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Definition 2.1 of [1] is incomplete and should be replaced by the following.

Corrected Definition 2.1. Let L be a Boolean algebra. A representation of L is a
map π : L → proj(B) of L into the projection lattice of a unital C∗-algebra B such that
for every s, t ∈ L,

π(s ∧ t) = π(s)π(t) and π(¬s) = I − π(s).

With this corrected definition, the statement and proof of [1, Proposition 2.2] are
unchanged with the exception that the C∗-algebra B is to be assumed unital:

Corrected Proposition 2.2. Let L be a Boolean algebra with character space L̂.
For each s ∈ L, let ŝ ∈ C(L̂) be the Gelfand transform, ŝ(ρ) = ρ(s). Then C(L̂) has the
following universal property: if B is a unital C∗-algebra and θ : L → B is a representation
such that θ(L) generates B as a C∗-algebra, then there exists a unique ∗-epimorphism

α : C(L̂) → B such that for every s ∈ L,

θ(s) = α(ŝ).

The discussion on [1, Page 63] uses [1, Proposition 2.2] in preparation for [1,
Definition 2.9]. This discussion is unaffected by the corrections given above.
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Unfortunately, the incomplete definition of representation given in [1, Definition 2.1]
leads to a gap in the work presented in [1]. To describe the issue, given a Cartan inverse

monoid S, [1, Section 4.2] defines D := C(Ê(S)), constructs a D-valued reproducing
kernel K : S × S → D ([1, Defintion 4.7]), and constructs a right Hilbert D-module A
([1, Proposition 4.12]). Further [1, Theorem 4.16] shows there is a map λ : G → L(A) so
that for v ∈ G and s ∈ S,

λ(v)ks = kq(v)sσ(v, s),

where (as in [1, Definition 4.13]),

σ(v, s) = j(q(v)s)†vj(s) = j(s†q(v†))vj(s)

and j : S → G is an order-preserving section (see [1, Definition 4.1 and Proposition 4.6]).
Also, the proof of [1, Theorem 4.16] establishes:

(a) λ is one-to-one;
(b) for v, w ∈ G,

λ(v)∗ = λ(v†) and λ(vw) = λ(v)λ(w).

To this point, all is well. However, on page 84 of [1] we wrote,
“Let

B = span{ke : e ∈ E(S)} ⊆ A.

Note that B is a right Hilbert D-submodule of A. Proposition 2.2 shows that λ|E(G)
extends to a ∗-monomorphism α` : D → L(A).”

There is a gap here, because we did not establish that λ|E(G) : E(G) → D is a represen-
tation in the sense of Corrected Definition 2.1 given above, and therefore, we have not
shown that we can apply Corrected Proposition 2.2. To fill this gap, we must establish
the following fact.

Lemma 1. For e ∈ E(G),

λ(¬e) = I − λ(e). (2)

Before verifying this, we make some preliminary remarks. Observe that since

is an idempotent separating extension, E(G) = ι(E(P)). Therefore, we may identify E(G)
with E(P) via the map ι.
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Since q ◦ ι = π, we find q|E(G) : E(G) → E(S) is an isomorphism. As q ◦ j = id|S ,

j|E(S) =
(
q|E(G)

)−1
=

(
π|E(P)

)−1
.

Hence for e ∈ E(G) and s ∈ S, [1, Lemma 4.2] gives

σ(e, s) = j(s†q(e))ej(s) = j(s†)j(q(e))ej(s) = j(s†)ej(s) = j(s†q(e)s).

Thus, for e ∈ E(G) and s ∈ S,

λ(e)ks = kq(e)sj(s
†q(e)s)

[1, Cor. 4.9]
= k

q(e)s(s†q(e)s) = kq(e)s.

By [1, Proposition 4.12], {ks : s ∈ S} has dense span in A. Thus to establish (2), it
suffices to show that for every s ∈ S and e ∈ E(S),

kes + k(¬e)s = ks. (3)

To establish (3), we require the following.

Fact 4. Let S be a Boolean inverse monoid. For r, s, t ∈ S with s and t orthogonal,

(s ∨ t) ∧ r = (s ∧ r) ∨ (t ∧ r). (5)

Proof. Note that s∧ r ≤ (s∨ t)∧ r because s ≤ s∨ t; a similar inequality holds for t.
Therefore,

(s ∧ r) ∨ (t ∧ r) ≤ (s ∨ t) ∧ r. (6)

Since (s ∨ t) ∧ r ≤ s ∨ t, there is f ∈ E(S) such that (s ∨ t) ∧ r = (s ∨ t)f . Now
multiplication distributes over finite orthogonal joins in a Boolean inverse monoid [2, p.
386], so

(s ∨ t) ∧ r = sf ∨ tf.

As the left side is a meet and the right a join, r ≥ sf and r ≥ tf , and so

sf ≤ s ∧ r and tf ≤ t ∧ r.

Hence

(s ∨ t) ∧ r = sf ∨ tf ≤ (s ∧ r) ∨ (t ∧ r). (7)

Combining (6) and (7) gives (5). �

We now complete the proof of Lemma 1. As noted, it suffices to establish (3), and this
is what we shall do.
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Fix s ∈ S and e ∈ E(S). Again using the fact that multiplication distributes over
orthogonal joins in a Boolean inverse monoid, we see that for t ∈ S,

s†t = (s†et) ∨ (s†(¬e)t).

Fact 4 gives

((s†et) ∧ 1) ∨ (s†(¬e)t) ∧ 1) = ((s†et) ∨ (s†(¬e)t)) ∧ 1 = s†t ∧ 1.

Notice that (s†et)∧1 and (s†(¬e)t)∧1 are orthogonal idempotents in E(S). Since j|E(S)

is a Boolean algebra isomorphism onto E(P) = proj(D), we get

j(s†t ∧ 1) = j((s†et) ∧ 1) ∨ j((s†(¬e)t) ∧ 1) = j((s†et) ∧ 1) + j((s†(¬e)t) ∧ 1).

In other words, this shows that for t ∈ S,

ks(t) = kes(t) + k(¬e)s(t),

which is (3).
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