Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T10:10:29.185Z Has data issue: false hasContentIssue false

7 - Large herbivores: missing partners of western European light‐demanding tree and shrub species?

Published online by Cambridge University Press:  16 November 2009

Frans W. M. Vera
Affiliation:
Staatsbosbeheer
Elisabeth S. Bakker
Affiliation:
Department of Plant–Animal Interactions Netherlands Institute of Ecology
Han Olff
Affiliation:
University of Groningen
Kjell Danell
Affiliation:
Swedish University of Agricultural Sciences
Roger Bergström
Affiliation:
The Forestry Research Institute of Sweden
Patrick Duncan
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
John Pastor
Affiliation:
University of Minnesota, Duluth
Get access

Summary

INTRODUCTION

The landscape of the temperate zone of western Europe has a long history of human occupation and impact. As the development of agriculture and the growth of the human population coincided with climate change since the last ice age, it is difficult to picture the landscape without human intervention. Based on palaeoecological data and reference sites, several authors state that temperate Europe without human influence would have been covered with a closed‐canopy broad‐leaved forest in places where trees can grow (Ellenberg 1988, Peterken 1996). This perception is hereafter called ‘the classical forest theory’. This forest type is thought to have regenerated by means of small or large gaps, or large windblown areas, where young trees could grow up. Indigenous species of large herbivores that lived within the range of this forest ecosystem are considered forest dwellers. In temperate Europe this applies to the Holocene aurochs (Bos primigenius), tarpan (Equus przewalski gmelini), red deer (Cervus elaphus), moose (Alces alces), roe deer (Capreolus capreolus) and European bison (Bison bonasus). The animals would not have had a substantial influence on the forest, but have followed the development in the vegetation (Tansley 1935, Iversen 1960, Whittaker 1977). The role of large herbivores in the broad‐leaved forests is often discussed because the animals can prevent the regeneration of trees in the forest (see Chapter 6 in this book). When large herbivores, such as deer, cattle and horses, are excluded from forests, this usually stimulates recruitment (Peterken & Tubbs 1965, Putman et al.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaris‐Sørensen, K. (1980). Depauperation of the mammalian fauna of the island of Zealand during the Atlantic period. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, 142, 131–8.Google Scholar
Abrams, M. D. (1992). Fire and the development of oak forests. BioScience, 42, 346–53.CrossRefGoogle Scholar
Abrams, M. D. (1996). Distribution, historical development and ecophysiological attributes of oak species in the eastern United States. Annales des Sciences Forestières, 53, 487–512.CrossRefGoogle Scholar
Abrams, M. D. (2002). The postglacial history of oak forests in eastern North America. In Oak Forests Ecosystems: Ecology and Management for Wildlife, ed. McShea, W. J. & Healy, W. M.. Baltimore and London: The Johns Hopkins University Press, pp. 34–45.Google Scholar
Abrams, M. D. (2003). Where has all the white oak gone?BioScience, 53, 927–39.CrossRefGoogle Scholar
Abrams, M. D. & Seischab, F. K. (1997). Does the absence of sediment charcoal provide substantial evidence against the fire and oak hypothesis?Journal of Ecology, 85, 373–5.CrossRefGoogle Scholar
