Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T13:13:27.439Z Has data issue: false hasContentIssue false

3 - Paradoxical functional facilitation and recovery in neurological and psychiatric conditions

Published online by Cambridge University Press:  05 December 2011

Narinder Kapur
Affiliation:
University College London
Narinder Kapur
Affiliation:
University College London
Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Vilayanur Ramachandran
Affiliation:
University of California, San Diego
Jonathan Cole
Affiliation:
University of Bournemouth
Sergio Della Sala
Affiliation:
University of Edinburgh
Tom Manly
Affiliation:
MRC Cognition and Brain Sciences Unit
Andrew Mayes
Affiliation:
University of Manchester
Oliver Sacks
Affiliation:
Columbia University Medical Center
Get access

Summary

Summary

In neurological conditions, the major sets of paradoxical cognitive phenomena generally take one of five forms: (1) enhanced cognitive performance of neurological patients vis-à-vis neurologically intact individuals (‘lesion facilitation’), and (2) alleviation or restoration to normal of a particular cognitive deficit following the occurrence of a second brain lesion (‘double-hit recovery’). (3) A third set of paradoxical cognitive phenomena represents what may be termed ‘hinder–help effects’, where a variable that produces facilitation or detriment of performance in healthy participants results in opposite effects in neurological patients. (4) A fourth form of paradox relates to anomalies in the usual relationship between the presence/size of a brain lesion and the degree of cognitive deficit (‘lesion–load paradox’). (5) A fifth paradox is where there may appear to be direct or indirect benefits for long-term neurological outcome as the result of specific cognitive deficits being present (‘paradoxical positive outcome’). Discussion of neurological conditions will mainly be concerned with the first two sets of paradoxical phenomena, although the remaining three sets will also be reviewed briefly. In psychiatric disorders, analogous paradoxical phenomena have mainly been found in instances of enhanced cognitive performance in conditions such as depression and schizophrenia vis-à-vis healthy control participants, and also in reports of ‘post-traumatic growth’ after a major psychiatric illness or negative life events.

Introduction

As outlined in Chapter 1, the study of brain–behaviour relationships from cases of cerebral pathology has traditionally been embedded in the lesion-deficit model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, A. (1943). Neuropsychiatric complications in victims of Boston's Cocoanut Grove Disaster. Journal of the American Medial Association, 123: 1098–101.CrossRefGoogle Scholar
Adolphs, R., Denberg, N. L., & Tranel, D. (2001b). The amygdala's role in long-term declarative memory for gist and detail. Behavioural Neuroscience, 115: 983–92.CrossRefGoogle ScholarPubMed
Adolphs, R., Jansari, A., & Tranel, D. (2001a). Hemispheric perception of emotional valence from facial expressions. Neuropsychology, 15: 516–24.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., & Buchanan, T. W. (2005). Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nature Neuroscience, 8: 512–18.CrossRefGoogle Scholar
Aglioti, S., & Fabbro, F. (1993). Paradoxical selective recovery in a bilingual aphasic following subcortical lesions. NeuroReport, 30: 1359–62.CrossRefGoogle Scholar
Aglioti, S., Beltramello, A., Girardi, F., & Fabbro, F. (1996). Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain, 119: 1551–64.CrossRefGoogle ScholarPubMed
Aglioti, S., Beltramello, A., Tassinari, G., & Berlucchi, G. (1998). Paradoxically greater interhemispheric transfer deficits in partial than complete callosal agenesis. Neuropsychologia, 36: 1015–24.CrossRefGoogle ScholarPubMed
Allan, L. G., Siegel, S., & Hannah, S. (2007). The sad truth about depressive realism. Quarterly Journal of Experimental Psychology, 60: 482–95.CrossRefGoogle ScholarPubMed
Alloy, L. B., & Abramson, L. Y. (1979). Judgment of contingency in depressed and nondepressed students: sadder but wiser?Journal of Experimental Psychology: General, 108: 441–85.CrossRefGoogle ScholarPubMed
Andrews, P., & Thomson, J. (2010). Depression's evolutionary roots. Scientific American Mind, 20: 57–61.Google Scholar
Andrews, P. W., & Thomson, J. A. (2009). The bright side of being blue: depression as an adaptation for analyzing complex problems. Psychological Review, 116: 620–54.CrossRefGoogle ScholarPubMed
Appenzeller, O., & Bicknell, J. (1969). Effects of nervous system lesions on phantom experience in amputees. Neurology, 19: 141–6.CrossRefGoogle ScholarPubMed
