Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T10:52:21.803Z Has data issue: false hasContentIssue false

6 - Paradoxical psychological functioning in early child development

Published online by Cambridge University Press:  05 December 2011

David J. Lewkowicz
Affiliation:
Florida Atlantic University
Asif A. Ghazanfar
Affiliation:
Princeton University
Narinder Kapur
Affiliation:
University College London
Alvaro Pascual-Leone
Affiliation:
Harvard Medical School
Vilayanur Ramachandran
Affiliation:
University of California, San Diego
Jonathan Cole
Affiliation:
University of Bournemouth
Sergio Della Sala
Affiliation:
University of Edinburgh
Tom Manly
Affiliation:
MRC Cognition and Brain Sciences Unit
Andrew Mayes
Affiliation:
University of Manchester
Oliver Sacks
Affiliation:
Columbia University Medical Center
Get access

Summary

Summary

Development is a progressive process that results in the growth and proliferation of motor, perceptual and cognitive skills. A growing body of evidence shows, however, that seemingly paradoxical regressive processes also contribute to perceptual development and to the emergence of specialization. This evidence shows that unisensory perceptual sensitivity in early infancy is so broadly tuned that young infants respond to, and discriminate, native sensory inputs (e.g. speech sounds in their own language and faces from their own species and race) as well as non-native sensory inputs (e.g. speech sounds from other languages and faces from other species and other races). In contrast, older infants only respond to native inputs. For example, younger but not older infants discriminate monkey, human, and other-race faces, native and foreign speech contrasts, and musical rhythms from different cultures. Here, we review new findings indicating that perceptual narrowing is not just a unisensory developmental process, but a general, pan-sensory one. These new data reveal that young infants can perceive non-native (monkey) faces and vocalizations as well as non-native speech gestures and vocalizations as coherent multisensory events, and that this broad multisensory perceptual tuning is present at birth. These data also reveal that this broad tuning narrows by the end of the first year of life, leaving older infants only with the ability to perceive the multisensory coherence of native sensory inputs.