Agusti,, J. & Anton,, M. (2002). Mammoths, Sabertooth's, and Hominids. New York:Columbia University Press.Google Scholar
Alexander, K. N. A. (1998). The links between forest history and biodiversity: the invertebrate fauna of ancient pasture‐woodlands in Britain and its conservation. In The Ecological History of European Forests, ed. Kirby, K. J. & Watkins, C.. Wallingford: CAB International, pp. 73–80.Google Scholar
Arthur, M. A., Paratley, R. D. & Blankenship, B. A. (1998). Single and repeated fires affect survival and regeneration of woody and herbaceous species in an oak‐pine forest. Journal of the Torrey Botanical Society, 125, 225–36.CrossRefGoogle Scholar
Bakker, E. S., Olff, H., Vandenberghe, C., Maeyer, K., Smit, R., Gleichman, J. M. and Vera, F. W. M. (2004). Ecological anachronisms in the recruitment of temperate light‐demanding tree species in wooded pastures. Journal of Applied Ecology, 41, 571–82.CrossRefGoogle Scholar
Bär, J. (1914). Die flora des Val Onsernone. Mitteilungen aus dem botanischen Museum der Universität Zürich, 59, 223–563.Google Scholar
Barlow, C. (2000). The Ghosts of Evolution: Nonsensical Fruit, Missing Partners, and Other Ecological Anachronisms. New York: Basic Books.Google Scholar
Bradshaw, R. H. W., Hannon, G. E. & Lister, A. M. (2003). A long‐term perspective on ungulate‐vegetation interactions. Forest Ecology and Mangement, 181, 267–80.CrossRefGoogle Scholar
Belostokov, G. P. (1980). Morphogenesis of Tilia cordata Mill.; bush‐shaped regrowth. Lesoved, 6, 53–9.Google Scholar
Bezacinský, H. (1971). Das Hainbuchenproblem in der Slowakei. Acta Facultatis Forestalis, 8, 7–36.Google Scholar
Bink, F. A. (1992). Ecologische Atlas van de Dagvlinders van Noordwest‐Europa. Haarlem: Instituut voor Bos‐ en Natuuronderzoek en Unie van Provinciale Landschappen, Schuyt & Co.Google Scholar
Bokdam, J. (1987). Foerageergedrag van jongvee in het Junner Koeland in relatie tot het voedselaanbod. In Begrazing in de natuur, ed. Bie, S., Joenje, W. & Wieren, S. E.. Wageningen: Pudoc, pp. 165–86.Google Scholar
Bokdam, J. (2003). Nature Conservation and Grazing Management. Free‐Ranging Cattle as Driving Force for Cyclic Vegetation Succession. Ph.D. thesis, Wageningen University, Wageningen.Google Scholar
Bonnemann, A. (1956a). Eichen‐Buchen mischbestände. Allgemeine Forst‐ und Jagdzeitung, 127, 33–42.Google Scholar
Bonnemann, A. (1956b). Eichen‐Buchen mischbestände. Allgemeine Forst‐ und Jagdzeitung, 127, 118–26.Google Scholar
Borowski, S. & Kossak, S. (1972). The natural food preferences of the European bison in seasons free of snow cover. Acta Theriologica, 17, 151–69.CrossRefGoogle Scholar
Bossema, J. (1979). Jays and Oaks: An Eco‐Ethological Study of a Symbiosis. Ph.D. thesis, Rijksuniversiteit Groningen, Groningen. (Also published in Behaviour, 70,: 1–117.)Google Scholar
Britton, N. L. & Brown, H. A. (1947). An Illustrated Flora of the Northern United States, Canada and the British Posessions, Volume II. New York: New York Botanical Garden.Google Scholar
Brookes, P. C., Wigston, D. L. & Bourne, W. F. (1980). The dependence of Quercus robur and Q. petraea seedlings on cotyledon potassium, magnesium, calcium and phosphorus during the first year of growth. Forestry, 53, 167–77.CrossRefGoogle Scholar
Brose, P. H., Lear, D. H. & Keyser, P. D. (1999). A shelterwood‐burn technique for regenerating productive upland oak sites in the Piedmont region. Southern Journal of Applied Forestry, 23, 158–63.Google Scholar
