.8. If a path of X
B̃

eventually goes through vertices An ∈ Ṽn with |An| =
k < ∞ for all n large, we will say that the path has thickness k. Otherwise, we say that the
path has infinite thickness.

If the diagram has finite rank, then there are no paths with infinite thickness. We
denote by Xk

B̃
the infinite paths of thickness k ∈ N ∪ {∞}. Note that the sub-diagram X1

B̃
corresponds to the original path space XB .

The following lemma tells us that z ∈ Z(�n) is singular if and only if it is the image of a
path of thickness k > 1. Let thk(γ ) denote the thickness of the path γ .

LEMMA 2.9. Let (XB , ϕω) be a Toeplitz Bratteli–Vershik system with extended path space
X
B̃

. Let z ∈ Z(�n). Then,
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|{γ ∈ XB : ω(γ ) = z}| = sup{thk(γ̃ ) : γ̃ ∈ X
B̃

, ω(γ̃ ) = z}.

In particular, the set of singular points in Z(�n) coincides with the union
⋃
j≥2 ω(X

j

B̃
), and

the rank of the Toeplitz Bratteli–Vershik system is an upper bound for the maximal number
of elements in a fibre of the factor map to the maximal equicontinuous factor.

Proof. Recall the definition of the maps θ(n)
γ̃

and subsets An := s(γ (n)) ⊆ Vn associated
to a path γ̃ ∈ X

B̃
in equation (2.5). If thk(γ̃ ) ≥ k, then there exists n0 such that |An| ≥ k

for n ≥ n0. Since θ(n)
γ̃
(An+1) = An, there are at least k paths γ in the original path space

XB such that ω(γ̃ ) = ω(γ ). This shows the inequality ‘≥’.
Now suppose that |{γ ∈ XB : ω(γ ) = z}| ≥ k, so that there are at least k distinct paths

γ∈ XB with the same edge labels. We need to make sure that there is at least one n such
that they go through k different vertices at level n. Note that if two paths with equal edge
labels agree on a vertex at level n, then their head agrees up to level n. Thus, k distinct
paths must at some level go through k distinct vertices. This implies that there is an An
with |An| ≥ k which is a vertex of a path inX

B̃
which has edge labels z. Thus, sup{thk(γ̃ ) :

γ̃ ∈ X
B̃

, ω(γ̃ ) = z} ≥ k.

2.5. Thick Toeplitz shifts. A pair of parallel edges in Ẽn is a pair of edges (e1, e2) ∈
Ẽn × Ẽn with the same source and range but distinct labels according to the order. A
double path in X

B̃
is a pair of paths consisting of parallel edges at each level n > 0. We

write γ̄ = (γ̄n) = (γn,1, γn,2) to denote a double path.

Definition 2.10. The largest k such that Xk
B̃

is uncountable is called the essential thickness
of (XB , ϕω). We say that (XB , ϕω) is thick if its essential thickness k is strictly larger than
1 and finite, and if there is a double path of thickness k. A Toeplitz shift is thick if it has a
thick Toeplitz Bratteli–Vershik representation.

Example A. (Continued) To illustrate the above notions, we apply them to the first
substitution in Example A. While this example is not sensitive to some of the subtleties
that we will meet later (because of its stationarity), it can at least be described explicitly.

Recall that θ : {a, b, c} → {a, b, c}4 is the substitution

a �→ aaca

b �→ abba

c �→ aaba.

Since all substitution words begin and end on a, the approach of [41] to define the Toeplitz
Bratteli–Vershik system works here and it is not difficult to derive the extended system as
well. The extended Bratteli diagram is stationary and we have drawn one level in Figure 2.
We follow the convention of reading levels from top to bottom. Note that the vertices
{a, b, c} and {a, c} have no outgoing edges, so no infinite path will go through them
and, in particular, there are no paths of thickness 3. There are uncountably many paths
of thickness 2, namely those which keep going through vertices {a, b} or {b, c}. Hence, all
singular fibres consist of two elements and the essential thickness is 2.
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FIGURE 2. One level of the stationary extended Bratteli diagram of Example A. The order is indicated through
colour: black, blue dotted, violet dashed and red edges correspond to order label 0, 1, 2 and 3, respectively. The

grey vertices are not extendable. Red edges are finer than black edges if viewed without colour.

If we telescope the extended Bratteli diagram to even levels, we will find that there are
two edges between two consecutive vertices {a, b}. These two edges form a pair of parallel
edges and consequently the telescoped diagram admits a double path of thickness 2.
In particular, the Toeplitz Bratteli–Vershik system is thick.

Notice the connections between Figure 2 and the graph Gθ in Figure 1. The infinite paths
on Gθ correspond to paths in the stationary extended Bratteli diagram which start at the
top vertex v0 (the first level consists of one edge between v0 and each of the seven vertices
of Ṽ1) and go downwards without ever passing through a vertex which is a singleton
nor through a vertex which does not have an outgoing edge. The fact that the telescoped
extended Bratteli diagram admits a double path of thickness 2 going through the vertices
{a, b} is equivalent to the fact that the vertex {a, b} of Gθ belongs to two distinct cycles.

Example B. (Continued) It is not difficult to derive an extended Bratteli diagram for the
substitution of Example B as well. What one will find is that there is one edge between
two consecutive vertices {a, b, c} and one edge between two consecutive vertices {b, c}.
It follows that the diagram has thickness 3. However, there is only one path which goes
infinitely often through {a, b, c} and only countably many which go infinitely often through
{b, c}. It follows that the essential thickness of the diagram is 1. The system is therefore
not thick.

Example C. Oxtoby [37] described a family of minimal binary Toeplitz shifts that
are not uniquely ergodic and hence cannot be tame. We describe the Bratteli–Vershik
representations for the one-sided versions of this family to maximize the similarity to his
original description. Given a sequence (�n) of natural numbers, define the substitutions

a
θ(n)�→ ab�n−1

b
θ(n)�→ aa�n−1,
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FIGURE 3. On the right, we see the first levels of the extended Bratteli diagram of the one-sided shifts for Example
C with �1 = 3 and �2 = 5. The order is indicated through colour: black, blue dotted, violet dashed, green densely
dotted and red edges correspond to order label 0, 1, 2, 3 and 4, respectively. Red edges are finer than black edges
if viewed without colour. As more levels are added, there are increasingly many edges between vertices labelled
{a, b} in consecutive levels. This is to be contrasted with the one-sided period-doubling substitution shift (on the
left), where �n = 2 for all n, and which is tame (again, black and blue dotted edges correspond to order label 0

and 1, respectively). It has thickness one.

and define an ordered Bratteli diagram with the sequence {θ(n)} as in equation (2.1); see
Figure 3 for two examples, the one on the left with �1 = �2 = 2, the second with �1 = 3,
�2 = 5.

Note that these ordered Bratteli diagrams each have two maximal paths and one minimal
path; this means that we cannot define a Vershik map which is a homeomorphism.
Nevertheless, we can still define a continuous Vershik map by sending the two maximal
paths to the unique minimal path. This one-sided Bratteli–Vershik system is conjugate to
the one-sided shift defined by Oxtoby. Oxtoby showed that if (�n) grows fast enough, in
particular if

∑
(�k−1/�k) < 1, then the resulting system is not uniquely ergodic and thus

it cannot be tame. On the right-hand side of Figure 3, one clearly sees the beginning of
a double path of thickness two. This should be contrasted with the stationary figure on
the left, which is a one-sided representation of the period-doubling substitution shift and
which has thickness one, and so is tame, as we will see below.

Recall that x ∈ X is a condensation point if every neighbourhood of x is uncountable.
Let C ⊆ X be the set of its condensation points. The Cantor–Bendixson theorem gives that
for second countable spaces, X\C is countable.

LEMMA 2.11. Let (XB , ϕω) be a Toeplitz Bratteli–Vershik system.
(1) If all paths in X

B̃
have finite thickness, the maximal equicontinuous factor contains

uncountably many singular points if and only if there is j > 1 such that Xj
B̃

is
uncountable.
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(2) If Xj
B̃

contains a double path, then it is uncountable.

(3) If X
B̃

has finite rank and Xj
B̃

is uncountable, then Xj
B̃

contains a double path.

Proof. For z ∈ Z(�n) and n ∈ N, let Bzn ⊆ Vn be of maximal cardinality among those
elements of Ṽn which are traversed by some path γ̃ ∈ X

B̃
with ω(γ̃ ) = z. Observe that

Bzn is uniquely determined because if B, B ′ ∈ Vn are traversed by such a γ̃ , then B ∪ B ′
is extendable and there is such a γ̃ going through B ∪ B ′. This shows that the supremum
in the formula of Lemma 2.9 is attained at some path γ̃ . Since all paths in X

B̃
have finite

thickness, Lemma 2.9 implies that the restriction of ω to XB is finite-to-one, and this
implies that the restriction of ω to Xj

B̃
is finite-to-one. Hence, if Xj

B̃
is uncountable, then

its image under ωmust be uncountable. The converse follows from Lemma 2.9, which tells
us that the singular points of Z(�n) are given by the image of X

B̃
\X1

B̃
= ⋃

j≥2 X
j

B̃
.