Type
Chapter
Information
The Paradoxical Brain , pp. 110 - 129
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, I., Kuwahata, H., Fujita, K., Tomonaga, M., & Matsuzawa, T. (2006). Japanese macaques form a cross-modal representation of their own species in their first year of life. Primates, 47: 350–4.CrossRefGoogle Scholar
Adachi, I., Kuwahata, H., Fujita, K., Tomonaga, M., & Matsuzawa, T. (2009). Plasticity of the ability to form cross-modal representations in infant Japanese macaques. Developmental Science, 12: 446–52.CrossRefGoogle ScholarPubMed
Agmon, A., Yang, L. T., O'Dowd, D. K., & Jones, E. G. (1993). Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. Journal of Neuroscience, 13: 5365–82.CrossRefGoogle ScholarPubMed
Bahrick, L. E., & Lickliter, R. (2000). Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Developmental Psychology, 36: 190–201.CrossRefGoogle ScholarPubMed
Bahrick, L. E., Lickliter, R., & Flom, R. (2004). Intersensory redundancy guides the development of selective attention, perception, and cognition in infancy. Current Directions in Psychological Science, 13: 99–102.CrossRefGoogle Scholar
Bard, K. (2007). Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms. Animal Cognition, 10: 233–42.CrossRefGoogle ScholarPubMed
Best, C. T., McRoberts, G. W., Lafleur, R., & Silver-Isenstadt, J. (1995). Divergent developmental patterns for infants' perception of two non-native consonant contrasts. Infant Behavior & Development, 18: 339–50.CrossRefGoogle Scholar
Birch, H. G., & Lefford, A. (1967). Visual differentiation, intersensory integration, and voluntary motor control. Monographs of the Society for Research in Child Development, 32: 1–87.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13: 2801–20.CrossRefGoogle ScholarPubMed
Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., & Ghazanfar, A. A. (2009). The natural statistics of audiovisual speech. PLoS Computational Biology, 5: el000436.Google ScholarPubMed
Cheour, M., Ceponiene, R., Lehtokoski, A., et al. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1: 351–3.CrossRefGoogle ScholarPubMed
Chiroro, P., & Valentine, T. 1995. An investigation of the contact hypothesis of the own-race bias in face recognition. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 48A: 879–94.CrossRefGoogle Scholar
Cowan, W. M., Fawcett, J. W., O'Leary, D. D., & Stanfield, B. B. (1984). Regressive events in neurogenesis. Science, 225: 1258–65.CrossRefGoogle ScholarPubMed
Crowley, J. C., & Katz, L. C. (1999). Development of ocular dominance columns in the absence of retinal input. Nature Neuroscience, 2: 1125–30.CrossRefGoogle ScholarPubMed
Ferrari, P., Paukner, A., Ruggiero, A., Darcey, L., Unbehagen, S., & Suomi, S. (2009). Interindividual differences in neonatal imitation and the development of action chains in rhesus macaques. Child Development, 80: 1057–68.CrossRefGoogle ScholarPubMed
Ferrari, P., Visalberghi, E., Paukner, A., Fogassi, L., Ruggiero, A., & Suomi, S. (2006). Neonatal imitation in rhesus macaques. PLoS Biology, 4: 1501.CrossRefGoogle ScholarPubMed
Ghazanfar, A., Turesson, H., Maier, J., Dinther, R., Patterson, R., & Logothetis, N. (2007). Vocal-tract resonances as indexical cues in rhesus monkeys. Current Biology, 17: 425–30.CrossRefGoogle ScholarPubMed
Ghazanfar, A. A. (2010). The default mode of primate vocal communication and its neural correlates. In: Naumer, M. J. & Kaiser, J. (Eds.). Multisensory Object Perception in the Primate Brain. New York, NY: Springer.Google Scholar
Ghazanfar, A. A., & Logothetis, N. K. (2003). Facial expressions linked to monkey calls. Nature, 423: 937–8.CrossRefGoogle ScholarPubMed
Gibson, E. J. (1969). Principles of Perceptual Learning and Development. New York, NY: Appleton.Google Scholar
Gibson, E. J. (1984). Perceptual development from the ecological approach. In: Lamb, M. E., Brown, A. L. & Rogoff, B. (Eds.). Advances in Developmental Psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Gibson, K. R. (1991). Myelination and behavioral development: a comparative perspective on questions of neoteny, altriciality and intelligence. In: Gibson, K. R. & Petersen, A. C. (Eds.). Brain Maturation and Cognitive Development: Comparative and Cross-cultural Perspectives. New York, NY: Aldine de Gruyter.Google Scholar
Gottlieb, G. (1991). Experiential canalization of behavioral development: results. Developmental Psychology, 27: 35–9.CrossRefGoogle Scholar
Gottlieb, G. (1996). Developmental psychobiological theory. In: Cairns, R. B. & Elder, G. H. (Eds.). Developmental Science. Cambridge Studies in Social and Emotional Development. New York, NY: Cambridge University Press.Google Scholar
Hannon, E. E., & Trehub, S. E. (2005a). Metrical categories in infancy and adulthood. Psychological Science, 16: 48–55.CrossRefGoogle ScholarPubMed