Baxendale, S. (2004). Memories aren't made of this: amnesia at the movies. British Medical Journal, 329: 1480–3.CrossRefGoogle ScholarPubMed
Behrmann, M., Marotta, J., Gauthier, I., Tarr, M. J., & McKeeff, T. J. (2005). Behavioural change and its neural correlates in visual agnosia after expertise training. Journal of Cognitive Neuroscience, 17: 554–68.CrossRefGoogle Scholar
Benassi, V., & Mahler, H. (1985). Contingency judgments by depressed college students: sadder but not always wiser. Journal of Personality and Social Psychology, 49: 1323–9.CrossRefGoogle Scholar
Beste, C., Saft, C., Gunturkun, O., & Falkenstein, M. (2008). Increased cognitive functioning in symptomatic Huntington's Disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention. The Journal of Neuroscience, 28: 11695–702.CrossRefGoogle ScholarPubMed
Beversdorf, D. Q., Smith, B. W., Crucian, G. P., et. al. (2000). Increased discrimination of ‘false memories’ in autism spectrum disorder. Proceedings of the National Academy of Sciences, 97: 8734–7.CrossRefGoogle Scholar
Blakemore, S. J., Smith, J., Steel, R., Johnstone, C. E., & Frith, C. D. (2000). The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychological Medicine, 30: 1131–9.CrossRefGoogle ScholarPubMed
Bornstein, B. (1949). Sur le phénomène du member fantomea L'encéphale, 38: 32–46.Google Scholar
Bowles, B., Crupi, C., Mirsattari, S. M, et al. (2007). Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proceedings of the National Academy of Sciences, 104: 16,382–7.CrossRefGoogle ScholarPubMed
Boyd, L., & Winstein, C. (2004) Providing explicit information disrupts implicit motor learning after basal ganglia stroke. Learning and Memory, 11: 388–96.CrossRefGoogle ScholarPubMed
Bryant, R. A., Creamer, M., O'Donnell, M., Silove, D., Clark, C. R., & McFarlane, A. C. (2009). Post-traumatic amnesia and the nature of post-traumatic stress disorder after mild traumatic brain injury. Journal of the International Neuropsychological Society, 15: 862–7.CrossRefGoogle ScholarPubMed
Buchanan, T., Tranel, W. D., & Adolphs, R. (2005). Emotional autobiographical memories in amnesic patients with medial temporal lobe damage. The Journal of Neuroscience, 25: 3151–60.CrossRefGoogle ScholarPubMed
Buchanan, T., Tranel, W. D., & Adolphs, R. (2006). Memories for emotional autobiographical events following unilateral damage to medial temporal lobe. Brain, 129: 115–27.CrossRefGoogle ScholarPubMed
Budson, A. E., Daffner, K. R., Desikan, R., & Schacter, D. L. (2000). When false recognition is unopposed by true recognition: gist-based memory distortion in Alzheimer's disease. Neuropsychology, 14: 277–87.CrossRefGoogle ScholarPubMed
Busigny, T., & Rossion, B. (2010). Acquired prosopagnosia abolishes the face inversion effect. Cortex, 46: 965–81.CrossRefGoogle ScholarPubMed
Callaway, E. (2010). Alzheimer's gene makes you smart. New Scientist, 2747: 12–13.Google Scholar
Canavero, S., Bonicalzi, V., Lacerenza, M., et al. (2001). Disappearance of central pain following iatrogenic stroke. Acta Neurologica Belgica, 101: 221–3.Google ScholarPubMed
Carson, R. C., Hollon, S. D., & Shelton, R. C. (2010). Depressive realism and clinical depression. Behaviour Research and Therapy, 48: 257–65.CrossRefGoogle ScholarPubMed
Cavaco, S., Anderson, S., Allen, J., Castro-Caldas, A., & Damasio, H. (2004). The scope of preserved procedural memory in amnesia. Brain, 127: 1853–67.CrossRefGoogle ScholarPubMed
Cermak, L., Mather, M. & Hill, R. (1997). Unconscious influences on amnesics' word-stem completion. Neuropsychologia, 35: 605–10.CrossRefGoogle ScholarPubMed
Cermak, L. S., Bleich, R. P. & Blackford, S. P. (1988). Deficits in the implicit retention of new associations by alcoholic Korsakoff patients. Brain and Cognition, 7: 312–23.CrossRefGoogle ScholarPubMed
Cermak, L. S., Verfaellie, M., Sweeney, M. & Jacoby, L. L. (1992). Fluency versus conscious recollection in the word completion performance of amnesic patients. Brain and Cognition, 20: 367–77.CrossRefGoogle ScholarPubMed
Chadwick, P. (2009). Schizophrenia: The Positive Perspective. Second Edition. London: Routledge.Google Scholar
Chase, H., Michael, A., Bullmore, E., Sahakian, B., & Robbins, R. (2010). Paradoxical enhancement of choice reaction time performance in patients with depression. Journal of Psychopharmacology, 24: 471–9.CrossRefGoogle ScholarPubMed
Chertkow, H., Bub, D., Bergman, H., Bruemmer, A., Merling, A., & Rothfleisch, J. (1994). Increased semantic priming in patients with dementia of the Alzheimer's type. Journal of Clinical and Experimental Neuropsychology, 16: 608–22.CrossRefGoogle ScholarPubMed