Suppose that Xj
B̃

contains a double path. Then there is n0 such that for all n ≥ n0, there
isAn ⊆ Vn containing j elements such that betweenAn andAn−1, there are at least 2 edges
in the extended Bratteli diagram. The set of paths in Xj

B̃
obtained by choosing one of the

two edges at each level is uncountable.
Suppose now thatXj

B̃
is uncountable. Then the set of condensation pointsXj

B̃
∩ C ofXj

B̃

is uncountable. Since Xj
B̃

∩ C has no isolated points, for any given path γ ∈ Xj
B̃

∩ C and

n ≥ 0, there are infinitely many distinct paths inXj
B̃

∩ C which agree with γ on its head of
length n. Let K be the rank of the Toeplitz Bratteli–Vershik system and pick somem1 ≥ 1.
There is m > m1 and K + 1 paths of Xj

B̃
∩ C which agree with γ ’s head of length m1

but pairwise disagree on the head of length m. Since infinitely often |Vn| = K , the pigeon
hole principle requires that two of the distinct paths must meet a common vertex of level
m2 > m. Telescoping the levels m1 through m2, the part of these two paths between level
m1 and levelm2 defines a parallel edge. Iterating this procedure (m2 playing the role ofm1

etc.) proves the statement.

The following corollary can be seen as a generalization of Lemma 2.1 to all Toeplitz
shifts with finite Toeplitz rank.

COROLLARY 2.12. Let (XB , ϕω) be a Toeplitz Bratteli–Vershik system with finite Toeplitz
rank. The maximal equicontinuous factor contains uncountably many singular points if
and only if (XB , ϕω) is thick.

Proof. Finite rank implies that all paths in X
B̃

are of finite thickness. Now, part (1)
of Lemma 2.11 gives that we have uncountably many singular points if and only if the
essential thickness is strictly greater than 1. Part (3) of the same lemma gives that if the
essential thickness is k, then there is a double path of thickness k.

Given a choice function ϕ ∈ {0, 1}N0 and a double path γ̄ , let ϕ(γ̄ ) be the (single edge)
path (γn,ϕ(n)). Such a single edge path defines a sequence of maps θ(n)ϕ(γ̄ ), see equation
(2.5). The second part of Lemma 2.11 implies that the essential thickness is an upper
bound for the maximal thickness a double path can have. From the next results, we obtain
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more delicate information: the size of the image |θ(m)ϕ(γ̄ ) · · · θ(n)ϕ(γ̄ )(Vn+1)| of sufficiently
long finite paths is also bounded above by the essential thickness.

In the proof of the next statement, we denote the set of all finite and infinite paths in
B̃ which start at the top vertex v0 by Y

B̃
. Observe that Y

B̃
can naturally be seen as a

compact space, where finite paths are seen as infinite paths which eventually pass through
a placeholder vertex.

LEMMA 2.13. Let (XB , ϕω) be a Toeplitz Bratteli–Vershik system with essential thickness
k. Consider z0, z1 ∈ Z(�n) with z0

n �= z1
n for each n. Then for all but at most countably many

ϕ ∈ {0, 1}N0 , we have

for all m ∈ N there exists n0 > m for all n ≥ n0 : |θ(m)
z
ϕ(m)
m

· · · θ(n)
z
ϕ(n)
n

(Vn+1)| ≤ k.

Proof. We only have to consider the case of finite k as the statement is trivially true
otherwise. Suppose there are uncountably many ϕ such that

there exists m ∈ N for all n0 > m there exists n ≥ n0 : |θ(m)
z
ϕ(m)
m

· · · θ(n)
z
ϕ(n)
n

(Vn+1)| > k.

Then for each such ϕ, there are arbitrarily large n and paths γ ϕ;n ∈ Y
B̃

of length n with
ω(γ

ϕ;n
� ) = z

ϕ(�)
� for � = 0, . . . , n− 1 which traverse a subset of Vm of size bigger than k.

Due to the compactness of Y
B̃

, there must hence be an infinite path γ ϕ (that is, an element
of X

B̃
) with ω(γ ϕ� ) = z

ϕ(�)
� (� ∈ N0) which traverses a subset of Vm of size bigger than

k. It follows that X>k
B̃

is uncountable, contradicting our assumption that k is the essential
thickness.

Note that if a double path γ̄ has thickness k < ∞, then there existsm0 such that also the
opposite inequality is true. More precisely, for uncountably many ϕ ∈ {0, 1}N0 , we have

there exists m for all n ≥ m : |θ(m)ϕ(γ̄ ) · · · θ(n)ϕ(γ̄ )(Vn+1)| ≥ k.

Indeed, the contrary, that is, the assumption that for all but at most countably many ϕ, we
have

for all m there exists n ≥ m : |θ(m)ϕ(γ̄ ) · · · θ(n)ϕ(γ̄ )(Vn+1)| < k,

implies that all but at most countably ϕ(γ̄ ) belong to X<k
B̃

, which is a contradiction.
We immediately obtain the following corollary.

COROLLARY 2.14. Let (XB , ϕω) be a thick Toeplitz Bratteli–Vershik system with essential
thickness k. Possibly, after telescoping, there exists a choice function ϕ such that
|θ(m)ϕ(γ̄ )(Vm+1)| = k for all large enough m.

2.6. Toeplitz systems and non-tameness. In this section, we prove one of our main
results, Theorem 2.17. It applies to all finite rank Toeplitz systems with finite Toeplitz
rank, as stated in Theorem 2.18.

As before, we identify subsets An ⊆ Vn with vertices An ∈ Ṽn. For the convenience
of the reader, we provide a proof of the next statement which is reminiscent of [10,
Theorem 13.1].
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LEMMA 2.15. Consider a Toeplitz Bratteli–Vershik system with characteristic sequence
(�n) and let (An) be some sequence of extendable vertices An ⊆ Vn. Suppose that the set
of singular points of Z(�n) has Haar measure 0.

By telescoping, we can ensure that

lim
n→∞

|{i ∈ [0, �n − 1] : |θ(n)i (An+1)| ≥ 2}|
�n

= 0.

Proof. Observe that the Haar probability measure μ of the set D ⊆ Z�n of singular
points is

μ(D) = lim
n→+∞

1∏n
k=0 �k

|{zn · · · z0 : z ∈ D}| = 0.

Let n ≥ m ∈ N0 and w = wn · · · wm, with 0 ≤ wi ≤ �i − 1. If there is an extendable
An+1 ⊆ Vn+1 such that |θ(m)wm · · · θ(n)wn (An+1)| ≥ 2, then w is a subword of some singular
point z ∈ D, see Lemma 2.9. Hence, given any sequence of extendable vertices An ∈ Ṽn
and any m ≥ 0, we have

lim sup
n→+∞

1∏n
k=m �k

|{wn · · · wm : |θ(m)wm
· · · θ(n)wn (An+1)| ≥ 2}|

≤lim sup
n→+∞

1∏n
k=m �k

|{zn · · · zm : z ∈ D}|≤
m−1∏
k=0

�k·lim sup
n→+∞

1∏n
k=0 �k

|{zn · · · z0 : z ∈ D}| = 0.

Telescoping from level m to n, the statement follows.

Recall that for systems with finite topological rank, Lemma 2.11 tells us that essential
thickness k > 1 is equivalent to the existence of a double path of thickness k. Therefore, the
following technical proposition applies to all finite rank Toeplitz systems with uncountably
many singular points.

PROPOSITION 2.16. Let (XB , ϕω) be a thick Toeplitz Bratteli–Vershik system. Suppose
that the set of singular points has Haar measure 0. Possibly, after telescoping, there exist:
(1) for any n ≥ 1, an arithmetic progression j (n)0 , j (n)1 , j (n)2 ∈ {0, . . . , �n − 1} (that is,

j2 − j1 = j1 − j0), and sets An ⊆ Vn, such that θ(n)
j
(n)
1

and θ(n)
j
(n)
2

restrict to the same

bijection from An+1 to An, while Bn := θ
(n)

j
(n)
0
(Vn+1) is a proper subset of An;

(2) for any n > 1, an in ∈ {0, . . . , �n − 1} such that θ(n)in (Vn+1) is contained in

{a ∈ An : θ(n−1)
j
(n)
1

(a) /∈ Bn−1}.

Proof. Let k > 1 be the essential thickness of the Toeplitz Bratteli–Vershik system and γ̄
be a double path of thickness k. It is a sequence of parallel edges γ̄n = (γn,1, γn,2), that is,

s(γn,1) = s(γn,2) = An ⊆ Vn, r(γn,1) = r(γn,2) = An+1 ⊆ Vn+1

such that, for large enough n, |An| = k, and furthermore, the maps θ(n)ω(γn,1)
and θ(n)ω(γn,2)

each
map An+1 bijectively to An. Note that, by definition, all An+1 are extendable.
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Take the nth parallel edge (γn,1, γn,2) of our double path and set

n(γn,1, γn,2) := ω(γn,2)− ω(γn,1).

Telescoping with the next level n+ 1 will produce four parallel edges. It is crucial to
observe that at least two of these four edges have the same value of n as the two above.
Hence, we can apply Lemma 2.15 to conclude that, possibly after telescoping, there is j
in (ω(γn,1)+nZ) ∩ {0, . . . , �n − 1} such that |θ(n)j (An+1)| < k. We next need to find

such a j where moreover θ(n)j (An+1) ⊆ An.
By Corollary 2.14, we can find for each n large enough, κn ∈ {0, . . . , �n − 1} such

that θ(n)κn (An+1) = An and |θ(n)κn (Vn+1)| = k, and hence θ(n)κn (Vn+1) = An. Define ψ(n)j :

Ṽn+2 → Ṽn−1 through

ψ
(n)
j := θ(n−1)

κn−1
θ
(n)
j θ(n+1)

κn+1

and note that ψ(n)j (An+2)⊆An−1. Moreover, the inclusion is proper if |θ(n)j (An+1)| < k,

while ψ(n)j is a bijection if j = ω(γn,1) or j = ω(γn,2). Thus, we can find j (n)0 , j (n)1 , j (n)2 ∈
(ω(γn,1)+nZ) ∩ {0, . . . , �n − 1} such that j

(n)
2 − j

(n)
1 = j

(n)
1 − j

(n)
0 and Bn−1 =

ψ
(n)

j
(n)
0
(An+2) is a proper subset of An−1, while ψ(n)

j
(n)
1
(An+2) = An−1 and ψ(n)

j
(n)
2
(An+2) =

An−1. We now telescope the three floors together and thus the ψ(n)
j
(n)
0

, ψ(n)
j
(n)
1

, ψ(n)
j
(n)
2

can be

realized as θ(n)
j
(n)
0

, θ(n)
j
(n)
1

and θ(n)
j
(n)
2

.