Hannon, E. E., & Trehub, S. E. (2005b). Tuning in to musical rhythms: infants learn more readily than adults. Proceedings of the National Academy of Science USA, 102: 12639–43.CrossRefGoogle ScholarPubMed
Hauser, M. D. (1989). Ontogenetic changes in the comprehension and production of vervet monkey (Cercopithecus aethiops) vocalizations. Journal of Comparative Psychology, 103: 149–58.CrossRefGoogle Scholar
Holt, E. B. (1931). Animal Drive and the Learning Process. New York, NY: Holt.Google Scholar
Izumi, A., & Kojima, S. (2004). Matching vocalizations to vocalizing faces in a chimpanzee (Pan troglodytes). Animal Cognition, 7: 179–84.CrossRefGoogle Scholar
Jordan, K., Brannon, E., Logothetis, N., & Ghazanfar, A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15: 1034–8.CrossRefGoogle ScholarPubMed
Kaas, J. H. (1991). Plasticity of sensory and motor maps in adult animals. Annual Review of Neuroscience, 5: 137–67.CrossRefGoogle Scholar
Kahana-Kalman, R., & Walker-Andrews, A. S. (2001). The role of person familiarity in young infants' perception of emotional expressions. Child Development, 72: 352–69.CrossRefGoogle ScholarPubMed
Kelly, D. J., Quinn, P. C., Slater, A., Lee, K., Ge, L., & Pascalis, O. (2007). The other-race effect develops during infancy: evidence of perceptual narrowing. Psychological Science, 18: 1084–9.CrossRefGoogle ScholarPubMed
Kingsbury, M. A., & Finlay, B. L. (2001). The cortex in multidimensional space: where do cortical areas come from? Commentary. Developmental Science, 4: 125–42.CrossRefGoogle Scholar
Krubitzer, L. (2007). The magnificent compromise: cortical field evolution in mammals. Neuron, 56: 201–08.CrossRefGoogle ScholarPubMed
Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218: 1138–41.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Science USA, 100: 9096–101.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255: 606–08.CrossRefGoogle ScholarPubMed
Kuo, Z. Y. (1976). The Dynamics of Behavior Development: An Epigenetic View. New York, NY: Plenum.Google Scholar
Lewis, M. D. (2000). The promise of dynamic systems approaches for an integrated account of human development. Child Development, 71, 36–43.CrossRefGoogle ScholarPubMed
Lewkowicz, D. J. (2000). The development of intersensory temporal perception: an epigenetic systems/limitations view. Psychological Bulletin, 126: 281–308.CrossRefGoogle ScholarPubMed
Lewkowicz, D. J. (2002). Heterogeneity and heterochrony in the development of intersensory perception. Cognitive Brain Research, 14: 41–63.CrossRefGoogle ScholarPubMed
Lewkowicz, D. J. (2010). Infant perception of audio-visual speech synchrony. Developmental Psychology, 46: 66–77.CrossRefGoogle ScholarPubMed
Lewkowicz, D. J., & Ghazanfar, A. A. (2006). The decline of cross-species intersensory perception in human infants. Proceedings of the National Academy of Science USA, 103: 6771–4.CrossRefGoogle ScholarPubMed
Lewkowicz, D. J., & Ghazanfar, A. A. (2009). The emergence of multisensory systems through perceptual narrowing. Trends in Cognitive Sciences, 13: 470–8.CrossRefGoogle ScholarPubMed
Lewkowicz, D. J., & Kraebel, K. (2004). The value of multimodal redundancy in the development of intersensory perception. In: Calvert, G., Spence, C. & Stein, B. (Eds.). Handbook of Multisensory Processing. Cambridge, MA: MIT Press.Google Scholar
Lewkowicz, D. J., & Lickliter, R. (Eds.) (1994). The Development of Intersensory Perception: Comparative Perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Lewkowicz, D. J., Leo, I., & Simion, F. (2010). Intersensory perception at birth: newborns match non-human primate faces & voices. Infancy, 15: 46–60.CrossRefGoogle Scholar
Lewkowicz, D. J., & Turkewitz, G. (1980). Cross-modal equivalence in early infancy: auditory-visual intensity matching. Developmental Psychology, 16: 597–607.CrossRefGoogle Scholar
Lewkowicz, D. J., Sowinski, R., & Place, S. (2008). The decline of cross-species intersensory perception in human infants: underlying mechanisms and its developmental persistence. Brain Research, 1242: 291–302.CrossRefGoogle ScholarPubMed
Low, L. K., & Cheng, H. J. (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 361: 1531–44.CrossRefGoogle ScholarPubMed
Malkova, L., Heuer, E., & Saunders, R. C. (2006). Longitudinal magnetic resonance imaging study of rhesus monkey brain development. European Journal of Neuroscience, 24: 3204–12.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198: 75–8.CrossRefGoogle ScholarPubMed
Munhall, K. G., & Vatikiotis-Bateson, E. (2004). Spatial and temporal constraints on audiovisual speech perception. In: Calvert, G. A., Spence, C. & Stein, B. E. (Eds.). The Handbook of Multisensory Processes. Cambridge, MA: MIT Press.Google Scholar
Oyama, S. (2000). The Ontogeny of Information. Durham, NC: Duke University Press.CrossRefGoogle Scholar