Ciaramelli, E., Ghetti, S., & Borsotti, M. (2009). Divided attention during retrieval suppresses false recognition in confabulation. Cortex, 45: 141–53.CrossRefGoogle ScholarPubMed
Clare, L., & Jones, R. (2008). Errorless learning in the rehabilitation of memory impairment: a critical review. Neuropsychology Review, 18: 1–23.CrossRefGoogle ScholarPubMed
Cohen, D. A., Kurowski, K., Steven, M. S., Blumstein, S. E. & Pascual-Leone, A. (2009). Paradoxical facilitation: the resolution of foreign accent syndrome after cerebellar stroke. Neurology, 73: 566–7.CrossRefGoogle ScholarPubMed
Cools, R., Miyakawa, A., Sheridan, M. & D'Esposito, M. (2010). Enhanced frontal function in Parkinson's Disease. Brain, 133: 225–33.CrossRefGoogle ScholarPubMed
Cooper-Evans, S., Alderman, N., Knight, C., & Oddy, M. (2008). Self-esteem as a predictor of psychological distress after severe acquired brain injury: an exploratory study. Neuropsychological Rehabilitation, 18: 607–26.CrossRefGoogle ScholarPubMed
Corballis, M. C., Hamm, J. P., Barnett, K. J., & Corballis, P. M. (2002). Paradoxical inter-hemispheric summation in the split brain. Journal of Cognitive Neuroscience, 14: 1151–7.CrossRefGoogle Scholar
Coyne, J. C., & Tennen, H. (2010). Positive psychology in cancer care: bad science, exaggerated claims, and unproven medicine. Annals of Behavioural Medicine, 39: 16–26.CrossRefGoogle ScholarPubMed
Cramer, S. (2008). Repairing the human brain after stroke I. Mechanisms of spontaneous recovery. Annals of Neurology, 63: 272–87.CrossRefGoogle Scholar
Crawford, T., Hamm, J., Kean, M., et al. (2010). The perception of real and illusory motion in schizophrenia. Neuropsychologia, 48: 3121–7.CrossRefGoogle Scholar
Cumming, T. B., Graham, K. S., & Patterson, K. (2006). Repetition priming and hyperpriming in semantic dementia. Brain and Language, 98: 221–34.CrossRefGoogle ScholarPubMed
Dakin, S., Carlin, P., & Hemsley, D. (2005). Weak suppression of visual context in chronic schizophrenia. Current Biology, 15: R822–4.CrossRefGoogle ScholarPubMed
Dalgleish, T., Yiend, J., Schweizer, S. & Dunn, B. D. (2009). Ironic effects of emotion suppression when recounting distressing memories. Emotion, 9: 744–9.CrossRefGoogle ScholarPubMed
Daniele, O., Fierro, B., Brighina, F., Magaudda, A., & Natalè, E. (2003). Disappearance of haemorrhagic stroke-induced thalamic (central) pain following a further (contralateral ischaemic) stroke. Functional Neurology, 18: 95–6.Google ScholarPubMed
Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58: 17–22.CrossRefGoogle ScholarPubMed
Gelder, B., & Rouw, R. (2000). Paradoxical configuration effects for faces and objects in prosopagnosia. Neuropsychologia, 38: 1271–9.CrossRefGoogle ScholarPubMed
Martino, B., Camerer, C., & Adolphs, R. (2010). Amygdala damage eliminates monetary loss aversion. Proceedings of the National Academy of Sciences, 107: 3788–92.CrossRefGoogle ScholarPubMed
Dima, D., Roiser, J. P., Dietrich, D. E., et al. (2009). Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage, 46: 1180–6.CrossRefGoogle Scholar
Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology: Learning, Memory and Cognition, 30: 343–53.Google ScholarPubMed
Ehlers, A., & Breuer, P. (2006). How good are patients with panic disorders at perceiving their heartbeats?Biological Psychology, 42: 165–82.CrossRefGoogle Scholar
Etcoff, N. L., Ekman, P., Magee, J. J., & Frank, M. G. (2000). Lie detection and language comprehension. Nature, 405: 139.CrossRefGoogle ScholarPubMed
Evans, J., & Dennis, I. (1982). Brain lesions and reasoning: a note on Golding. Cortex, 18: 317–8.CrossRefGoogle ScholarPubMed
Fabri, M., Del Pesce, M., Paggi, A., et al. (2005). Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Brain Research. Cognitive Brain Research, 24: 73–80.CrossRefGoogle ScholarPubMed
Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: evidence for mandatory, face-specific perceptual mechanisms. Vision Research, 35: 2089–93.CrossRefGoogle ScholarPubMed
Feuillet, L., Dufour, H., & Pelletier, J. (2007). Brain of a white-collar worker. Lancet, 370: 262.CrossRefGoogle ScholarPubMed
Filippini, N., MacIntosh, B. J., Hough, M. G., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proceedings of the National Academy of Sciences of the USA, 106: 7209–14.CrossRefGoogle ScholarPubMed
Galvez, J. F., Thommi, S., & Ghaemi, S. N. (2011). Positive aspects of mental illness: a review in bipolar disorder. Journal of Affective Disorders, 128: 185–90.CrossRefGoogle ScholarPubMed
Gardner, H., Boiler, F., Moreines, J., & Butters, N. (1973). Retrieving information from Korsakoff patients: effects of categorical cues and reference to the task. Cortex 9: 165–75.CrossRefGoogle ScholarPubMed