This shows the first statement except for the fact that we only know that θ(n)
j
(n)
1

and θ(n)
j
(n)
2

restrict to bijections f (n)1 and f (n)2 from An+1 to An, and it remains to show that, possibly
after telescoping, f (n)1 = f

(n)
2 . It is convenient to identify the An+1 with A1. We do this

using the bijection τ (n) := f
(1)
1 · · · f (n)1 . With

In := τ (n−1)f
(n)
2 τ (n)

−1
, (2.6)

our aim is thus to show that, possibly after telescoping, all In are the identity.
Let further f (n)0 : An+1 → An be the restriction of θ(n)

j
(n)
0

to An+1; it is non-surjective

with image Bn. If we telescope level n with level n+ 1, we get nine compositions
f
(n)
i f

(n+1)
j for the three possible values of i and j. Let us take a closer look at two sets

of choices for them.
Consider first the maps f (n)0 f

(n+1)
1 , f (n)1 f

(n+1)
1 , f (n)2 f

(n+1)
1 . These correspond, after

telescoping of the two levels, to the restriction to A(n+1) of maps θ(n)
j
(n)
0

, θ(n)
j
(n)
1

and θ(n)
j
(n)
2

, with

j
(n)
2 − j

(n)
1 = j

(n)
1 − j

(n)
0 , and f (n)1 f

(n+1)
1 , f (n)2 f

(n+1)
1 are bijections while f (n)0 f

(n+1)
1 is

not. It is quickly seen that under this choice, the map In after telescoping coincides with
the map before telescoping. In other words, if we replace f (n)2 with f (n)2 f

(n+1)
1 in equation

(2.6), then

τ (n−1)f
(n)
2 f

(n+1)
1 τ (n+1)−1 = In.
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Now consider the maps f (n)0 f
(n+1)
0 , f (n)1 f

(n+1)
1 , f (n)2 f

(n+1)
2 . Again these correspond,

after telescoping of the two levels, to the restriction to An+1 of maps θ(n)
j
(n)
0

, θ(n)
j
(n)
1

and

θ
(n)

j
(n)
2

, with j
(n)
2 − j

(n)
1 = j

(n)
1 − j

(n)
0 , and f

(n)
1 f

(n+1)
1 , f (n)2 f

(n+1)
2 are bijections while

f
(n)
0 f

(n+1)
0 is not. The telescoping, however, affects the map In. The new map Ĩn becomes

Ĩn = τ (n−1)f
(n)
2 f

(n+1)
2 τ (n+1)−1 = InIn+1.

As A1 is finite, the sequence In admits a constant subsequence g(nk) = g. Telescoping
the levels from nk to nk+1 − 1 in the first way described above, we arrive at a situation
where all In coincide with g. Let N be the order of g. Now, telescoping N consecutive
levels together in the second way above, we arrive at a situation where all In are equal to
the identity. While all this telescoping has an effect on θ(n)

j
(n)
0

, it does not change its crucial

property, namely that it maps An+1 to a proper subset of An, and that j (n)0 , j (n)1 , j (n)2 form
an arithmetic progression.

It remains to show the second property. Since the order ω is proper, we can assume, by
telescoping if necessary, that for each n, |θ(n)0 (Vn+1)| = |θ(n)�n−1(Vn+1)| = 1. Take a ∈ An
such that θ(n−1)

j
(n)
1

(a) /∈ Bn−1. By minimality (and perhaps further telescoping), we find in

such that θ(n)in (Vn+1) = {a}.
THEOREM 2.17. Every thick Toeplitz shift is non-tame.

Proof. Let (XB , ϕω) be a thick Bratteli–Vershik representation of the given Toeplitz shift
which we assume to be conjugate to (X1, σ), see §2.3.3. We will construct an infinite
independence set for two cylinder sets in X1 which we define in the proof.

Observe that if the set of singular points in Z has positive Haar measure, then (XB , ϕω)
is non-tame [19, Theorem 1.2]. We hence assume the set of singular points in Z to have
zero Haar measure so that we can apply Proposition 2.16 in the following.

Let ϕ ∈ {0, 1}N0 be a choice function. We use the notation of the proof of
Proposition 2.16 and let hn be the restriction of θ(n)in toAn+1. Recall that f (n−1)

1 hn(An+1) ⊆
An−1\Bn−1. Set

z = · · · i2n+2j
(2n+1)
ϕn

· · · · · · i2j (1)ϕ0
,

t0 = 0, t1 = (j
(2)
1 − i2)�1 +1, and for n ≥ 2,

tn = tn−1 + (j
(2n)
1 − i2n)

2n−1∏
j=1

�j +2n−1

2n−2∏
j=1

�j .

Choose x ∈ ω−1(z). By equation (2.4), we have x0 ∈ θ(1)
j
(1)
ϕ0

θ
(2)
i2
(A3) = f

(1)
ϕ0 h2(A3). If

ϕ0 = 0, then

f
(1)
0 h2(A3) ⊆ imf (1)0 = B1,
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whereas if ϕ0 = 1, then

f
(1)
1 h2(A3) ⊆ A1\B1.

Furthermore,

z+ t1 = · · · i4j (3)ϕ1
j
(2)
1 j

(1)
ϕ0+1.

Hence, taking into account that f (n)1 = f
(n)
2 , we have

xt1 ∈ θ(1)
j
(1)
ϕ0+1

θ
(2)
j
(2)
1
θ
(3)
j
(3)
ϕ1

θ
(4)
i4
(A5) = f

(1)
1 f

(2)
1 f (3)ϕ1

h4(A5).

Since

f (3)ϕ1
h4(A5) =

{
f
(3)
0 h4(A5) ⊆ B3 if ϕ1 = 0,
f
(3)
1 h4(A5) ⊆ A3\B3 if ϕ1 = 1,

it follows that

xt1 ∈ τ (2)(B3) if ϕ1 = 0,
xt1 ∈ A1\τ (2)(B3) if ϕ1 = 1.

Similarly, we find for all n ≥ 2,

xtn ∈ τ (2n)(B2n+1) if ϕn = 0,
xtn ∈ A1\τ (2n)(B2n+1) if ϕn = 1.

By finiteness of A1, there is a subsequence of B2n+1 such that τ 2n(B2n+1) is constant, say
equal to B. Restricting to choice functions with support in this subsequence, we obtain an
independence sequence for the cylinder set [B] and its complement in [A1].

THEOREM 2.18. Let (X, σ) be a Toeplitz shift of finite Toeplitz rank. Then (X, σ) is
non-tame if and only if its maximal equicontinuous factor has uncountably many singular
points.

Proof. Let (XB , ϕω) be a finite rank Toeplitz Bratteli–Vershik representation of (X, σ). If
the maximal equicontinuous factor of (XB , ϕω) has uncountably many singular fibres then,
by Corollary 2.12, it is thick. By Theorem 2.17, (XB , ϕω) and hence (X, σ) is non-tame.

Conversely, suppose that (X, σ) has countably many singular fibres. By Lemma 2.9,
all fibres are finite. The result follows from [22, Lemma 3.2]—see also Corollary 4.4
below.

Remark 2.19. In fact, the same techniques and a little more care will give us a slightly
stronger version of Theorems 2.17 and 2.18. Namely, the statements also hold true if one
replaces the word non-tame by either forward non-tame or backward non-tame. What one
has to ensure in these situations is that the sequence of times (tn)n≥0 is either always
positive or always negative. The point in the proof where one has to be more careful
is in the statement and proof of Proposition 2.16: in the case of forward tameness, for
example, one would require that i0 < j0 < j1 < j2, so that each tn as defined in the proof
of Theorem 2.17 is strictly positive. To achieve this requires simply further telescoping.
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For non-tame constant length substitution shifts with a coincidence, an independence
set can be explicitly computed, as the following example illustrates.

Example A. (Continued) We illustrate Proposition 2.16 and Theorem 2.17 with our the
substitution in Example A. The graph of Figure 2 has no parallel edges of thickness 2, but
if we telescope two levels together, we get a pair of parallel edges between the vertex {a, b}
above and the vertex {a, b} below. For substitutions, telescoping amounts to taking powers
of the substitution. We therefore need to work (at least) with the second power θ2 of the
substitution:

a

b

c

�→
a

a

a

a

a

a

c

c

c

a

a

a

a

a

a

a

b

a

c

b

c

a

a

a

a

a

a

a

b

b

b

b

b

a

a

a

a

a

a

a

a

a

c

c

c

a

a

a

We see that the restrictions of θ2
5 and θ2

9 to {a, b} are both equal to the identity.
Furthermore, θ2

1 is the projection onto letter a. (In the coloured version, the images of θ2
1,

θ2
5 and θ2

9 are marked blue, and that of θ2
10 is in red.) We may therefore chose θ(1) = θ2,

A2 = {a, b} = A1 and the arithmetic progression j0 = 1, j1 = 5, j2 = 9. Since here the
extended Bratteli diagram is stationary, all θ(n) and An can be taken to be equal. As θ2

10 is
the projection onto the letter b, we may take i1 = 10. Therefore, the independence sequence
from the proof of Theorem 2.17 is given by t0 = 0, and tn = tn−1 − 5 · 162n−1 + 4 · 162n−2

for n ≥ 1.

