Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T10:16:17.284Z Has data issue: false hasContentIssue false

2 - Paradoxical effects of sensory loss

Published online by Cambridge University Press:  05 December 2011

Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Souzana Obretenova
Affiliation:
Center for Noninvasive Brain Stimulation
Lotfi B. Merabet
Affiliation:
Center for Noninvasive Brain Stimulation
Narinder Kapur
Affiliation:
University College London
Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Vilayanur Ramachandran
Affiliation:
University of California, San Diego
Jonathan Cole
Affiliation:
University of Bournemouth
Sergio Della Sala
Affiliation:
University of Edinburgh
Tom Manly
Affiliation:
MRC Cognition and Brain Sciences Unit
Andrew Mayes
Affiliation:
University of Manchester
Oliver Sacks
Affiliation:
Columbia University Medical Center
Get access

Summary

Summary

We perceive the world by means of an elaborate set of distinct, modality-specific receptor systems. It is hardly conceivable that losing or lacking a sensory modality would not, in some fashion, alter the capacities of processing, understanding or interacting with the world. Therefore, if lack or loss of a sensory modality leads to a compensatory enhancement of other senses, ultimately resulting in minimal functional loss or even functional gains, these would represent instances of paradoxical functional facilitation. In fact, enhancement of functioning in people with chronic or recent sensory loss has been one of the more widely studied and reliable forms of paradoxical functional facilitation. Individuals with visual loss have been found to show enhanced auditory function, tactile function and even verbal memory performance. Analogously, long-term auditory loss has been associated with enhanced cognitive performance, evident on tactile and visual tasks. Functional brain imaging and transcranial magnetic stimulation studies have pointed to a major reorganization of cerebral function in blind or deaf individuals, and these plastic changes are associated with functional adaptations and gains.

Introduction

In his novel Blindness, Jose Saramago (1998) uses blindness as a metaphor for both personal misfortune and social catastrophe. A man suddenly loses his vision. Within a few days, people who had contact with him also go blind, and blindness spreads like an epidemic. In the context of practically universal blindness, society breaks down, nothing functions, food and resources become scarce, and lives are threatened. Ultimately, only one character in the novel miraculously avoids blindness.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alary, F., Duquette, M., Goldstein, R., et al. (2009). Tactile acuity in the blind: a closer look reveals superiority over the sighted in some but not all cutaneous tasks. Neuropsychologia, 47: 2037–43.CrossRefGoogle Scholar
Alary, F., Goldstein, R., Duquette, M., Chapman, C. E., Voss, P., & Lepore, F. (2008). Tactile acuity in the blind: a psychophysical study using a two-dimensional angle discrimination task. Experimental Brain Research, 187: 587–94.CrossRefGoogle ScholarPubMed
Amedi, A., Floel, A., Knecht, S., Zohary, E., & Cohen, L. G. (2004). Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neuroscience, 7: 1266–70.CrossRefGoogle ScholarPubMed
Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience, 4: 324–30.CrossRefGoogle ScholarPubMed
Amedi, A., Merabet, L. B., Bermpohl, F., & Pascual-Leone, A. (2005a). The occipital cortex in the blind: lessons about plasticity and vision. Current Directions in Psychological Science, 14: 306–11.CrossRefGoogle Scholar
Amedi, A., Raz, N., Azulay, H., Malach, R., & Zohary, E. (2010). Cortical activity during tactile exploration of objects in blind and sighted humans. Restorative Neurology and Neuroscience, 28: 143–56.Google ScholarPubMed
Amedi, A., Raz, N., Pianka, P., Malach, R., & Zohary, E. (2003). Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nature Neuroscience, 6: 758–66.CrossRefGoogle ScholarPubMed
Amedi, A., Kriegstein, K., Atteveldt, N. M., Beauchamp, M. S., & Naumer, M. J. (2005b). Functional imaging of human crossmodal identification and object recognition. Experimental Brain Research, 166: 559–71.CrossRefGoogle ScholarPubMed