Giffard, B., Desgranges, B. N., Nore-Mary, F., et al. (2001). The nature of semantic memory deficits in Alzheimer's disease: new insights from hyperpriming effects. Brain, 124: 1522–32.CrossRefGoogle ScholarPubMed
Gil, S., Caspi, Y., Ben-Ari, I. Z., Koren, D., & Klein, E. (2005). Does memory of a traumatic event increase the risk for posttraumatic stress disorder in patients with traumatic brain injury? A prospective study. American Journal of Psychiatry, 162: 963–9.CrossRefGoogle ScholarPubMed
Glickstein, M. (2009). Paradoxical inter-hemispheric transfer after section of the cerebral commissures. Experimental Brain Research, 192: 425–9.CrossRefGoogle ScholarPubMed
Glickstein, M., & Sperry, R. (1960). Intermanual somesthetic transfer in split-brain rhesus monkeys. Journal of Comparative and Physiological Psychology, 53: 322–7.CrossRefGoogle ScholarPubMed
Golding, E. (1981). The effect of unilateral brain lesion on reasoning. Cortex, 17: 31–40.CrossRefGoogle ScholarPubMed
Golomb, J. D., McDavitt, J. R., Ruf, B. M., et al. (2009). Enhanced visual motion perception in major depressive disorder. Journal of Neuroscience, 29: 9072–7.CrossRefGoogle ScholarPubMed
Greenspan, A. I., Stringer, A. Y., Phillips, V. L., Hammond, F. M., & Goldstein, F. C. (2006). Symptoms of post-traumatic stress: intrusion and avoidance 6 and 12 months after TBI. Brain Injury, 20: 733–42.CrossRefGoogle ScholarPubMed
Haidt, J. (2006). The uses of adversity. In The Happiness Hypothesis. New York, NY: Basic Books.Google Scholar
Han, S., & Bondi, M. W. (2008). Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimer's & Dementia, 4: 251–4.CrossRefGoogle ScholarPubMed
Han, S. D., Drake, A. I., Cessante, L. M., et al. (2007). Apolipoprotein E and traumatic brain injury in a military population: evidence of a neuropsychological compensatory mechanism?Journal of Neurology, Neurosurgery, and Psychiatry, 78: 1103–08.CrossRefGoogle Scholar
Harvey, A. G., Brewin, C. R., Jones, C., & Kopelman, M. D. (2003). Coexistence of posttraumatic stress disorder and traumatic brain injury: towards a resolution of the paradox. Journal of the International Neuropsychological Society, 9: 663–76.CrossRefGoogle ScholarPubMed
Hawley, C. A., & Joseph, S. (2008). Predictors of positive growth after traumatic brain injury. Brain Injury, 22: 427–35.CrossRefGoogle ScholarPubMed
Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34: 102–254.CrossRefGoogle Scholar
Heindel, W. C., Salmon, D. P., & Butters, N. (1990). Pictorial priming and cued recall in Alzheimer's and Huntington's disease. Brain and Cognition, 13: 282–95.CrossRefGoogle ScholarPubMed
Helm-Estabrooks, N., Yeo, R., Geschwind, N., Freedman, M., & Weinstein, C. (1986). Stuttering: disappearance and reappearance with acquired brain lesions. Neurology, 36: 1109–12.CrossRefGoogle ScholarPubMed
Helmchen, C., Lindig, M., Petersen, D., & Tronnier, V. (2002). Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation. Pain, 98: 325–30.CrossRefGoogle ScholarPubMed
Herbert, C. M., & Powell, G. E. (1989). Insight and progress in rehabilitation. Clinical Rehabilitation, 3: 125–30.CrossRefGoogle Scholar
Hilgetag, C., Kotter, R., & Young, M. (1999). Inter-hemispheric competition of sub-cortical structures is a crucial mechanism in paradoxical lesion effects and spatial neglect. In: Reggia, J., Ruppin, E. & Glanzman, D. (Eds). Progress in Brain Research, Vol 121. Amsterdam: Elsevier, pp. 121–41.Google Scholar
Himmelbach, M., Nau, M., Zündorf, I., Erb, M., Perenin, M. T., & Karnath, H. O. (2009). Brain activation during immediate and delayed reaching in optic ataxia. Neuropsychologia, 47: 1508–17.CrossRefGoogle ScholarPubMed
Hudon, C., Belleville, S., Souchay, C., Gély-Nargeot, M. C., Chertkow, H., & Gauthier, S. (2006). Memory for gist and detail information in Alzheimer's disease and mild cognitive impairment. Neuropsychology, 20: 566–77.CrossRefGoogle ScholarPubMed
Hughes, J. (2010). A review of the Savant Syndrome and its possible relationship to epilepsy. Epilepsy and Behavior, 17: 147–52.CrossRefGoogle ScholarPubMed
Iacoboni, M. (2005). Divided attention in the normal and the split brain: chronometry and imaging. In: Itti, L., Rees, G., & Tsotsos, J. (Eds). Neurobiology of Attention. New York, NY: Academic Press, pp. 363–7.CrossRefGoogle Scholar
Irle, E. (1987). Lesion size and recovery of function: some new perspectives. Brain Research, 434: 307–20.CrossRefGoogle ScholarPubMed
Irle, E. (1990). An analysis of the correlation of lesion size, localization and behavioural effects in 283 published studies of cortical and subcortical lesions in old-world monkeys. Brain Research, Brain Research Reviews, 15: 181–213.CrossRefGoogle ScholarPubMed