Example D. As is the case with many properties, tameness is not preserved under strong
orbit equivalence (see [23] for a definition). Take the two substitutions

a �→ aabaa

b �→ abbaa

and

a �→ aaaba

b �→ abbaa.

Then both substitution shifts are conjugate to the stationary Bratteli–Vershik system they
define, see §2.3.4. Furthermore, since the underlying unordered Bratteli diagrams are
identical, these two shifts are strong orbit equivalent. However, by computing the graphs
Gθ , we see that the first has one orbit of singular fibres, whereas the second has uncountably
many. In the language of this section, the second has essential thickness two. Hence, by
Theorem 2.18, the second shift is non-tame. As the first Toeplitz system has one singular
fibre, it is tame by Theorem 2.18.

3. Almost automorphy and semicocycle extensions
Any almost automorphic system can be realized as a semicocycle extension of its
maximal equicontinuous factor. Conversely, semicocycle extensions are a useful tool to
construct almost automorphic systems. Below we will use this tool to construct interesting
examples of Toeplitz shifts which underline the necessity of the conditions formulated in
Theorem 2.18.
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In this section, we recall the relevant details from the literature, essentially following
the discussion in [22, §2] where actions of general discrete groups are considered; the
interested reader may also consult [10, 11]. Here, we simplify and restrict to Z-actions. We
mention that for the main purposes of this article, where we are concerned with almost
automorphic symbolic extensions, the concept of separating covers, as used in [36, 38],
could also be employed. Nevertheless, we believe that the semicocycle approach is not
only more flexible but also more transparent.

Recall that Z is a compact metrizable monothetic group with topological generator g
so that (Z , +g) is a minimal rotation. Given ẑ ∈ Z and a compact metrizable space K, we
call a map f : ẑ+ Zg → K a (K-valued) semicocycle over the pointed dynamical system
(Z , +g, ẑ) if it is continuous in the subspace topology on ẑ+ Zg ⊆ Z .

Given a semicocycle f : ẑ+ Zg → K , we consider the closure of its graph,

F := {(z, k) ∈ Z ×K : z ∈ ẑ+ Zg, k = f (z)} ⊆ Z ×K .

We use the letter F also to denote the map

F : Z → 2K , F(z) = {k ∈ K : (z, k) ∈ F } (3.1)

which we refer to as the section function. Here, 2K denotes the set of subsets of K equipped
with the topology induced by the Hausdorff metric. Since (Z , +g) is minimal and K is
compact, F(z) is non-empty for every z ∈ Z .

As we do not assume that f is uniformly continuous, its graph closure F is not
necessarily the graph of a function, that is, F(z) may contain more than one point. In
this case, we call a point z ∈ Z a discontinuity point of f. We collect the discontinuities of
f in the set

Df = {z ∈ Z : |F(z)| > 1} ⊆ Z .

By definition, we have (ẑ+ Zg) ∩Df = ∅ and f admits a continuous extension to the
complement of Df , which we also denote by f,

f : Z \Df → K , f (z) = kz,

where kz is the unique point in F(z). Note that if we take any other point ẑ ∈ Z whose
orbit does not contain a discontinuity point and define f ′ : ẑ+ Zg → K with the above
extension through f ′(ẑ+ ng) = f (ẑ+ ng), then we get the same graph closure F and
the same set of discontinuities, Df ′ = Df .

LEMMA 3.1. Let f be a K-valued semicocycle for a minimal rotation (Z , +g) and let
F be the associated section function as in equation (3.1). Then F is continuous on Dcf .
In particular, given w ∈ Dcf , for any neighbourhood W ⊆ K of f (w), there exists a
neighbourhood U ⊆ Z of 0 such that for all z′ ∈ U + w, we have F(z′) ⊆ W .

Proof. Choose a compatible metric d on K and denote by dH the associated Hausdorff
metric on 2K . Let w ∈ Dc

f so that w is a point of continuity of f, that is, F(w) = {f (w)}.
Then for any ε > 0, there is a neighbourhood U ⊆ Z of 0 such that for all z′ ∈ (U +
w) ∩Dcf , we have d(f (z′), f (w)) ≤ ε. This implies dH (F (z′), F(w)) ≤ ε first for all
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z′ ∈ (U + w) ∩Dcf , but then also for all z′ ∈ U + w, as F(z′) ⊆ ⋃
z̃∈(U+w)∩Dcf F (z̃) by

definition of F as the graph closure. The statement follows.

Recall that our shifts can be defined over a compact and not necessarily finite set;
see §1.1.

Definition 3.2. Let f be a K-valued semicocycle over (Z , +g, ẑ), and let Xf be the
shift-orbit closure of the sequence f̂ = (f̂n) ∈ KZ,

f̂n := f (ẑ+ ng).

We call (Xf , σ) the shift associated to f.

Any element of Xf is hence a limit of a sequence of translates of f̂ . Put differently, for
each x ∈ Xf , there is (nk) ∈ Z

N such that for everym ∈ Z, we have xm = limk→∞ f (ẑ+
(nk +m)g). The group Z acts on Z ×K by left translation in its first factor. We say that
a semicocycle f over (Z , +g, ẑ) is separating (note the slight terminological deviation
from [10, 11, 22] where the phrase invariant under no rotation is used instead of the term
separating (which we take from [36, 38])) if the stabiliser in Z of its graph F is trivial,
that is, if z ∈ Z satisfies F(z+ y) = F(y) for all y, then z = 0.

THEOREM 3.3. [11, Theorem 5.2] The shift associated to a separating semicocycle over
(Z , +g, ẑ) is an almost automorphic extension of (Z , +g). The equicontinuous factor map
π : (Xf , σ) → (Z , +g) satisfies

xn ∈ F(π(x)+ ng) for each (xn)n∈Z ∈ Xf and n ∈ Z.

Accordingly, we call (Xf , σ) a semicocycle extension of (Z , +g) defined by f. Recall
that the set of singular points in Z of the semicocycle extension is the set of z ∈ Z such
that |π−1(z)| > 1. As any two distinct sequences must differ on at least one index, we
see that π−1(z) contains more than one point if and only if a translate of z is a discontinuity
point for the semicocycle. The singular points of the semicocycle extension are therefore
given by Df + Zg.

The following theorem says that any almost automorphic system is conjugate to a shift
over a compact alphabet, notably, one obtained by a semicocycle.

THEOREM 3.4. (Cf. [10, Theorem 6.4], [11, Theorem 5.2], [22, Theorem 2.5]) Consider
a topological dynamical system (X, T ). The following statements are equivalent.

(i) (X, T ) is almost automorphic.
(ii) The maximal equicontinuous factor of (X, T ) is a minimal rotation and (X, T ) is

conjugate to a semicocycle extension of this minimal rotation.
(iii) (X, T ) is conjugate to an almost automorphic shift.

From the above, the implications (ii) ⇒ (iii) ⇒ (i) are clear. Let us briefly comment on
(i) ⇒ (ii) by describing how to obtain a realization of (X, T ) as a semicocycle extension.
The maximal equicontinuous factor of a minimal Z-action is a minimal rotation which we
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denote here as (Z , +g). Given a regular point ẑ ∈ Z with its unique pre-image x̂ under π ,
the function f : ẑ+ Zg → X,

f (ẑ+ ng) := T n(x̂)

is continuous, hence a semicocyle over (Z , +g, ẑ). The conjugacy between (X, T ) and
(Xf , σ) comes about as any element x ∈ X defines a sequence in (sn) ∈ XZ through sn =
T n(x) and the sequence f̂ defined by f is the image of x̂ under this map.

The set of discontinuity pointsDf coincides with the set of singular points of Z . As the
set of discontinuity points must be contained in the set of singular points, and here they
coincide, we call the above semicocycle maximal.

If we are given an almost automorphic shift, then we may realize it as a semicocycle
extension also in a different way.

Definition 3.5. Let (X, σ) ⊆ (KZ, σ) be an almost automorphic shift with maximal
equicontinuous factor map π : (X, σ) → (Z , +g). We call

D = {z ∈ Z : there exists x, y ∈ π−1(z) with x0 �= y0}
the set of discontinuity points of the shift and the continuous map f can : Z \D → K ,

f can(z) = x0, x ∈ π−1(z)

the canonical semicocycle of the shift.

Indeed, if we choose a regular point ẑ ∈ Z with its unique pre-image x̂ under π , we see
that f can is the continuous extension of ẑ+ ng → x̂n to Z \D and hence a semicocycle
over (Z , +g, ẑ). Thus, D is the set of discontinuity points of the canonical semicocycle.

The evaluation map ev0 : X → K , ev0(x) = x0, relates f can to the maximal semic-
ocycle f through ev0 ◦ f (ẑ+ ng) = x̂n. The pointwise extension of ev0 to XZ → KZ

restricts to a conjugacy between Xf ⊆ XZ and X ⊆ KZ. As ev0 is continuous, the set of
discontinuity points D of the shift is contained in Df , but it is often substantially smaller.
In fact, the set D is associated to the concrete realization of the shift and is not invariant
under conjugacy, as can be seen in the following example.