Arnold, P., & Murray, C. (1998). Memory for faces and objects by deaf and hearing signers and hearing nonsigners. Journal of Psycholinguistic Research, 27: 481–97.CrossRefGoogle ScholarPubMed
Bavelier, D., Tomann, A., Hutton, C., et al. (2000). Visual attention to the periphery is enhanced in congenitally deaf individuals. Journal of Neuroscience, 20: RC93 (1–6).CrossRefGoogle ScholarPubMed
Bavelier, D., Dye, M. W., & Hauser, P. C. (2006). Do deaf individuals see better?Trends in Cognitive Science, 10: 512–18.CrossRefGoogle ScholarPubMed
Bernabeu, A., Alfaro, A., Garcia, M., & Fernandez, E. (2009). Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage, 47: 1172–6.CrossRefGoogle ScholarPubMed
Bettger, J., Emmorey, K., McCullough, S., & Bellugi, U. (1997). Enhanced facial discrimination: effects of experience with American sign language. Journal of Deaf Studies and Deaf Education, 2: 223–33.CrossRefGoogle ScholarPubMed
Bliss, I., Kujala, T., & Hamalainen, H. (2004). Comparison of blind and sighted participants' performance in a letter recognition working memory task. Brain Research. Cognitive Brain Research, 18: 273–7.CrossRefGoogle Scholar
Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6: 8.CrossRefGoogle ScholarPubMed
Bosworth, R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. Brain and Cognition, 49: 170–81.CrossRefGoogle ScholarPubMed
Bottari, D., Nava, E., Ley, P., & Pavani, F. (2010). Enhanced reactivity to visual stimuli in deaf individuals. Restorative Neurology and Neuroscience, 28: 167–79.Google ScholarPubMed
Burton, H., Diamond, J. B., & McDermott, K. B. (2003). Dissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people. Journal of Neurophysiology, 90: 1965–82.CrossRefGoogle ScholarPubMed
Calvert, G. A., & Thesen, T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain. Journal of Physiology Paris, 98: 191–205.CrossRefGoogle ScholarPubMed
Carroll, T. J. (1961). Blindness: What It Is, What It Does, and How to Live With It. Boston, MA: Little, Brown & Co.Google Scholar
Cattani, A., Clibbens, J., & Perfect, T. J. (2007). Visual memory for shapes in deaf signers and nonsigners and in hearing signers and nonsigners: atypical lateralization and enhancement. Neuropsychology, 21: 114–21.CrossRefGoogle ScholarPubMed
Chebat, D. R., Rainville, C., Kupers, R., & Ptito, M. (2007). Tactile-‘visual’ acuity of the tongue in early blind individuals. Neuroreport, 18: 1901–04.CrossRefGoogle ScholarPubMed
Cohen, L. G., Celnik, P., Pascual-Leone, A., et al. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389: 180–3.CrossRefGoogle ScholarPubMed
Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K., & Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind. Annals of Neurology, 45: 451–60.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Collignon, O., Renier, L., Bruyer, R., Tranduy, D., & Veraart, C. (2006). Improved selective and divided spatial attention in early blind subjects. Brain Research, 1075: 175–82.CrossRefGoogle ScholarPubMed
Corina, D., Chiu, Y. S., Knapp, H., Greenwald, R., San Jose-Robertson, L., & Braun, A. (2007). Neural correlates of human action observation in hearing and deaf subjects. Brain Research, 1152: 111–29.CrossRefGoogle ScholarPubMed
Cuevas, I., Plaza, P., Rombaux, P., Volder, A. G., & Renier, L. (2009). Odour discrimination and identification are improved in early blindness. Neuropsychologia, 47: 3079–83.CrossRefGoogle ScholarPubMed
Volder, A. G., Bol, A., Blin, J., et al. (1997). Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Reearchs, 750: 235–44.CrossRefGoogle ScholarPubMed
Diderot, D. (1749). Lettre Sur Les Aveugles: A L'usage de Ceux qui Voyent. London [electronic resource].Google Scholar
Duhamel, J. R. (2002). Multisensory integration in cortex: shedding light on prickly issues. Neuron, 34: 493–5.CrossRefGoogle ScholarPubMed
Dye, M., & Bavelier, D. (2010). Attentional enhancements and deficits in deaf populations; an integrative review. Restorative Neurology and Neuroscience, 28: 181–92.Google ScholarPubMed
Dye, M. W., Baril, D. E., & Bavelier, D. (2007). Which aspects of visual attention are changed by deafness? The case of the Attentional Network Test. Neuropsychologia, 45: 1801–11.CrossRefGoogle ScholarPubMed
Dye, M. W., Hauser, P. C., & Bavelier, D. (2009). Is visual selective attention in deaf individuals enhanced or deficient? The case of the useful field of view. PLoS One, 4: e5640.CrossRefGoogle ScholarPubMed