Irle, E., Peper, M., Wowra, B., & Kunze, S. (1994). Mood changes after surgery for tumors of the cerebral cortex. Archives of Neurology, 51: 164–74.CrossRefGoogle ScholarPubMed
Irle, E., Wowra, B., Kunert, H., Hampl, J., & Kunze, S. (1992). Memory disturbances following anterior communicating artery rupture. Annals of Neurology, 31: 473–80.CrossRefGoogle ScholarPubMed
Jacoby, L. L., & Witherspoon, D. (1982). Remembering without awareness. Canadian Journal of Psychology, 36: 300–24.CrossRefGoogle Scholar
Jiang, H., Stein, B., & McHaffie, J. (2009). Cortical lesion-induced visual hemineglect is prevented by NMDA antagonist pretreatment. The Journal of Neuroscience, 29: 6917–25.CrossRefGoogle ScholarPubMed
Joseph, S., & Linley, P. (Eds). (2008). Trauma, Recovery and Growth. Positive Psychological Perspectives on Posttraumatic Stress. Hoboken, NJ: Wiley.CrossRef
Jovanovic, M. B., Berisavac, I., Perovic, J. V., Grubor, A., & Milenkovic, S. (2006). Huge extracranial asymptomatic frontal invasive meningioma: a case report. European Archive of Otorhinolaryngology, 263: 223–7.CrossRefGoogle ScholarPubMed
Kapur, N. (1980). Recognition of word associates in semantic paralexia. British Journal of Psychology, 71: 401–05.CrossRefGoogle ScholarPubMed
Kapur, N. (1996). Paradoxical functional facilitation in brain–behaviour research: a critical review. Brain, 119: 1775–90.CrossRefGoogle ScholarPubMed
Kapur, N., Heath, P., Meudell, P., & Kennedy, P. (1986). Amnesia can facilitate memory performance: evidence from a patient with dissociated retrograde amnesia. Neuropsychologia, 24: 215–22.CrossRefGoogle ScholarPubMed
Karpicke, J., & Roediger, III H. (2008). The critical importance of retrieval for learning. Science, 319: 966–8.CrossRefGoogle ScholarPubMed
Keedwell, P. (2008). How Sadness Survived: The Evolutionary Basis of Depression. Oxford: Radcliffe Publishing Ltd.Google Scholar
Keidel, J., Welbourne, S., & Lambon Ralph, M. (2010). Solving the paradox of the equipotential and modular brain: a neurocomputational model of stroke vs slow-growing glioma. Neuropsychologia, Feb 24 [Epub ahead of print].CrossRef
Kiefer, M., Martens, U., Weisbrod, M., Hermle, L., & Spitzer, M. (2009). Increased unconscious semantic activation in schizophrenia patients with formal thought disorder. Schizophrenia Research, 114: 79–83.CrossRefGoogle ScholarPubMed
Kim, J. (1999). Aggravation of post-stroke sensory symptoms after a second stroke on the opposite side. European Neurology, 42: 200–04.CrossRefGoogle Scholar
Klimkowicz-Mrowiec, A., Slowikm, A., Krzywoszanski, L., Herzog-Krzywoszanska, R., & Szczudlik, A. (2008). Severity of explicit memory impairment due to Alzheimer's disease improves effectiveness of implicit learning. Journal of Neurology, 255: 502–09.CrossRefGoogle ScholarPubMed
Kuratsu, J., Kochi, M., & Ushio, Y. (2000). Incidence and clinical features of asymptomatic meningiomas. Journal of Neurosurgery, 82: 766–70.CrossRefGoogle Scholar
Lecardeur, L., Dollfus, S., & Stip, E. (2008). Semantic hyperpriming in schizophrenia. British Journal of Psychiatry, 193: 82.CrossRefGoogle Scholar
Leung, Y. W., Gravely-Witte, S., Macpherson, A., Irvine, J., Stewart, D. E., & Grace, S. L. (2010). Post-traumatic growth among cardiac outpatients: degree comparison with other chronic illness samples and correlates. Journal of Health Psychology,15: 1049–63.CrossRefGoogle ScholarPubMed
Lewin, R. (1980). Is your brain really necessary?Science, 210: 1232–4.CrossRefGoogle ScholarPubMed
Li, W., Howard, J. D., Parrish, T. B., & Gottfried, J. A. (2008). Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science, 319: 1842–5.CrossRefGoogle ScholarPubMed
Lomber, S., Malhotra, S., & Sprague, J. (2007). Restoration of acoustic orienting into a cortically deaf hemifield by reversible deactivation of the contralesional superior colliculus: the acoustic ‘Sprague Effect’. Journal of Neurophysiology, 97: 979–93.CrossRefGoogle Scholar
Lorenzen, B., & Murray, L. (2008). Bilingual aphasia: a theoretical and clinical review. American Journal of Speech–Language Pathology, 17: 299–317.CrossRefGoogle ScholarPubMed
Luck, S. J., Hillyard, S. A., Mangun, G. R., & Gazzaniga, M. S. (1989). Independent hemispheric attentional systems mediate visual search in split-brain patients. Nature, 342: 543–5.CrossRefGoogle ScholarPubMed
Malia, K., Torode, S., & Powell, G. (1993). Insight and progress in rehabilitation after brain injury. Clinical Rehabilitation, 7: 23–9.CrossRefGoogle Scholar
Marchant, N. L., King, S. L., Tabet, N., & Rusted, J. M. (2010). Positive effects of cholinergic stimulation favor young APOEε-4 carriers. Neuropsychopharmacology, epub ahead of print.