Example E. Let Z = S1 = R/2πZ, the circle, and g ∈ S1 be an irrational angle (incom-
mensurate with 2π ). The dynamical system (S1, +g) is a minimal rotation. Let α ∈ Zg,
α �= 0, and β ∈ S1\Zg. The characteristic function χ[0,α) on the half-open interval [0, α) is
continuous on the Z-orbit of β and thus f = χ[0,α) defines a semicocycle over (S1, +g, β)
which can easily be seen to be separating. Clearly, f is discontinuous at exactly two
points, namely Df = {0, α}. Indeed, the sections F(0) and F(α) contain two points,
{0, 1}, whereas all other sections contain only one point. In particular, different choices for
α ∈ Zg\{0} lead to different semicocycle extensions, that is, different symbolic dynamical
systems which, in particular, have different sets of discontinuities D = {0, α}. Note,
however, that all these semicocycle extensions are topologically conjugate dynamical
systems, as one can see using their description as rotations on the Cantor set obtained
by disconnecting the circle S1 along the Z-orbit of g [18].
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We mention as an aside that the above semicocycle occurs frequently in the description
of the physics of quasicrystalline condensed matter. In particular, the function V (n) =
χ[0,α)(β + ng) serves as the potential in the so-called Kohmoto model which describes
the motion of a particle in a one-dimensional quasicrystal which can be obtained from the
above data β and α by means of the cut and project method [35].

In the context of constant length substitutions, we have the following description of the
discontinuity points.

LEMMA 3.6. Let θ be a primitive aperiodic substitution of constant length which has a
coincidence and trivial height. The set of discontinuities D of (Xθ , σ) coincides with the
set 	̂θ from §2.2.

Proof. Here, Dc is the set of points z ∈ Z� for which all points in the fibre π−1(z) have
the same entry at the 0th index. This happens if and only if one block of z entries, say
zn · · · zk , is such that |θzk · · · θzn(A)| = 1. The result follows.

The corresponding result for more general Toeplitz shifts reads as follows. We leave
its simple proof to the reader. Here we again assume that the given Toeplitz shift is
conjugate, via p1 as in equation (2.3), to the top level shift (X1, σ) of the Bratteli–Vershik
representation.

PROPOSITION 3.7. Consider a Toeplitz shift with maximal equicontinuous factor
(Z�n , +1) and Toeplitz Bratteli–Vershik representation (XB , ϕω). Then z ∈ Z�n is a
discontinuity point if and only if z = ω(γ ) for some path γ = (γn) of the extended Bratteli
diagram for which r(γn) has at least 2 elements, for all n ≥ 0.

4. Criteria for tameness of almost automorphic shifts
In this part, we derive some general criteria for tameness and non-tameness of minimal
dynamical systems. Recall that due to [25, 30], every tame minimal system is necessarily
almost automorphic. Accordingly, we restrict to the study of almost automorphic shifts
(X, σ) ⊆ (KZ, σ) (or (KN, σ)) in this section, see also Theorem 3.3. We denote their
maximal equicontinuous factors throughout by (Z , +g) and the corresponding factor map
by π .

To study tameness of the shift (X, σ), we need to establish some terminology. Recall
from Proposition 1.5 that non-tameness manifests itself through the existence of a pair
Va , Vb of (non-empty) disjoint compact subsets of K, together with an independence
sequence (tn) for Va , Vb, that is, a sequence (tn)n∈N in Z (or N if we regard forward
tameness) such that for any choice function ϕ ∈ {a, b}N, we can find xϕ ∈ X with xϕtn ∈
Vϕ(n) for all n ∈ N. Given a choice function ϕ, a sequence (tn) and a pair Va , Vb ⊆ K ,
we say that xϕ realizes ϕ along (tn) for Va , Vb if xϕtn ∈ Vϕ(n) for all n ∈ N. Given a pair
Va , Vb ⊆ K and a sequence (tn)n∈N with tng → z, we denote, for E ⊆ Z ,

	
Va ,Vb
(tn)

(E)={ϕ ∈{a, b}N : there exists xϕ ∈ X for all n ∈ N : xϕtn∈Vϕ(n), π(xϕ)∈E − z},

https://doi.org/10.1017/etds.2023.58 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.58


28 G. Fuhrmann et al

the set of all choice functions which are realized along (tn) by points xϕ ∈ X for which
π(xϕ) ∈ E − z. With this notation, (tn)n∈N is an independence sequence for the pair
(Va , Vb) if 	Va ,Vb

(tn)
(Z) = {a, b}N. To simplify the notation, we also write 	(tn)(E) for

	
Va ,Vb
(tn)

(E) if the dependence on the pair (Va , Vb) is either clear from the context or one
can take any pair of disjoint compact subsets of K. For instance, if we have a binary shift,
that is, K = {a, b}, we only need to consider Va = {a} and Vb = {b}, cf. Remark 1.6.

In the next set of results, D denotes the set of discontinuities as defined in Definition
(3.5). We begin with a proposition which is implicit in the proof of [22, Lemma 3.2].

PROPOSITION 4.1. Let (X, σ) ⊆ (KZ, σ) be an almost automorphic shift and let
Va , Vb ⊆ K be closed non-empty disjoint subsets. Let (tn)n∈N be a sequence in Z with
tng → z. The set of choice functions which are realized by points x ∈ X along (tn) with
π(x) /∈ D − z is at most countable, that is, 	Va ,Vb

(tn)
(Dc) is at most countable.

Proof. Let f be the canonical semicocycle and let F be its associated section function.
Suppose x realizes the choice function ϕ. All limit points of (σ tn(x)) belong to the fibre
of π(x)+ z which we assume to be a point of continuity of f. Since Va ∩ Vb = ∅, there
exists i ∈ {a, b} such that f (π(x)+ z) ∈ V ci . As V ci is open, we can apply Lemma 3.1
to W = V ci to guarantee that there exists a neighbourhood U ⊆ Z of 0 such that F(w +
π(x)+ z) ⊆ V ci for all w ∈ U . Therefore, if n is large enough such that tng − z ∈ U , we
have xtn = (σ tn(x))0 ∈ F(π(x)+ tn) ⊆ V ci . Hence, for all large n, xtn �∈ Vi . This means
that for all large n, ϕ(n) is constant. The set of eventually constant choice functions is
countable.

As a matter of fact, we can improve Proposition 4.1. To that end, we first observe the
following lemma.

LEMMA 4.2. Let (X, σ) ⊆ (KZ, σ) be an almost automorphic shift and let Va , Vb ⊆ K

be closed non-empty disjoint subsets. Let (tn)n∈N be a sequence in Z with tng → z. Let
w ∈ Z . If {tng + w : n ∈ N} ∩D is finite, then 	Va ,Vb

(tn)
({z+ w}) is finite.

Proof. By definition, 	Va ,Vb
(tn)

({z+ w}) is the set of choice functions which are realized
along (tn) by points in the fibre π−1(w). If tng + w ∈ Dc, then all points in π−1(w) have
the same value at tn. Since only finitely many w + tng are discontinuity points, we can
thus realize only finitely many choices through points of π−1(w).

Recall that the derived set of a subset of a metrizable space is the set of all its
accumulation points. We have the following strengthening of Proposition 4.1 which is
particularly useful when D′ is just a singleton, see §6.

PROPOSITION 4.3. Let (X, σ) ⊆ (KZ, σ) be an almost automorphic shift and let
Va , Vb ⊆ K be closed non-empty disjoint subsets. Let (tn)n∈N ⊆ Z be a sequence with
tng → z and let D′ denote the derived set of D. Then 	Va ,Vb

(tn)
(D′c) is at most countable.

Proof. The answer to the question of whether 	Va ,Vb
(tn)

(D′c) is at most countable or not
does not change if we discard multiple occurrences of elements of (tn)n∈N. By possibly
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going over to a subsequence, we may therefore assume without loss of generality that
the elements of (tn)n∈N are pairwise distinct. Let w ∈ Z be such that z+ w ∈ D \D′, so
that z+ w is an isolated point of D. Hence, tng + w /∈ D for sufficiently large n, that is,
{tng + w : n ∈ N} ∩D is finite. Moreover, since X is compact, the set D \D′ is at most
countable. By Lemma 4.2, 	Va ,Vb

(tn)
(D \D′) is at most countable. The result follows with

Proposition 4.1.

In a similar way, we obtain the following useful criterion for forward tameness. For
tameness of the full Z-action, it has to be tested for the forward and the backward motion.

COROLLARY 4.4. [22, Lemma 3.2] Let (X, σ) be an almost automorphic shift with
maximal equicontinuous factor (Z , +g). Suppose that the set discontinuity points D ⊆ Z
is countable. If z+ Ng ∩D is finite for each z ∈ Z , then (X, σ) is forward tame.

PROPOSITION 4.5. Let (X, σ)⊆ (KZ, σ) be an almost automorphic shift and Va ,Vb ⊆K
be closed non-empty disjoint subsets. Let (tn)n∈N be a sequence in Z with tng → z. Given

E ⊆ Z , we have 	Va ,Vb
(tn)

(E) ⊆ 	
Va ,Vb
(tn)

(E).

Proof. Let ϕ ∈ {a, b}N be the limit of the sequence (ϕ(m))m ⊆ 	
Va ,Vb
(tn)

(E). For each m,
choose x(m) ∈ E − zwhich realizes ϕ(m). Let x be a limit of some subsequence of (x(m))m.
We claim that x realizes ϕ. Indeed, given n, there exists mn such that ϕ(m)(n) = ϕ(n)

for m ≥ mn and hence x(m)tn
∈ Vϕ(n) for m ≥ mn. Since the convergence of x(m) to x is

pointwise and Va and Vb are compact, this implies that xtn ∈ Vϕ(n) for each n ∈ N.

The above results lead to the following necessary condition for non-tameness.

COROLLARY 4.6. Let (X, σ) ⊆ (KZ, σ) be an almost automorphic shift and Va , Vb ⊆ K

be closed non-empty disjoint subsets. If (tn)n∈N is an independence sequence for (Va , Vb)
with tng → z, then 	Va ,Vb

(tn)
(D) = 	

Va ,Vb
(tn)

(D′) = {a, b}N.