Broström, A., Gaillard, M.‐J., Ihnse, M. & Odgaard, B. (1998). Pollen‐landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden – a first step towards quantification of vegetation openness in the past. Vegetation History and Archaeobotany, 7, 189–201.CrossRefGoogle Scholar
Burrichter, E., Pott, R., Raus, T. & Wittig, , , R. (1980). Die Hudelandschaft ‘Borkener Paradies’ im Emstal bei Meppen. Abhandlungen aus den Landesmuseum für Naturkunde zu Münster in Westfalen. Münster 42. Jahrgang 4.Google Scholar
Buttenschøn, J. & Buttenschøn, R. M. (1978). The effect of browsing by cattle and sheep on trees and bushes. Natura Jutlandica, 20, 79–94.Google Scholar
Buttenschøn, J. & Buttenschøn, R. M. (1985). Grazing experiments with cattle and sheep on nutrient poor, acidic grassland and heath. IV. Establishment of woody species. Natura Jutlandica, 21, 47–140.Google Scholar
Callaway, R. M., Kikvidze, Z. & Kikodze, D. (2000). Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos, 89, 275–82.CrossRefGoogle Scholar
Chettleburgh, M. R. (1952). Observations on the collection and burial of acorns by jays in Hinault Forest. British Birds, 45, 359–64. Also further note (1955); 48, 183–4.Google Scholar
Christensen, N. L. (1977). Changes in structure, pattern, and diversity associated with climax forest maturation in Piedmont, North Carolina. American Midland Naturalist, 97, 176–88.CrossRefGoogle Scholar
Clark, J. S. (1997). Facing short‐term extrapolation with long‐term evidence: Holocene fire in the north‐eastern US forests. Journal of Ecology, 85, 377–80.CrossRefGoogle Scholar
Clark, J. S. & Royall, P. D. (1995). Transformation of a northern hardwood forest by aboriginal (Iroquois) fire: charcoal evidence from Crawford Lake, Ontario, Canada. The Holocene, 5, 1–9.CrossRefGoogle Scholar
Clark, J. S.Royall, P. D. & Chumbley, C. (1996). The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology, 77, 2148–66.CrossRefGoogle Scholar
Coops, H. (1988). Occurrence of blackthorn (Prunus spinosa L.) in the area of Mols Bjerge and the effect of cattle‐ and sheep‐grazing on its growth. Nature Jutlandica, 9, 169–76.Google Scholar
Coppins, A., Coppins, B. & Quelch, P. (2002). Atlantic hazelwoods. Some observations on the ecology of this neglected habitat from a lichenological perspective. British Wildlife, 14, 17–26.Google Scholar
Covington, W. W. & Moore, M. M. (1994). Southwestern Ponderosa forest structure. Changes since Euro‐American settlement. Journal of Forestry, 92, 39–47.Google Scholar
Cramp, S. (ed.) (1988). Handbook of the Birds of Europe, the Middle East, and North Africa. The Birds of the Western Palaearctic, Vol. V. Tyrant Flycatchers to Thrushes. Oxford: Oxford University Press.Google Scholar
Cramp, S. (ed.) (1992). Handbook of the Birds of Europe, the Middle East, and North Africa. The Birds of the Western Palaearctic, Vol. VI. Warblers. Oxford: Oxford University Press.Google Scholar
Cronon, W. (1983). Changes in the Land: Indians, Colonists, and the Ecology of New England. New York: Hill and Wang.Google Scholar
Crow, T. R., Johnson, W. C. & Atkinson, C. S. (1994). Fire and recruitment of Quercus in a postagricultural field. American Midland Naturalist, 131, 84–97.CrossRefGoogle Scholar
Dagenbach, H. (1981). Der Speierling, ein seltener Baum in unseren Wäldern und Obstgärten. Allgemeine Forstzeitschrift, 36, 214–17.Google Scholar
Darlington, A. (1974). The galls on oak. In The British Oak: Its History and Natural History, ed. Morris, M. G. & Perring, F. H.. Berkshire: The Botanical Society of the British Isles, E. W. Classey, pp. 298–311.Google Scholar