Marsh, E. J., Balota, D. A., & Roediger, H. L. (2005). Learning facts from fiction: effects of healthy aging and early-stage dementia of the Alzheimer type. Neuropsychology, 19: 115–29.CrossRefGoogle ScholarPubMed
Martel, G., Blanchard, J., Mons, N., Gastambide, F., Micheau, J., & Guillou, J. L. (2007). Dynamic interplays between memory systems depend on practice: the hippocampus is not always the first to provide solution. Neuroscience, 50: 743–53.CrossRefGoogle Scholar
Mataix-Cols, D., Wooderson, S., Lawrence, N., Brammer, M. J., Speckens, A., & Phillips, M. L. (2004). Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive–compulsive disorder. Archives of General Psychiatry, 61: 564–76.CrossRefGoogle ScholarPubMed
McGrath, J., & Linley, A. (2006). Post-traumatic growth in acquired brain injury. Brain Injury, 20: 767–73.CrossRefGoogle Scholar
McNeil, J., & Warrington, E. (1991). Prosopagnosia: a reclassification. Quarterly Journal of Experimental Psychology A, 43: 267–87.CrossRefGoogle ScholarPubMed
Menon, M., Woodward, T. S., Pomarol-Clotet, E., McKenna, P. J., & McCarthy, R. (2005). Heightened stimulus salience renders deluded schizophrenics less susceptible to the ‘famous names illusion’. Schizophrenia Research, 80: 369–71.CrossRefGoogle ScholarPubMed
Miller, N. (2007). The merry vibes of Wintzer: the tale of foreign accent syndrome. In: Della Sala, S. (Ed), Tall Tales about the Mind and Brain. Oxford: Oxford University Press, pp. 204–17.Google Scholar
Milner, A. D., Dijkerman, H. C., McIntosh, R. D., Rossetti, Y., & Pisella, L. (2003). Delayed reaching and grasping in patients with optic ataxia. Progress in Brain Research, 142: 225–42.CrossRefGoogle ScholarPubMed
Milner, A. D., Dijkerman, H. C., Pisella, L., et al. (2001). Grasping the past. Delay can improve visuomotor performance. Current Biology, 11: 1896–901.CrossRefGoogle ScholarPubMed
Milner, A. D., Paulignan, Y., Dijkerman, H. C., Michel, F., & Jeannerod, M. (1999). A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proceedings of the Royal Society B, 266: 2225–9.CrossRefGoogle ScholarPubMed
Mitchell, J. P., Schacter, D. L., Schacter, D. L., & Budson, A. E. (2006). Mis-attribution errors in Alzheimer's disease: the illusory truth effect. Neuropsychology, 20: 185–92.CrossRefGoogle ScholarPubMed
Moscovitch, M., Wincour, G., & Behrmann, M. (1997). What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. Journal of Cognitive Neuroscience, 9: 555–604.CrossRefGoogle ScholarPubMed
Msetfi, R. M., Murphy, R. A., Simpson, J., & Kornbrot, D. E. (2005). Depressive realism and outcome density bias in contingency judgement: the effect of the context and inter-trial interval. Journal of Experimental Psychology: General, 134: 10–22.CrossRefGoogle Scholar
Muroi, A., Hirayama, K., Tanno, Y., Shimizu, S., Watanabe, T., & Yamamoto, T. (1999). Cessation of stuttering after bilateral thalamic infarction. Neurology, 53: 890.CrossRefGoogle ScholarPubMed
Musen, G., Shimamura, A., & Squire, L. R. (1990). Intact text-specific reading skill in amnesia. Journal of Experimental Psychology: Learning, Memory and Cognition, 16: 1068–76.Google ScholarPubMed
Myers, C. E., McGlinchey-Berroth, R., Warren, S., Monti, L., Brawn, C. M., & Gluck, M. A. (2000). Latent learning in medial temporal amnesia: evidence for disrupted representational but preserved attentional processes. Neuropsychology, 14: 3–15.CrossRefGoogle ScholarPubMed
Myers, C. E., Shohamy, D., Gluck, M. A., Grossman, S., Onlaor, S., & Kapur, N. (2003). Dissociating medial temporal and basal ganglia memory systems with a latent learning task. Neuropsychologia, 41: 1919–28.CrossRefGoogle ScholarPubMed
Nathaniel-James, D., & Frith, C. (2002). The role of the dorsolateral prefrontal cortex: evidence from the effects of contextual restraint in a sentence completion task. Neuroimage, 16: 1094–102.CrossRefGoogle Scholar
O'Brien, M. (1993). Loss of memory is protective [Letter]. British Medical Journal, 307: 1283.CrossRefGoogle Scholar
Ogourtsova, T., Korner-Bitensky, N., & Ptito, A. (2010). Contribution of the superior colliculi to post-stroke unilateral spatial neglect and recovery. Neuropsychologia, 48: 2407–16.CrossRefGoogle ScholarPubMed
Ovsiew, F. (1997). Paradoxical functional facilitation in brain–behaviour research: a critical review [Letter]. Brain, 120: 1261–4.CrossRefGoogle Scholar
Owen, G. S., Cutting, J., & David, A. S. (2007). Are people with schizophrenia more logical than healthy volunteers?British Journal of Psychiatry, 191: 453–4.CrossRefGoogle ScholarPubMed