Proof. As (tn)n is an independence sequence, its elements are pairwise distinct and so we
may apply Propositions 4.1 and 4.3 to see that	(tn)(D) and	(tn)(D

′) are dense in {a, b}N.
Since D and D′ are closed, the result follows from Proposition 4.5.

LEMMA 4.7. Let (X, σ) ⊆ (KZ, σ) be an almost automorphic shift and Va , Vb ⊆ K be
closed non-empty disjoint subsets. Let Ṽa , Ṽb be closed disjoint subsets of K such that
Vi ⊆ intṼi . Let (tn)n∈N ⊆ Z be such that tng → z. Let E ⊆ Z be compact with (E − z+
tng) ⊆ Dc for all n. Then there is a sequence (τn)n∈N ⊆ Z with τng → 0 and	Ṽa ,Ṽb

(τn)
(E) ⊇

	
Va ,Vb
(tn)

(E). Moreover, (τn)n∈N can be chosen strictly negative and it can also be chosen
strictly positive.

Proof. Let f : Dc → K be the canonical semicocycle and F : Z → 2K its associated
section function. We apply Lemma 3.1 to intṼi to obtain that, given w ∈ Dc such that
f (w) ∈ intṼi , there exists a neighbourhood U of 0 ∈ Z such that for all z′ ∈ U + w, we
have F(z′) ⊆ intṼi . LetA ⊆ Dc be a compact subset. As f is continuous onDc, alsoAi :=
f−1(Vi) ∩ A is compact for i = a, b. This implies that we can choose the neighbourhood
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U of 0 ∈ Z uniformly for all w ∈ A so that, for all z′ ∈ U + Ai and i = a, b, we have
F(z′) ⊆ intṼi .

Applying the above to A = E − z+ tng, with n ∈ N, we conclude that there exists a
neighbourhood Un of 0 ∈ Z such that

F(z′) ⊆ Ṽi for all z′ ∈ Un + ((E − z+ tng) ∩ f−1(Vi)). (4.1)

As the dynamics on Z is forward minimal, there exist t ′n ∈ Z
+ such that t ′ng ∈ −Un + z.

Define τn = tn − t ′n. Without loss of generality, we may assume that lim supn Un = {0} so
that t ′ng → z. Hence, τng tends to 0 ∈ Z as n → +∞.

Let ϕ ∈ 	Va ,Vb
(tn)

(E). There is x ∈ π−1(E − z) realising ϕ along (tn). Letw = π(x)+ z.
As f (w − z+ tng) = xtn ∈ Vϕ(n), we have

F(z′) ⊆ Ṽϕ(n) for all z′ ∈ Un + w − z+ tng (4.2)

with Un as in equation (4.1).
Let y ∈ π−1(w). Then yτn = (σ τn(y))0 ∈ F(w + τng). We have

w + τng = w − t ′ng + tng ∈ Un + w − z+ tng

which implies—by equation (4.2)—that yτn ∈ F(w + τng) ⊆ Ṽϕ(n). We thus have shown
that for all n, yτn ∈ Ṽϕ(n). This means that ϕ is realized by y along (τn) for Ṽa , Ṽb, or, in

other words, ϕ ∈ 	Ṽa ,Ṽb
(τn)

(E).
For the last part, note that we can choose t ′n to rise fast enough such that tn − t ′n →

−∞. Or we can use backward minimality and choose t ′n ∈ Z
− to fall fast enough so that

tn − t ′n → +∞.

For later reference, we apply the above results to binary shifts, that is, K = {a, b}. Note
that in this case, we are bound to choose Va = Ṽa = {a} and Vb = Ṽb = {b} in Lemma 4.7.

THEOREM 4.8. Let (X, σ) ⊆ ({a, b}Z, σ) be a non-tame almost automorphic shift with
maximal equicontinuous factor (Z , +g).
(1) There is an independence set (tn) for the pair {a}, {b} with tng → z such that all

choice functions are realized along (tn) by elements of D′ − z.
(2) If for each z ∈ Z , there are only finitely many t ∈ Z such that (D − z+ tg) ∩D �= ∅,

then there exists an independence set (tn) with tng → 0 such that all choice functions
are realized along (tn) by elements of D. Moreover, (tn) can be chosen strictly
negative and it can also be chosen strictly positive.

Proof. The first statement is Proposition 4.3 applied to the only possible pair of non-empty
disjoint subsets of {a, b}. As for the second, let (tn) ⊆ N be an independence set such
that tng → z. By Corollary 4.6, all choice functions are realized along (tn) by points of
π−1(D − z). Taking a subsequence of (tn) ⊆ N, we can suppose that (D − z+ tng) ∩
D �= ∅ for all n. As K is finite, all its subsets are clopen and so we may apply Lemma 4.7
to find an independence set (τn) with τng → 0 such that all choice functions are realized
along (τn) by elements of D. We may choose (τn) strictly negative or strictly positive.
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5. A tame Toeplitz shift with uncountably many singular fibres
In this section, we construct an almost automorphic tame extension of the odometer
Z := Z(4n) by means of a semicocycle whose discontinuity set D is uncountable. Note
that Theorem 2.18 implies that the Toeplitz shift we construct here does not have finite
Toeplitz rank.

5.1. Set of discontinuities D and its properties. Given z ∈ Z = Z(4n), we denote by
headi (z) = zi · · · z1 the head of length i. We use the common head length function

L(z, z′) := sup{i ∈ N : headi (z) = headi (z′)}
and further set L(z, A) = sup{L(z, z′) : z′ ∈ A} for A ⊆ Z . Recall that the topology
of Z(4n) has a base of clopen sets Uw labelled by finite words w = wk · · · w1, wi ∈
{0, . . . , 4i − 1}, where

Uw = {z ∈ Z(4n) : headk(z) = w}.
In the following, integers t ∈ Z are identified with their natural representation in Z and we
write zn(t) for the nth entry in that representation.

We recursively define a chain of subsets Di of Z . The subset Di will contain mi := 2i

elements which are all of the form z = · · · z2z1 with zi = 3ki a power of 3. We write ·̄ to
indicate infinite repetition to the left.

(0) D0 = {30}.
(0̃) D̃0 = {3130}.
(1) D1 = D0 ∪ D̃0 = {30, 3130}.
(i+1) Suppose that we have constructed Di and ordered its elements (in some

fashion)

Di = {d(i,0), . . . , d(i,mi−1)}.
For each l ∈ {0, . . . , mi − 1}, we define d̃(i,l) ∈D̃i to be

d̃(i,l) = 3mi+l headmi+ld(i,l)

and Di+1 := Di ∪ D̃i .
We may order Di+1 in a way where we first take the elements of Di and then those

of D̃i . For example, this gives

D2 ={30, 3130, 323030, 33313130}
and

D3 ={30, 3130, 323030, 33313130}
∪ {3430303030, 353131313130, 36323232323030, 3733333333313130}.

Define

D =
⋃
i∈N

Di .
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We denote by Headm := {headm(z) : z ∈ D}, the heads of length m of elements of D
and by q : Headm+1 → Headm the obvious surjective map given by shortening the head
by one element. A word w ∈ Headm is (left) special if it does not have a unique preimage
under q.

PROPOSITION 5.1. The set D satisfies the following properties.
P1 Let z, z′ ∈ D. If zn = z′n, then headn(z) = headn(z′).
P2 Any Z-orbit in Z(4n) hits D at most once. Moreover, no d ∈ D satisfies dn = 0 or

dn = 4n − 1 for any n.
P3 For each m, there is a unique special word wm ∈ Headm.
P4 D is uncountable.

Proof. Property P1 is established by direct inspection of the sets Di .
As for the first part of property P2, note that distinct elements of D cannot be tail

equivalent, due to property P1. The second part is immediate.
To see property P3, notice that Headm has exactly m elements, namely Head2i+l consists

of the first 2i + l elements of Di+1, l = 0, . . . , 2i − 1. Hence, q is 1-1 on all but one
element.

Finally, property P4 follows since no point of Di remains isolated (in D) so that D is a
non-empty compact set without isolated points. Such a set is uncountable.

LEMMA 5.2. For all z ∈ Z \ Z, there is at most one d ∈ D and one t ∈ Z such that
d + t + z ∈ D. In particular, for all z ∈ Z , there is at most one t ∈ Z such that
(D + z+ t) ∩D �= ∅.

Proof. Let z ∈ Z \ Z. Suppose first that the condition d + t + z ∈ D and d + t ′ + z ∈ D
can be satisfied by one d ∈ D but perhaps two distinct t , t ′. Then the orbit of d + t + z

intersects D twice which contradicts property P2.
Now suppose there are distinct d and d ′ in D and t , t ′ ∈ Z with both d + t + z and

d ′ + t ′ + z ∈ D. Any d ∈ D is a sequence of powers of 3, d = (3pn)n∈N with pn ≤ n− 1
and hence

dn ≤ 3n−1 for each n ∈ N and all d ∈ D. (5.1)

We write

d = (3pn)n∈N, d ′ = (3p
′
n)n∈N, d + t + z = (3qn), d ′ + t ′ + z = (3q

′
n) .