Davis, S. J. M. (1987). The Archeology of Animals. London: B. T. Batsford.Google Scholar
Day, D. (1989). Vanished Species. New York: Gallery Books.Google Scholar
Day, G. M. (1953). The Indian as an ecological factor in the northeastern forest. Ecology, 34, 329–46.CrossRefGoogle Scholar
Delcourt, H. R. & Delcourt, P. A. (1991). Quaternary Ecology: A Paleoecological Perspective. London: Chapman and Hall.CrossRefGoogle Scholar
Dey, D. (2002). Fire history and postsettlement disturbance. In Oak Forests Ecosystems: Ecology and Management for Wildlife, ed. McShea, W. J. & Healy, W. M.. Baltimore and London: The Johns Hopkins University Press, pp. 60–79.Google Scholar
Dierschke, H. (1974). Saumgesellschaften im Vegetations‐ und Standortsgefälle an Waldrändern. Scripta Geobotanica, 6, 3–246.Google Scholar
Dinnin, M. H. & Sadler, J. P. (1999). 10 000 years of change: the Holocene entomofauna of the British Isles. Quaternary Proceedings, 7, 545–62.Google Scholar
Dobson, A. & Crawley, M. (1994). Pathogens and the structure of plant communities. Trends in Ecology and Evolution, 9, 303–98.CrossRefGoogle ScholarPubMed
Dupré, S., Thiébaut, S. & Cros, Teissier du E. (1986). Morphologie et architecture des jeunes hêtres (Fagus sylvatica L.). Influence du milieu, variabilité génétique. Annales des Sciences Forestières, 43, 85–102.CrossRefGoogle Scholar
Eichhorn, (1927). Waldbauliche Erfahrungen in den Hardtwaldungen des unteren Rheintales. Allgemeine Forst‐ und Jagdzeitung, 103, 169–85.Google Scholar
Ekstam, U. & Sjögren, E. (1973). Studies on past and present changes in deciduous forest vegetation on Öland. Zoon (Uppsala) Suppl, 1, 123–35.Google Scholar
Ellenberg, H. (1988). Vegetation Ecology of Central Europe. 4th edn. Cambridge: Cambridge University Press.Google Scholar
Emborg, J., Christensen, M. & Heilmann‐Clausen, J. (1996). The structure of Suserup Skov. A near‐natural temperate deciduous forest in Denmark. Forest and Landscape Research, 1, 311–33.Google Scholar
Falinski, J. B. (1986). Vegetation Dynamics in Temperate Lowland Primaeval Forests. Ecological studies in Bialowieza forest, Geobotany 8. Dordrecht: Dr. W. Junk Publishers.CrossRefGoogle Scholar
Felius, M. (1995). Cattle Breeds. An Encyclopedia. Doetinchem: Misset.Google Scholar
Flower, N. (1977). An historical and ecological study of inclosed and uninclosed woods in the New Forest, Hampshire. M.Sc. thesis, King's College, University of London.Google Scholar
Frelich, L. E. & Reich, P. B (2002). Dynamics of old‐growth oak forests in eastern United States. In Oak Forests Ecosystems: Ecology and Management for Wildlife, McShea, W. J. & Healy, W. M.. Baltimore and London: The Johns Hopkins University Press, pp. 113–26.Google Scholar
Fritzbøger, B. & Emborg, J. (1996). Landscape history of the deciduous forest Suserup Skov, Denmark, before 1925. Forest and Landscape Research, 1, 291–309.Google Scholar
Gaillard, M.‐J., Birks, H. J. B., Ihse, M. & Runberg, S. (1998). Pollen/landscape calibration based on modern pollen assemblages from surface‐sediments samples and landscape mapping – a pilot study in south Sweden. In Quantification of Land Surfaces Cleared of Forest During the Holocene‐Modern Pollen/Vegetation/Landscape Relationships as an Aid to the Interpretation of Pollen Data. Paläoklimaforschung/Palaeoclimate Research 7, 31–52.Google Scholar
Green, T. (1992). The forgotten army. British Wildlife, 4, 85–6.Google Scholar