Packard, M. (2009). Anxiety, cognition and memory: a multiple memory systems perspective. Brain Research, 1293: 121–8.CrossRefGoogle ScholarPubMed
Peterson, C., Park, N., Pole, N., D'Andrea, W., & Seligman, M. E. (2008). Strengths of character and post-traumatic growth. Journal of Trauma and Stress, 21: 214–7.CrossRefGoogle Scholar
Poldrack, R. A., & Packard, M. G. (2003). Competition amongst multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia, 41: 245–51.CrossRefGoogle Scholar
Pollman, S., & Zaidel, E. (1999). Redundancy gains for visual search after complete commissurotomy. Neuropsychology, 13: 246–58.CrossRefGoogle Scholar
Pomarol-Clotet, E., Oh, T. M., Laws, K. R., & McKenna, P. J. (2008). Semantic priming in schizophrenia: systematic review and meta-analysis. British Journal of Psychiatry, 192: 92–7.CrossRefGoogle ScholarPubMed
Powell, T., Ekin-Wood, A., & Collin, C. (2007). Post-traumatic growth after head injury: a long-term follow-up. Brain Injury, 21: 31–8.CrossRefGoogle ScholarPubMed
Pujol, J., Vendrell, P., Deus, J., et al. (2001). The effect of medial frontal and posterior parietal demyelinating lesions on Stroop interference. NeuroImage, 13: 68–75.CrossRefGoogle ScholarPubMed
Randolph, C. (1991). Implicit, explicit, and semantic memory functions in Alzheimer's disease and Huntington's disease. Journal of Clinical and Experimental Neuropsychology, 13: 479–94.CrossRefGoogle ScholarPubMed
Reed, G. F. (1977). Obsessional personality disorder in remembering. British Journal of Psychiatry, 130: 177–83.CrossRefGoogle ScholarPubMed
Regard, M., Cook, N., Wieser, H., & Landis, T. (1994). The dynamics of cerebral dominance during unilateral seizures. Brain, 117: 91–104.CrossRefGoogle Scholar
Reverberi, C., Toraldo, A., D'Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128: 2882–90.CrossRefGoogle ScholarPubMed
Rice, N. J., Edwards, M. G., Schindler, I., et al. (2008). Delay abolishes the obstacle avoidance deficit in unilateral optic ataxia. Neuropsychologia, 46: 1549–57.CrossRefGoogle ScholarPubMed
Riddoch, M. J., Johnston, R., Bracewell, R., Boutsen, L., & Humphreys, G. (2008). Are faces special? A case of pure prosopagnosia. Cognitive Neuropsychology, 25: 3–26.CrossRefGoogle ScholarPubMed
Ridout, N., Astell, A. J., Reid, I. C., Glen, T., & O'Carroll, R. E. (2003). Memory bias for emotional facial expressions in major depression. Cognition and Emotion, 17: 101–22.CrossRefGoogle ScholarPubMed
Rosenquist, A., & Sherman, S. (2007). James Mather Sprague, 1916–2002. Biographical Memoirs, Volume 89. Washington, DC: National Academy of Sciences.Google Scholar
Rossetti, Y., Revol, P., McIntosh, R., et al. (2005). Visually guided reaching: bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia, 43: 162–77.CrossRefGoogle Scholar
Roth, R. M., Baribeau, J., Milovan, D., O'Connor, K., & Todorov, C. (2004). Procedural and declarative memory in obsessive–compulsive disorder. Journal of the International Neuropsychological Society, 10: 647–54.CrossRefGoogle ScholarPubMed
Rouw, R., & Gelder, B. (2002). Impaired face recognition does not preclude intact whole face perception. Visual Cognition, 9: 689–718.CrossRefGoogle Scholar
Sacks, O. (1985). The Man Who Mistook His Wife for a Hat. London: Duckworth.Google Scholar
Sato, W., Kubota, Y., Okada, T., Murai, T., Yoshikawa, S., & Sengoku, A. (2002). Seeing happy emotion in fearful and angry faces: qualitative analysis of facial expression recognition in a bilateral amygdala-damaged patient. Cortex, 38: 727–42.CrossRefGoogle Scholar
Schacter, D. L. (1996). Illusory memories: a cognitive neuroscience analysis. Proceedings of the National Academy of Science USA, 93: 13,527–33.CrossRefGoogle ScholarPubMed
Shergill, S., Samso, G., Bays, P., Frith, C., & Wolpert, D. (2005). Evidence for sensory prediction deficits in schizophrenia. American Journal of Psychiatry, 162: 2384–6.CrossRefGoogle Scholar
Shiv, B., Loewenstein, G., Bechara, A., Damasio, H., & Damasio, A. R. (2005). Investment behaviour and the negative side of emotion. Psychological Science, 16: 435–9.Google ScholarPubMed
Soria, E., & Fine, E. (1991). Disappearance of thalamic pain after parietal subcortical stroke. Pain, 44: 285–8.CrossRefGoogle ScholarPubMed
Sprague, J. M. (1966). Interaction of cortex and superior colliculus in mediation of visually guided behaviour in the cat. Science, 153: 1544–7.CrossRefGoogle ScholarPubMed
Sprague, J. M. (1996). Neural mechanisms of visual orienting responses. Progress in Brain Research, 112: 1–15.CrossRefGoogle ScholarPubMed