Parr, L. A. (2004). Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition. Animal Cognition, 7: 171–8.CrossRefGoogle ScholarPubMed
Pascalis, O., & Kelly, D. J. (2009). The origins of face processing in humans: phylogeny and ontogeny. Perspectives on Psychological Science, 4: 200–09.CrossRefGoogle ScholarPubMed
Pascalis, O., Haan, M. D., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life?Science, 296: 1321–3.CrossRefGoogle ScholarPubMed
Pascalis, O., Scott, L. S., Kelly, D. J., et al. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences USA, 102: 5297–300. Epub 2005 Mar 24.CrossRefGoogle ScholarPubMed
Patterson, M. L., & Werker, J. F. (1999). Matching phonetic information in lips and voice is robust in 4.5-month-old infants. Infant Behavior & Development, 22: 237–47.CrossRefGoogle Scholar
Patterson, M. L., & Werker, J. F. (2002). Infants' ability to match dynamic phonetic and gender information in the face and voice. Journal of Experimental Child Psychology, 81: 93–115.CrossRefGoogle ScholarPubMed
Patterson, M. L., & Werker, J. F. (2003). Two-month-old infants match phonetic information in lips and voice. Developmental Science, 6: 191–6.CrossRefGoogle Scholar
Piaget, J. (1952). The Origins of Intelligence in Children. New York, NY: International Universities Press.CrossRefGoogle Scholar
Pons, F., Lewkowicz, D. J., Soto-Faraco, S., & Sebastián-Gallés, N. (2009). Narrowing of intersensory speech perception in infancy. Proceedings of the National Academy of Science USA, 106: 10,598–602.CrossRefGoogle ScholarPubMed
Poulin-Dubois, D., Serbin, L. A., & Derbyshire, A. (1998). Toddlers' intermodal and verbal knowledge about gender. Merrill-Palmer Quarterly, 44: 338–54.Google Scholar
Poulin-Dubois, D., Serbin, L. A., Kenyon, B., & Derbyshire, A. (1994). Infants' intermodal knowledge about gender. Developmental Psychology, 30: 436–42.CrossRefGoogle Scholar
Purves, D., White, L. E., & Riddle, D. R. (1996). Is neural development Darwinian?Trends in Neuroscience, 19: 460–4.Google ScholarPubMed
Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: a constructivist manifesto. Behavioral and Brain Sciences, 20: 537–56.CrossRefGoogle ScholarPubMed
Quinn, P. C., Uttley, L., Lee, K., et al. (2008). Infant preference for female faces occurs for same- but not other-race faces. Journal of Neuropsychology (Special Issue on Face Processing), 2: 15–26.Google Scholar
Rosenblum, L. D. (2005). The primacy of multimodal speech perception. In: Pisoni, D. and Remez, R. (Eds.), Handbook of Speech Perception. Malden, MA: Blackwell.Google Scholar
Sacher, G. A., & Staffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals: implications for the theory of vertebrate growth. American Naturalist, 108: 593–615.CrossRefGoogle Scholar
Sangrigoli, S., & Schonen, S. (2004). Recognition of own-race and other-race faces by three-month-old infants. Journal of Child Psychology and Psychiatry, 45: 1219–27.CrossRefGoogle ScholarPubMed
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20: 676–80.CrossRefGoogle ScholarPubMed
Seyfarth, R. M., & Cheney, D. L. (1986). Vocal development in vervet monkeys. Animal Behaviour, 34: 1640–58.CrossRefGoogle Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls – semantic communication in a free-ranging primate. Animal Behaviour, 28: 1070–94.CrossRefGoogle Scholar
Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Science USA, 105: 394–8.CrossRefGoogle ScholarPubMed
Thelen, E., & Smith, L. B. (1994). A Dynamic Systems Approach to the Development of Cognition and Action. Cambridge, MA: MIT Press.Google Scholar
Turkewitz, G., & Kenny, P. A. (1982). Limitations on input as a basis for neural organization and perceptual development: a preliminary theoretical statement. Developmental Psychobiology, 15: 357–68.CrossRefGoogle ScholarPubMed
Walker-Andrews, A. S. (1986). Intermodal perception of expressive behaviors: relation of eye and voice?Developmental Psychology, 22: 373–7.CrossRefGoogle Scholar
Walker-Andrews, A. S. (1997). Infants' perception of expressive behaviors: differentiation of multimodal information. Psychological Bulletin, 121: 437–56.CrossRefGoogle ScholarPubMed
Walker-Andrews, A. S., Bahrick, L. E., Raglioni, S. S., & Diaz, I. (1991). Infants' bimodal perception of gender. Ecological Psychology, 3: 55–75.CrossRefGoogle Scholar
Walton, G. E., & Bower, T. G. (1993). Amodal representations of speech in infants. Infant Behavior & Development, 16: 233–43.CrossRefGoogle Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant Behavior & Development, 7: 49–63.CrossRefGoogle Scholar
Werner, H. (1973). Comparative Psychology of Mental Development. New York, NY: International Universities Press.Google Scholar
Zangenehpour, S., Ghazanfar, A. A., Lewkowicz, D. J., & Zatorre, R. J. (2009). Heterochrony and cross-species intersensory matching by infant vervet monkeys. PLoS ONE, 4, e4302.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×