Goriup, P. D., Batten, L. A. & Norton, J. A. (eds.) (1991). The conservation of lowland dry grassland birds in Europe. Proceedings of an International Seminar held at the University of Reading, 20–22 March 1991. Peterborough: Joint Nature Committee.Google Scholar
Guintard, G. & Tardy, F. (1994). Les bovins de l'Île Amsterdam. Un example d'isolement génétique. In Aurochs. Le retour. Aurochs, vaches et autres bovins de la préhistoire à nos jours ed. Bailly, L. & Cohën., A.‐S.Lons‐le‐SaunierCentre Jurassien du Patrimoine, pp. 203–9.Google Scholar
Hannon, G. E., Bradshaw, R. & Emborg, J. (2000). 6000 years of forest dynamics in Suserup Skov, a semi‐natural Danish woodland. Global Ecology and Biogeography, 9, 101–14.CrossRefGoogle Scholar
Harding, P. T. & Rose, F. (1986). Pasture‐Woodlands in Lowland Britain. A Review of their Importance for Wildlife Conservation. Huntingdon: Natural Environment Research Council, Institute of Terrestrial Ecology.Google Scholar
Hart, G. E. (1966). Royal Forests. A History of Dean's Woods as Producers of Timber. London: Clarendon Press.Google Scholar
Hauskeller‐Bullerjahn, K., Lüpke, , , B., Hauskeller, H.‐M. & Dong, P. H. (2000). Versuch zur natürlichen Verjüngung der Traubeneiche im Pfälzerwald. AFZ/DerWald, 10, 514–17.Google Scholar
Hibbs, D. E. (1983). Forty years of forest succession in central New England. Ecology, 64, 1394–401.CrossRefGoogle Scholar
Heukels, H. & Meijden, R. (1983). Flora van Nederland. Groningen: Wolters‐Noordhoff.Google Scholar
Hofmann, R. R. (1973). The Ruminant Stomach: Stomach Structure and Feeding Habits of East African Game Ruminants. Nairobi, Kenya: East African Literature Bureau.Google Scholar
Hofmann, R. R. (1976). Zur adaptiven Differenzierung der Wiederkäuer: Untersuchungsergebnisse auf der Basis der Vergleichenden funktionellen Anatomie des Verdauungstrakts. Praktische Tierärtzt, 57, 351–58.Google Scholar
Hofmann, R. R. (1985). Digestive physiology of the deer. Their morphophysiological specialisation and adaptation. The Royal Society of New Zealand Bulletin, 22, 393–407.Google Scholar
Hondong, H., Langner, S. & Coch, T. (1993). Untersuchungen zum Naturschutz an Waldrändern. Bristol‐Schriftenreihe, Band 2, Bristol‐Stiftung, Ruth und Herbert UHL ‐ Forschungsstelle für Natur‐ und Umweltschutz.Google Scholar
Houtzagers, M., Neutel, W., Rosseel, A. & Swart, B. (2000). Fontainebleau (re)visited. Effect van storm in bosreservaat in Fontainebleau. Nederlands Bosbouw Tijdschrift, 72, 228–33.Google Scholar
Huddle, J. A. & Pallardy, S. G. (1996). Effects of long‐term annual and periodic burning on tree survival and growth in a Missouri Ozark oak‐hickory forest. Forest Ecology and Management, 82, 1–9.CrossRefGoogle Scholar
Huntley, B. & Birks, H. J. B. (1983). An Atlas of Past and Present Pollen Maps of Europe: 0–13 000 Years Ago. Cambridge: Cambridge University Press,Google Scholar
Hytteborn, H. (1986). Methods of forest dynamics research. In Forest Dynamics Research in Western and Central Europe. ed. Fanta, I.. Wageningen: Pudoc, pp. 17–31.Google Scholar
Iason, G. R. & Alison, H. (1993). The response of heather (Calluna vulgaris) to shade and nutrients – predictions of the carbon‐nutrient balance hypothesis. Journal of Ecology, 81, 75–80.CrossRefGoogle Scholar
Iversen, J. (1960). Problems of the early post‐glacial forest development in Denmark. Danmarks Geologiske Undersøgelse, IV. Raekke Bd. 4, 3 (Geological Survey of Denmark. IV Series, 4, 3).