Squire, L. R., & McKee, R. (1993). Declarative and nondeclarative memory in opposition: when prior events influence amnesic patients more than normal subjects. Memory and Cognition, 21: 424–30.CrossRefGoogle ScholarPubMed
Strasser-Fuchs, S., Enzinger, C., Ropele, S., Wallner, M., & Fazekas, F. (2008). Clinically benign multiple sclerosis despite large T2 lesion load: can we explain this paradox?Multiple Sclerosis, 14: 205–11.CrossRefGoogle ScholarPubMed
Sunaga, S., Shimizu, H., & Sunago, H. (2009). Long-term follow-up of seizure outcomes after corpus callosotomy. Seizure, 18: 124–8.CrossRefGoogle ScholarPubMed
Synofzik, M., Their, P., Leube, D., Schlotterbeck, P., & Lindner, A. (2010). Misattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one's actions. Brain, 133: 262–71.CrossRefGoogle ScholarPubMed
Tadin, D., Kim, J., Doop, M. L., et al. (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. The Journal of Neuroscience, 26: 11,403–12.CrossRefGoogle Scholar
Taku, K., Cann, A., Calhoun, L. G., & Tedeschi, . (2008). The factor structure of the posttraumatic growth inventory: a comparison of five models using confirmatory factor analysis. Journal of Trauma and Stress, 21: 158–64.CrossRefGoogle ScholarPubMed
Trabacca, A., & DiCuonzo, F. (2009). Living with one hemisphere – a large porencephalic cyst. The New England Journal of Medicine, 361: 16.CrossRefGoogle ScholarPubMed
Treffert, D. (2010). Islands of Genius. London: Jessica Kingsley Publishers.Google Scholar
Trevethan, C., Sahraie, A., & Weiskrantz, L. (2007). Can blindsight be superior to ‘sighted sight’?Cognition, 103: 491–501.CrossRefGoogle ScholarPubMed
Vandenberghe, R., Vandenbulcke, E., Weintraub, S., et al. (2005). Paradoxical features of word finding difficulty in primary progressive aphasia. Annals of Neurology, 57: 204–09.CrossRefGoogle ScholarPubMed
Verfaellie, M., Schacter, D. L., & Cook, S. P. (2002). The effect of retrieval instructions on false recognition: exploring the nature of the gist memory impairment in amnesia. Neuropsychologia, 40: 2360–8.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Hester, D., Assal, G., & Regli, F. (1996). Unilateral spatial neglect recovery after sequential strokes. Neurology, 19: 184–9.CrossRefGoogle Scholar
Wallisch, P., & Kumbhani, R. (2009). Can major depression improve the perception of visual motion?The Journal of Neuroscience, 29: 14,381–2.CrossRefGoogle ScholarPubMed
Warrington, E. K., & Davidoff, J. (2000). Failure at object identification improves mirror image matching. Neuropsychologia, 38: 1229–34.CrossRefGoogle ScholarPubMed
Warrington, E. K., & Weiskrantz, L. (1978). Further analysis of the prior learning effect in amnesic patients. Neuropsychologia, 16: 169–77.CrossRefGoogle ScholarPubMed
Weddell, R. (2004). Subcortical modulation of spatial attention including evidence that the Sprague effect extends to man. Brain and Cognition, 55: 497–506.CrossRefGoogle Scholar
Weddell, R. (2008). The effects of midbrain glioma on memory and other functions: a longitudinal single case study. Neuropsychologia, 46: 1135–50.CrossRefGoogle ScholarPubMed
Williams, L. E., Ramachandran, V. S., Hubbard, E. M., Braff, D. L., & Light, G. A. (2010). Superior size–weight illusion performance in patients with schizophrenia: evidence for deficits in forward models. Schizophrenia Research, 121: 101–06.CrossRefGoogle ScholarPubMed
Wilson, B. A. (2009). Memory Rehabilitation. New York, NY: The Guilford Press.Google Scholar
Wilson, B. A., Watson, P. C., Baddeley, A. D., Emslie, H., & Evans, J. J. (2000). Improvement or simply practice? The effects of twenty repeated assessments on people with and without brain injury. Journal of the International Neuropsychological Society, 6: 469–79.CrossRefGoogle ScholarPubMed
Wingard, J., & Packard, M. (2008). The amygdala and emotional modulation of competition between cognitive and habit memory. Behavioral Brain Research, 19: 126–31.CrossRefGoogle Scholar
Wittenberg, G., & Schaechter, J. (2009). The neural basis of constraint-induced movement therapy. Current Opinion in Neurology, 22: 582–8.CrossRefGoogle ScholarPubMed
Yarnitsky, D., Barron, S., & Bental, E. (1988). Disappearance of phantom pain after focal brain infarction. Pain, 32: 285–7.CrossRefGoogle ScholarPubMed
Zetterberg, H., Alexander, D. M., Spandidos, D. A., & Blennow, K. (2009). Additional evidence for antagonistic pleiotrophic effects ofAPOE. Alzheimer's & Dementia, 5: 75.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×