Elbert, T., Sterr, A., Rockstroh, B., Pantev, C., Muller, M. M., & Taub, E. (2002). Expansion of the tonotopic area in the auditory cortex of the blind. Journal of Neuroscience, 22: 9941–4.CrossRefGoogle ScholarPubMed
Fieger, A., Roder, B., Teder-Salejarvi, W., Hillyard, S. A., & Neville, H. J. (2006). Auditory spatial tuning in late-onset blindness in humans. Journal of Cognitive Neuroscience, 18: 149–57.CrossRefGoogle ScholarPubMed
Fiehler, K., & Rosler, F. (2010). Plasticity of multisensory dorsal stream functions: evidence from congenitally blind and sighted adults. Restorative Neurology and Neuroscience, 28: 193–205.Google ScholarPubMed
Finney, E. M., Clementz, B. A., Hickok, G., & Dobkins, K. R. (2003). Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport, 14: 1425–7.CrossRefGoogle ScholarPubMed
Forster, B., Eardley, A. F., & Eimer, M. (2007). Altered tactile spatial attention in the early blind. Brain Research, 1131: 149–54.CrossRefGoogle ScholarPubMed
Fortin, M., Voss, P., Lord, C., et al. (2008). Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation. Brain, 131: 2995–3005.CrossRefGoogle ScholarPubMed
Garg, A., Schwartz, D., & Stevens, A. A. (2007). Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans. Neuropsychologia, 45: 2307–21.CrossRefGoogle ScholarPubMed
Goldreich, D., & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. Journal of Neuroscience, 23: 3439–45.CrossRefGoogle ScholarPubMed
Gougoux, F., Lepore, F., Lassonde, M., Voss, P., Zatorre, R. J., & Belin, P. (2004). Neuropsychology: pitch discrimination in the early blind. Nature, 430: 309.CrossRefGoogle ScholarPubMed
Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P., & Lepore, F. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biology, 3: e27.CrossRefGoogle ScholarPubMed
Grant, A. C., Thiagarajah, M. C., & Sathian, K. (2000). Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Perception and Psychophysics, 62: 301–12.CrossRefGoogle ScholarPubMed
Hamilton, R., Keenan, J. P., Catala, M., & Pascual-Leone, A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport, 11: 237–40.CrossRefGoogle Scholar
Hamilton, R. H., & Pascual-Leone, A. (1998). Cortical plasticity associated with Braille learning. Trends in Cognitive Neuroscience, 2: 168–74.CrossRefGoogle ScholarPubMed
Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. Neuroreport, 15: 803–6.CrossRefGoogle ScholarPubMed
Harsdörffer, G. (1651). Deliciae Mathematicae et Physicae. Nuremberg.Google Scholar
Hertrich, I., Dietrich, S., Moos, A., Trouvain, J., & Ackermann, H. (2009). Enhanced speech perception capabilities in a blind listener are associated with activation of fusiform gyrus and primary visual cortex. Neurocase, 15: 163–70.CrossRefGoogle Scholar
Hugdahl, K., Ek, M., Takio, F., et al. (2004). Blind individuals show enhanced perceptual and attentional sensitivity for identification of speech sounds. Brain Research. Cognitive Brain Research, 19: 28–32.CrossRefGoogle ScholarPubMed
Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T., & Guic-Robles, E. (1990). Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. Journal of Neurophysiology, 63: 82–104.CrossRefGoogle ScholarPubMed
Jiang, J., Zhu, W., Shi, F., et al. (2009). Thick visual cortex in the early blind. Journal of Neuroscience, 29: 2205–11.CrossRefGoogle ScholarPubMed
Kauffman, T., Theoret, H., & Pascual-Leone, A. (2002). Braille character discrimination in blindfolded human subjects. Neuroreport, 13: 571–4.CrossRefGoogle ScholarPubMed
Klinge, C., Roder, B., & Buchel, C. (2010). Increased amygdala activation to emotional auditory stimuli in the blind. Brain, 133: 1729–36.CrossRefGoogle ScholarPubMed
Kupers, R., Pappens, M., Noordhout, A. M., Schoenen, J., Ptito, M., & Fumal, A. (2007). rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. Neurology, 68: 691–3.CrossRefGoogle ScholarPubMed
Lambertz, N., Gizewski, E. R., Greiff, A., & Forsting, M. (2005). Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss. Brain Research. Cognitive Brain Research, 25: 884–90.CrossRefGoogle ScholarPubMed
Lepore, N., Shi, Y., Lepore, F., et al. (2009). Pattern of hippocampal shape and volume differences in blind subjects. Neuroimage, 46: 949–57.CrossRefGoogle ScholarPubMed
Lepore, N., Voss, P., Lepore, F., et al. (2010). Brain structure changes visualized in early- and late-onset blind subjects. Neuroimage, 49: 134–40.CrossRefGoogle ScholarPubMed