Jahn, G. (1991). Temperate deciduous forests of Europe. In Temperate Deciduous Forests, ed. Röhrig, R. & Ulrich, B.. Ecosystems of the World, 7. Amsterdam: Elsevier, pp. 377–503.Google Scholar
Janzen, D. H. & Martin, P. S. (1982). Neotropical anachronisms: the fruits the gomphoteres ate. Science, 215, 19–27.CrossRefGoogle ScholarPubMed
Jarvis, P. G. (1964). The adaptability to light intensity of seedlings of Quercus petraea (Matt.) Liebl. Journal of Ecology, 52, 545–71.CrossRefGoogle Scholar
Jensen, T. S. & Nielsen, O. F. (1986). Rodents as seed dispersers in a heath–oak wood succession. Oecologia, 70, 214–21.CrossRefGoogle Scholar
Kollmann, J. & Schill, H.‐P. (1996). Spatial patterns of dispersal, seed predation and germination during colonization of abandoned grassland by Quercus petraea and Corylus avellana. Vegetatio, 125, 193–205.CrossRefGoogle Scholar
Krahl‐Urban, J. (1959). Die Eichen. Forstliche Monographie der Traubeneiche und der Stieleiche. Berlin: Paul Parey.Google Scholar
Lemée, G. (1978). La hêtraie naturalle de Fontainbleau. In Problèmes d'ecologie: structure et functionnement des écosystemes terrestres, ed. Lamotte, M. & Boresliène., F.Paris: Masson, pp. 75–128.Google Scholar
Lemée, G. (1987). Les populations de chênes (Quercus petraea Liebl.) des réserves biologiques de La Tillaie et du Gros Fouteau en forêt de Fontainebleau: structure, démographie et évolution. Revue d'Ecologie, 42, 329–55.Google Scholar
Lemée, G., Faille, A., Pontailler, J. Y. & Roger, J. M. (1992). Hurricanes and regeneration in a natural beech forest. In Responses of Forest Ecosystems to Environmental Changes, ed. Teller, A., , P.Malthy, & Jeffers, J.N.R. London & New York: Elsevier Applied Science, pp. 987–8.CrossRefGoogle Scholar
Malmer, N.Lindgren, K. & Persson, S. (1978). Vegetational succession in a south‐Swedish deciduous wood. Vegetatio, 36, 17–29.CrossRefGoogle Scholar
Marks, J. B. (1942). Land use and plant succession in Coon Valley, Wisconsin. Ecological Monographs, 12, 113–33.CrossRefGoogle Scholar
Mayer, H. & Tichy, K. (1979). Das Eichen‐Naturschutzgebiet Johannser Kogel im Lainzer Tiergarten, Wienerwald. Centralblatt für das Gesamte Forstwesen, 4, 193–226.Google Scholar
McCarthy, B. C., Small, J. C. & Rubino, D. L. (2001). Composition, structure and dynamics of Dysart Woods, an old‐growth mixed mesophytic forest of southeastern Ohio. Forest Ecology and Management, 140, 193–213.CrossRefGoogle Scholar
McCune, B. & Cottam, G. (1985). The successional status of a southern Wisconsin oak wood. Ecology, 66, 1270–78.CrossRefGoogle Scholar
McHugh, T. (1972). The Time of the Buffalo. Lincoln: University of Nebraska Press.Google Scholar
Milchunas, D. G. & Noy‐Meir, I. (2002). Grazing refuges, external avoidance of herbivory and plant diversity. Oikos, 99, 113–30.CrossRefGoogle Scholar
Milewski, A. V., Young, T. P. & Madden, D. (1991). Thorns as induced defences: experimental evidence. Oecologia, 86, 70–5.CrossRefGoogle Scholar
Morris, M. G. (1974). Oak as a habitat for insect life. In The British Oak: Its History and Natural History, Morris, ed. M. G. & Perring, F. H.. Berkshire: The Botanical Society of the British Isles, E. W. Classey, pp. 274–97.Google Scholar