Suppose first that t , t ′ ≥ 0. Then there is M such that for all n ≥ M , we have zn−1(t) =
zn−1(t

′) = 0 (recall that zn(t) is the nth entry of t understood as an element of Z). Let cn
and c′n be the carry over from the n− 1th to the nth coordinate in the addition of d, t, z
and the addition of d ′, t ′, z′, respectively. We claim that cn = c′n if n ≥ M . Suppose for a
contradiction that cn = 1 while c′n = 0. Then cn = 1 means that dn−1 + zn−1(t)+ zn−1 +
cn−1 ≥ 4n−1, while c′n = 0 means that d ′

n−1 + zn−1(t
′)+ zn−1 + c′n−1 = 3q

′
n−1 . The first

inequality together with equation (5.1) implies zn−1 ≥ 4n−1 − 3n−2 − 1. We thus get

3q
′
n−1 = d ′

n−1 + zn−1(t
′)+ zn−1 + c′n−1 ≥ d ′

n−1 + 4n−1 − 3n−2 − 1 > 3n−2,
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which contradicts the assumption that (3q
′
n) ∈ D because of equation (5.1). It follows that,

indeed, cn = c′n if n ≥ M .
Since z �∈ Z, we have d �= d + t + z for all t ∈ Z. As also d �= d ′, property P1 implies

that there is M ′ such that pn �= qn and pn �= p′
n for all n ≥ M ′. Choose n larger than M

and M ′. As zn(t) = zn(t
′) = 0, we get 3qn = dn + zn + cn = 3pn + zn + cn and likewise

3q
′
n = 3p

′
n + zn + c′n. Using cn = c′n, this gives

3pn + 3q
′
n = 3p

′
n + 3qn ,

which contradicts the assumption that pn /∈ {qn, p′
n}. Hence, the first statement follows

for t , t ′ ≥ 0. Now if s = min{t , t ′} < 0, we replace z in the above argument by z− s to
conclude.

To prove the second statement, suppose that (D + z+ t) ∩D �= ∅. This means that
there exists d ∈ D such that d + z+ t ∈ D. If z ∈ Z, then property P2 implies t = −z.
Otherwise, d and t are uniquely determined by z according to the first statement. In
particular, (D + z+ t ′) ∩D �= ∅ implies t ′ = t .

5.2. The semicocycle and its extension. We next turn to the construction and discussion
of the desired semicocycle extension. Define f : Z \D → {a, b} by

f (z) =
{
a if L(z, D) is odd,

b otherwise.
(5.2)

In other words, f (z) = a if the largest possible head-overlap an element d ∈ D can have
with z has odd length.

LEMMA 5.3. The function f is continuous. Accordingly, given a point z ∈ Z with z+ Z ∩
D = ∅, we have that f is a semicocycle over (Z , +1, z).

Furthermore, the set of discontinuities of this semicocycle coincides with D so that f is
separating.

Proof. Given w ∈ Z , the function z �→ L(z, w) is continuous on Z \ {w} and cannot be
continuously extended to all of Z . This gives that f is continuous and likewise that D is the
set of discontinuities of the respective semicocycle over (Z , +1, z) for any appropriate z.

To prove that f is separating, let d , d ′ ∈ D and assume that D + z = D with z /∈ Z.
Then d + z ∈ D and d ′ + z ∈ D, which by Lemma 5.2, implies d = d ′. However, D is not
a singleton, which is a contradiction. By the same lemma, (D + t) ∩D �= ∅ with t ∈ Z

implies t = 0. Hence, the stabiliser in Z(4n) of D is trivial.

As discussed in §3, we hence obtain a semicocycle extension (Xf , σ) of (Z , +1).

5.3. Absence of independence. By Remark 1.6, (Xf , σ) is forward tame if the cylinder
sets [a], [b] do not have an infinite independence set in N. This is what we now show.

As before, given t ∈ N, we let . . . z2(t)z1(t) denote its representation in Z . Define

m(t) = min{n ∈ N : zn(t) �= 0},
M(t) = min{n ∈ N : zm(t) = 0 for all m ≥ n}.
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LEMMA 5.4. Let t ∈ N and z ∈ D. For all z′ ∈ D, we have headM(t)+1(z+ t) �=
headM(t)+1(z

′). In particular, L(z+ t , D) ≤ M(t).

Proof. When adding t to z, denote by cl the carry over from the l − 1st entry to the
lth entry. These carry overs are determined successively, starting with l = 2. However,
whatever the carry over cM(t) is, as zM(t)(t) = 0 and zM(t) < 4M(t) − 1, the carry over
cM(t)+1 must be 0. Hence, zl = (z+ t)l for all l ≥ M(t)+ 1.

Suppose for a contradiction that headM(t)+1(z+ t) = headM(t)+1(z
′) for some z′ ∈ D.

Then, by the above, zM(t)+1 = (z+ t)M(t)+1 = z′M(t)+1. As z, z′ ∈ D, this implies that
headM(t)+1(z) = headM(t)+1(z

′) (property P1). Hence, headM(t)+1(z) = headM(t)+1

(z+ t) so that zl = (z+ t)l for all l ≤ M(t)+ 1. This implies z+ t = z, which is a
contradiction as t > 0.

COROLLARY 5.5. Let t ∈ N and z, z′ ∈ D. If headM(t)(z) = headM(t)(z′), then
L(z+ t , D) = L(z′ + t , D).

Proof. Suppose first that L(z+ t , D) < M(t). Then for all z′′ ∈ D, there is n < M(t)

with z′′n �= (z+ t)n. As headM(t)(z+ t) = headM(t)(z′ + t), this implies L(z+ t , z′′) =
L(z′ + t , z′′) and thus L(z+ t , D) = L(z′ + t , D). Likewise, L(z′ + t , D) < M(t)

implies L(z+ t , D) = L(z′ + t , D). By Lemma 5.4, the only other possibility is
L(z+ t , D) = L(z′ + t , D) = M(t).

PROPOSITION 5.6. Suppose 0 < t1 < t2 and M(t1) < m(t2). Then there exists a choice
function ϕ : {1, 2} → {a, b} which cannot be realized along t1, t2 by elements x ∈ Xf with
π(x) ∈ D, that is, there is no x ∈ π−1(D) with xti ∈ [ϕ(i)] for i = 1, 2, where π denotes
the factor map onto (Z , +1).

Proof. We assume that m(t2) is even; the other case has a similar proof.
Let z ∈ D and suppose that w := headm(t2)−1(z) is not the special element of

Headm(t2)−1. Let z′ ∈ D. If L(z, z′) < m(t2)− 1, then also L(z+ t2, z′) < m(t2)− 1 (as
headm(t2)−1(z) = headm(t2)−1(z+ t2)). However, if L(z, z′) ≥ m(t2)− 1, then we must
even have L(z, z′) ≥ m(t2). Indeed, as w is not special, headm(t2)−1(z) = headm(t2)−1(z

′)
implies headm(t2)(z) = headm(t2)(z

′). Now L(z, z′) ≥ m(t2) implies that z′m(t2) �=
(z+ t2)m(t2) and henceL(z+ t2, z′) ≤ m(t2)− 1. Hence, the largest possible head-overlap
an element of D can have with z+ t2 is m(t2)− 1. However, this overlap can be obtained
by using z′ = z, as L(z, z+ t2) = m(t2)− 1. Since m(t2)− 1 is an odd number, we have
f (z+ t2) = a (observe that f (z+ t2) is well defined as z+ t2 /∈ D due to property P2).
Therefore, f (z+ t2) = b implies that headm(t2)−1(z) = wm(t2)−1, the special element of
Headm(t2)−1.

Let z, z′ ∈ D. Suppose that f (z+ t2) = f (z′ + t2) = b. We just saw that this implies
that the heads of lengthm(t2)− 1 of z and z′ are both equal to the special elementwm(t2)−1

so that, in particular, headm(t2)−1(z) = headm(t2)−1(z
′). As M(t1) < m(t2), this implies

headM(t1)(z) = headM(t1)(z
′) and hence, by Corollary 5.5, f (z+ t1) = f (z′ + t1). This

means that we have no choice for the first element. One of the two choice functions
ϕ(1) = a, ϕ(2) = b or ϕ′(1) = b, ϕ′(2) = b cannot be realized along t1, t2 by elements of
π−1(D).
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THEOREM 5.7. (Xf , σ) is tame.

Proof. Suppose that (Xf , σ) is non-tame. Lemma 5.2 guarantees that the assumptions of
the second part of Theorem 4.8 are satisfied so that we can then find an independence
set (τn) ⊆ N such that τn → 0 in Z and every choice function is realized along (τn) by
elements of D. As τn → 0, we have m(τn) → +∞. Hence, we can find two elements
t1 = τn1 and t2 = τn2 which satisfyM(t1) < m(t2). Proposition 5.6 says that not all choice
functions for (t1, t2) can be realized by elements of D. This contradicts the fact that all
choice functions can be realized along (τn) by elements of D. Hence, (Xf , σ) is tame.

6. Toeplitz shifts with a unique singular orbit
In this section, we study a class of Toeplitz shifts which have a single orbit of singular
fibres. While the set of singular points in the maximal equicontinuous factor is thus
countable, the singular fibres themselves will be uncountable and this will give rise to the
possibility that the shift is non-tame. In fact, this was already observed in [22]. However,
by refining the construction from [22], we will show that an uncountable singular fibre
does not ensure non-tameness, just as uncountably many singular orbits do not ensure
non-tameness, as we saw in Theorem 5.7. Further, we will see that minimal non-tame
systems can still be forward (or likewise backward) tame.

Specifically, given any language L on a two-letter alphabet, we construct a binary
Toeplitz shift (X, σ), whose singular points are Z, and such that there is a positive sequence
(tn) of integers with	(tn)({0}) = L. Then, taking L to be the language of a Sturmian shift,
or alternatively {a, b}N, we find that X can be either forward tame, or not. Independently
of L, however, all of the constructed systems will be backward tame.