Levanen, S., & Hamdorf, D. (2001). Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neuroscience Letters, 301: 75–7.CrossRefGoogle ScholarPubMed
Liu, Y., Yu, C., Liang, M., et al. (2007). Whole brain functional connectivity in the early blind. Brain, 130: 2085–96.CrossRefGoogle ScholarPubMed
McCullough, S., & Emmorey, K. (1997). Face processing by deaf ASL signers: evidence for expertise in distinguished local features. Journal of Deaf Studies and Deaf Education, 2: 212–22.CrossRefGoogle ScholarPubMed
Merabet, L., Thut, G., Murray, B., Andrews, J., Hsiao, S., & Pascual-Leone, A. (2004). Feeling by sight or seeing by touch?Neuron, 42: 173–9.CrossRefGoogle ScholarPubMed
Merabet, L. B., & Pascual-Leone, A. (2009). Neural reorganization following sensory loss: the opportunity of change. Nature Reviews Neuroscience, 11: 44–52.CrossRefGoogle Scholar
Merabet, L. B., Hamilton, R., Schlaug, G., et al. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS One, 3: e3046.CrossRefGoogle ScholarPubMed
Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A., & Zook, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. Journal of Comparative Neurology, 224: 591–605.CrossRefGoogle ScholarPubMed
Millar, S. (1997). Reading by Touch. Florence, KY: Taylor & Frances/Routledge.CrossRefGoogle Scholar
Moore, C. E., Partner, A., & Sedgwick, E. M. (1999). Cortical focusing is an alternative explanation for improved sensory acuity on an amputation stump. Neuroscience Letters, 270: 185–7.CrossRefGoogle ScholarPubMed
Nava, E., Bottari, D., Zampini, M., & Pavani, F. (2008). Visual temporal order judgment in profoundly deaf individuals. Experimental Brain Research, 190: 179–88.CrossRefGoogle ScholarPubMed
Neville, H. J., & Lawson, D. (1987). Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Research, 405: 268–83.CrossRefGoogle Scholar
Occelli, V., Spence, C., & Zampini, M. (2008). Audiotactile temporal order judgments in sighted and blind individuals. Neuropsychologia, 46: 2845–50.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134: 427–45.CrossRefGoogle Scholar
Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116: 39–52.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28: 377–401.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Tarazona, F., Keenan, J., Tormos, J. M., Hamilton, R., & Catala, M. D. (1999). Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia, 37: 207–17.CrossRefGoogle ScholarPubMed
Proksch, J., & Bavelier, D. (2002). Changes in the spatial distribution of visual attention after early deafness. Journal of Cognitive Neuroscience, 14: 687–701.CrossRefGoogle ScholarPubMed
Rao, A., Nobre, A. C., Alexander, I., & Cowey, A. (2007). Auditory evoked visual awareness following sudden ocular blindness: an EEG and TMS investigation. Experimental Brain Research, 176: 288–98.CrossRefGoogle ScholarPubMed
Raz, N., Striem, E., Pundak, G., Orlov, T., & Zohary, E. (2007). Superior serial memory in the blind: a case of cognitive compensatory adjustment. Current Biology, 17: 1129–33.CrossRefGoogle ScholarPubMed
Recanzone, G. H., Allard, T. T., Jenkins, W. M., & Merzenich, M. M. (1990). Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats. Journal of Neurophysiology, 63: 1213–25.CrossRefGoogle Scholar
Rettenbach, R., Diller, G., & Sireteanu, R. (1999). Do deaf people see better? Texture segmentation and visual search compensate in adult but not in juvenile subjects. Journal of Cognitive Neuroscience, 11: 560–83.CrossRefGoogle ScholarPubMed
Röder, B., & Neville, H. (2003). Developmental functional plasticity. In: Grafman, S, Robertson, IH, editors. Handbook of Neuropsychology. 2nd ed. Amsterdam: Elsevier, pp. 231–70.Google Scholar
Röder, B., Rosler, F., & Neville, H. J. (2001). Auditory memory in congenitally blind adults: a behavioral–electrophysiological investigation. Brain Research. Cognitive Brain Research, 11: 289–303.CrossRefGoogle ScholarPubMed
Röder, B., Rosler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14: 121–4.CrossRefGoogle ScholarPubMed
Röder, B., Stock, O., Bien, S., Neville, H., & Rosler, F. (2002). Speech processing activates visual cortex in congenitally blind humans. European Journal of Neuroscience, 16: 930–6.CrossRefGoogle ScholarPubMed
Rokem, A., & Ahissar, M. (2009). Interactions of cognitive and auditory abilities in congenitally blind individuals. Neuropsychologia, 47: 843–8.CrossRefGoogle ScholarPubMed