6.1. The semicocycle extension. Consider a double sequence (lni )n∈N,i∈N0 ⊆ N0 with the
following properties:
(R1) (ln0 )n∈N is strictly increasing;
(R2) for all n ∈ N, (lni )i∈N0 is strictly increasing;
(R3) for all n ∈ N, there is in ∈ N0 such that lni+in = ln+1

2i .
An example is given by

l1i = 2i − 1, ln+1
2i = ln

i+2n−1 , ln+1
2i+1 = 1

2
(ln
i+2n−1 + ln

i+1+2n−1)

with first values
0 1 2 3 4 5 6 7 8 9 10 11
l10 l11 l12 l13

l20 l21 l22 l23 l24 l25
l30 l31 l32 l33 l34 l35 l36

l40 l41 l42 l43 l44

Consider a right-extendable language L = ⋃
n∈N Ln ⊆ {a, b}∗ over the alphabet {a, b}

where Ln = L ∩ {a, b}n and L1 = {a, b} (that is, L is not trivial). Right-extendable means
that any word w ∈ Ln has an extension to the right wc ∈ Ln+1 where c ∈ {a, b}. Similarly
as in the previous section, if w has two extensions in Ln+1, it is called right special. We
denote the set {n, n+ 1, . . . , m− 1} by [n, m).
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LEMMA 6.1. Let (lni )n∈N,i∈N0 satisfy the conditions (R1)–(R3) above, and let L be a
right-extendable binary language. Then there exists a family (f n)n∈N of functions f n :
N0 → {a, b} which satisfy the following conditions for all N ∈ N.
(1) For each i ∈ N0, the function

x �→ f 1(x)f 2(x) · · · f N(x) ∈ {a, b}N

is constant on [lNi , lNi+1) and the constant value is a word w(N ,i) ∈ LN .
(2) Each word w ∈ LN arises infinitely often in the above way, that is, for each i0 ∈ N,

there is i ≥ i0 with w = w(N ,i) := f 1(x)f 2(x) · · · f N(x) for x ∈ [lNi , lNi+1).

Proof. Let f 1 be any function which takes infinitely often each of the values a and b, and
is constant on all [l1i , l1i+1). Then the above is satisfied for N = 1.

Now, suppose we have already defined f 1, . . . , f N satisfying the above properties.
Then define f N+1 as follows: given i ≥ iN ∈ N0, let wN ,i ∈ LN be the word such that
w(N ,i) = f 1(x)f 2(x) · · · f N(x) for x ∈ [lNi , lNi+1). Let j = i − iN . If w(N ,i) is right
special, set

f N+1(x) =
{
a if x ∈ [lN+1

2j , lN+1
2j+1),

b if x ∈ [lN+1
2j+1, lN+1

2j+2),

otherwise

f N+1(x) = c if x ∈ [lN+1
2j , lN+1

2j+2) = [lNi , lNi+1),

where c is the unique letter extending w(N ,i) to the right. This way, we have
defined f N+1(x) for all x ≥ lNiN

. We extend it arbitrarily for lower values of x.
It follows from condition (R3) and the assumptions on f 1, . . . , f N that x �→
f 1(x)f 2(x) · · · f N(x)f N+1(x) is constant on the intervals [lN+1

j , lN+1
j+1 ) and takes a

value in LN+1 there. Furthermore, by induction, any word of LN+1 arises in this way;
indeed, w(N ,i)c = f 1(x)f 2(x) · · · f N(x)f N+1(x) for x ∈ [lN+1

2j , lN+1
2j+2) where c is the

unique extension of w(N ,i), if that exists, or c = a (c = b) if w(N ,i) is right special and
x ∈ [lN+1

2j , lN+1
2j+1) (x ∈ [lN+1

2j+1, lN+1
2j+2)).

We can take any odometer (Z , +1), but for concreteness, we take Z = Z2. Consider
a strictly increasing sequence (tn)n∈N in Z such that tn → 0 in Z2. For concreteness, we
choose tn = 2l

n
0 . Its expansion in Z2 has zeros everywhere except at position ln0 where we

have an entry 1. Note that the specifics of the following construction—and, in particular,
the definition of f in equation (6.2)—depend to some extent on our particular choice of
(tn). For notational reasons, we keep this dependence implicit.

Define the clopen neighbourhood

Un(z) := Uheadln0
(z) = {z′ ∈ Z2 : headln0 (z) = headln0 (z

′)}.
It follows from condition (R1) and our choice of (tn) that

Un(tn) ∩ Un′(tn′) = ∅ for all n �= n′ ∈ N. (6.1)
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We set D = {tn : n ∈ N} ∪ {0}, a closed set, and define f : Z \D → {a, b} with the help
of the maps (f n) from Lemma 6.1 by

f (z) =
{
f n(L(z, tn)) if z ∈ Un(tn),
a otherwise,

(6.2)

where, as before, L(z, tn) is the length of the common head between z and tn. By equation
(6.1), f is well defined. Since all functions f n are continuous (trivially) and L is continuous
away from the diagonal, f is continuous. We fix ẑ /∈ Z (so that ẑ+ Z ⊆ Dc) and consider
the restriction of f to ẑ+ Z an {a, b}-valued semicocycle over (Z2, +1, ẑ). As D is not
periodic, its stabiliser in Z2 is trivial and therefore f is separating. Altogether, f defines a
semicocycle extension (Xf , σ) of (Z2, +1).

6.2. Tameness or otherwise. The set of discontinuity points of the semicocyle is Df =
D ⊆ Z, and consequently, all non-integer fibres are regular. The question of whether
(Xf , σ) is tame or not is therefore a question about its fibre π−1(0). We now show that
this fibre contains XL, the set of all unilateral sequences allowed by the language L. More
precisely, these unilateral sequences are precisely the subsequences of the sequences of
π−1(0) along the times (tn)n.

PROPOSITION 6.2. Let (tn)n∈N and f be as above and consider the dynamical system
(Xf , σ). For any y ∈ XL, there exists x ∈ π−1(0) such that

xtn = yn for all n ∈ N. (6.3)

Conversely, for any x ∈ π−1(0), there is y ∈ XL such that equation (6.3) holds true.

Proof. Fix ẑ ∈ Z2\Z and consider the sequence f̂ ∈ Xf given by f̂n = f (ẑ+ n). Given
N ∈ N and w ∈ LN , pick i ∈ N0 such that w = w(N ,i) as in Lemma 6.1((2)). Choose
tw ∈ Z such that L(tw + ẑ, 0) = lNi (tw has the same first lNi digits as −ẑ and then
disagrees). Then also L(tw + ẑ+ t , t) = lNi for all t ∈ Z. Hence, taking t = tn, we deduce
with equation (6.2) that

f̂tw+tn = f (tw + ẑ+ tn) = f n(L(tw + ẑ, 0)) = f n(lNi ) = wn

for all n = 1, . . . , N .
In other words, the sequence x = σ tw (f̂ ) verifies

xt1xt2 · · · xtN = f (tw + ẑ+ t1)f (tw + ẑ+ t2) · · · f (tw + ẑ+ tN ) = w. (6.4)

Now, given y ∈ XL, let xy be a limit point of {σ ty1y2 ···yN (f̂ ) : N ∈ N}. As L(ty1y2···yN +
ẑ, 0) ≥ lN0

N→+∞−→ +∞, the sequence ty1y2···yN + ẑ tends to 0 and thus π(xy) = 0. Due to
equation (6.4), we further have xytn = yn for all n = 1, . . . , N andN ∈ N, that is, equation
(6.3). As y ∈ XL was arbitrary, this shows the first statement. The second statement now
follows with Lemma 6.1((1)).

Remark 6.3. The above idea of embedding a subshift XL in the almost automorphic shift
Xf (as in the previous proposition) is similar in spirit to Williams’ classical constructions
in [42] despite the considerable differences on a technical level.
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THEOREM 6.4. (Xf , σ) is backward tame. Further, (Xf , σ) is forward tame if and only
if the N-action (XL, σ) is tame.

Proof. To prove the first statement, let z ∈ Z2. Its backward orbit {z− n : n ∈ N0} can
intersect at most finitely many positive integers Z+ ⊆ Z2, hence only finitely many points
of D ⊆ Z

+. It therefore follows from Corollary 4.4 that if we restrict to the backward
dynamics, then (Xf , σ) is tame.

Suppose the N-action (XL, σ) is non-tame. Then by Remark 1.6, there is a sequence
of natural numbers (νn) such that for every choice function ϕ ∈ {a, b}N, there is yϕ ∈ XL
with yϕνn = ϕ(n) for each n ∈ N. By Proposition 6.2, we find for every choice function ϕ,
an element xϕ ∈ Xf such that yϕ is the subsequence of xϕ corresponding to the times
(tn)n. Hence, (tνn)n is an independence set of (Xf , σ) for the pair of cylinder sets [a]
and [b].

Conversely, suppose that (Xf , σ) is forward non-tame. As D′ = {0}, the first part
of Theorem 4.8 implies that there is an independence sequence (τn) for {a}, {b} which
converges to z ∈ Z and such that all choice functions are realized by elements of the fibre
π−1(−z), that is, 	(τn)({0}) = {a, b}N. In particular, π−1(−z) must be infinite and hence
z ∈ Z.

Now, Lemma 4.2 gives that if {τn − z : n ∈ N} ∩D was finite, then 	(τn)({z− z}) was
finite, which is a contradiction. Therefore, {τn − z : n ∈ N} ∩D is infinite. Thus, there is
a subsequence (tnj )j such that {(tnj )j } = {τn − z : n ∈ N} ∩D. Together with the second
part of Proposition 6.2, we see that (nj ) is an independence set for (XL, σ).
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