Rosenbluth, R., Grossman, E. S., & Kaitz, M. (2000). Performance of early-blind and sighted children on olfactory tasks. Perception, 29: 101–10.CrossRefGoogle ScholarPubMed
Rouger, J., Lagleyre, S., Fraysse, B., Deneve, S., Deguine, O., & Barone, P. (2007). Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proceeding of the National Academy of Sciences USA, 104: 7295–300.CrossRefGoogle ScholarPubMed
Sadato, N., Okada, T., Honda, M., & Yonekura, Y. (2002). Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage, 16: 389–400.CrossRefGoogle ScholarPubMed
Sadato, N., Pascual-Leone, A., Grafman, J., et al. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380: 526–8.CrossRefGoogle ScholarPubMed
Saenz, M., Lewis, L. B., Huth, A. G., Fine, I., & Koch, C. (2008). Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. Journal of Neuroscience, 28: 5141–8.CrossRefGoogle ScholarPubMed
Saramago, J. (1998). Blindness. New York, NY: Harcourt Brace & Company.Google Scholar
Sathian, K., & Stilla, R. (2010). Cross-modal plasticity of tactile perception in blindness. Restorative Neurology and Neuroscience, 28: 271–81.Google ScholarPubMed
Smith, M., Franz, E. A., Joy, S. M., & Whitehead, K. (2005). Superior performance of blind compared with sighted individuals on bimanual estimations of object size. Psychological Science, 16: 11–14.CrossRefGoogle ScholarPubMed
Sterr, A., Muller, M. M., Elbert, T., Rockstroh, B., Pantev, C., & Taub, E. (1998). Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. Journal of Neuroscience, 18: 4417–23.CrossRefGoogle ScholarPubMed
Stevens, A. A., & Weaver, K. (2005). Auditory perceptual consolidation in early-onset blindness. Neuropsychologia, 43: 1901–10.CrossRefGoogle ScholarPubMed
Stevens, A. A., & Weaver, K. E. (2009). Functional characteristics of auditory cortex in the blind. Behavioural Brain Research, 196: 134–8.CrossRefGoogle ScholarPubMed
Stevens, A. A., Snodgrass, M., Schwartz, D., & Weaver, K. (2007). Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance. Journal of Neuroscience, 27: 10,734–41.CrossRefGoogle ScholarPubMed
Stevens, C., & Neville, H. (2006). Neuroplasticity as a double-edged sword: deaf enhancements and dyslexic deficits in motion processing. Journal of Cognitive Neuroscience, 18: 701–14.CrossRefGoogle ScholarPubMed
Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P., & Pascual-Leone, A. (2000). Tactile spatial resolution in blind braille readers. Neurology, 54: 2230–6.CrossRefGoogle ScholarPubMed
Veraart, C., Volder, A. G., Wanet-Defalque, M. C., Bol, A., Michel, C., & Goffinet, A. M. (1990). Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Research, 510: 115–21.CrossRefGoogle ScholarPubMed
Vermeij, G. J. (1997). Privileged Hands: A Scientific Life. New York, NY: W.H. Freeman.Google Scholar
Voss, P., Gougoux, F., Zatorre, R. J., Lassonde, M., & Lepore, F. (2008). Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. Neuroimage, 40: 746–58.CrossRefGoogle ScholarPubMed
Wallace, M. T., & Stein, B. E. (1997). Development of multisensory neurons and multisensory integration in cat superior colliculus. Journal of Neuroscience, 17: 2429–44.CrossRefGoogle ScholarPubMed
Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2009). Congenital blindness leads to enhanced vibrotactile perception. Neuropsychologia, 48: 631–5.CrossRefGoogle ScholarPubMed
Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48: 344–8.CrossRefGoogle ScholarPubMed
Wanet-Defalque, M. C., Veraart, C., Volder, A., et al. (1988). High metabolic activity in the visual cortex of early blind human subjects. Brain Research, 446: 369–73.CrossRefGoogle ScholarPubMed
Wells, H. G. (1911). The Country of the Blind. The Country of the Blind, and Other Stories. London: T. Nelson and Sons.Google Scholar
Werhahn, K. J., Mortensen, J., Boven, R. W., Zeuner, K. E., & Cohen, L. G. (2002). Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation. Nature Neuroscience, 5: 936–8.CrossRefGoogle ScholarPubMed
Wilson, J. (1835). Biography of the Blind: Lives of Such as Have Distinguished Themselves as Poets, Philosophers, Artists, etc. 4th ed. Birmingham: J. W. Showell.Google Scholar
Zangaladze, A., Epstein, C. M., Grafton, S. T., & Sathian, K. (1999). Involvement of visual cortex in tactile discrimination of orientation. Nature, 401: 587–90.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×