Moss, C. E. (1913). Vegetation of the Peak District. Cambridge: Cambridge University Press.Google Scholar
Mountford, E. P. & Peterken, G. (2003). Long‐term change and implications for the management of wood‐pastures: experience over 40 years from Denny Wood, New Forest. Forestry, 76, 19–43.CrossRefGoogle Scholar
Mountford, E. P., Peterken, G. F., Edwards, P. J. & Manners, J. G. (1999). Long‐term change in growth, mortality and regeneration of trees in Denny Wood, an old‐growth wood‐pasture in the New Forest (UK). Perspectives in Plant Ecology, Evolution and Systematics, 2, 223–72.CrossRefGoogle Scholar
Namvar, K. & Spethmann, W. (1985). Waldbaumarten aus der Gattung Ulmus (Ulme, Rüster). Allgemeine Forstzeitschrift, 40, 1220–5.Google Scholar
Newbold, A. J. & Goldsmith, F. B. with an addendum on birch by Harding, J. S. (1981). The Regeneration of Oak and Beech: A Literature Review. Discussion Papers in Conservation. No. 33. LondonUniversity College: London.Google Scholar
Nowacki, G. J. & Abrams, M. D. (1992). Community, edaphic, and historical analysis of mixed oak forests of the Ridge and Valley Province in central Pennsylvania. Canadian Journal of Forest Research, 22, 790–800.CrossRefGoogle Scholar
Olff, H., Vera, F. W. M., Bokdam, J., Bakker, E. S., Gleichman, J. M., Maeyer, K. & Smit, K. (1999). Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition. Plant Biology, 1, 127–37.CrossRefGoogle Scholar
Orwig, D. A. & Abrams, M. D. (1994). Land‐use history (1720–1992), composition, and dynamics of oak‐pine forests within the Piedmont and Coastal Plain of northern Virginia. Canadian Journal of Forest Research, 24, 1216–25.CrossRefGoogle Scholar
Peltier, A., Toezet, M.‐C., Armengaud, C. & Ponge, J.‐F. (1997). Establishment of Fagus sylvatica and Fraxinus excelsior in an old‐growth beech forest. Journal of Vegetation Science, 8, 13–20.CrossRefGoogle Scholar
Peterken, G. F. (1996). Natural Woodland. Ecology and Conservation in Northern Temperate Regions. Cambridge: Cambridge University Press.Google Scholar
Peterken, G. F. & Jones, E. W. (1987). Forty years of change in Lady Park Wood: the old growth stands. Journal of Ecology, 75, 477–512.CrossRefGoogle Scholar
Peterken, G. F. & Tubbs, C. R. (1965). Woodland regeneration in the New Forest, Hampshire, since 1650. Journal of Applied Ecology, 2, 159–70.CrossRefGoogle Scholar
Peterson, C. J. & Picket, S. T. A. (1995). Forest reorganization: a case study in an old‐growth forest catastrophic blowdown. Ecology, 76, 763–74.CrossRefGoogle Scholar
Pigott, C. D. (1988). The ecology and silviculture of limes (Tilia spp.). In O. F. I. Occasional Papers, No 37. National Hardwoods Programme. Report of the Eighth Meeting and Second Meeting of the un‐even Aged Silviculture Group 7 January 1988, Savill, ed. P. S.. Oxford: Oxford Forestry Institute, University of Oxford, pp. 27–32.Google Scholar
Pockberger, J. (1963). Die Linden. Ein Beitrag zur Bereicherung des Mitteleuropäischen Waldbildes. Centralblatt für das Gesamte Forstwesen, 80, 99–123.Google Scholar
Ponge, J.‐F. & Ferdy, J.‐B. (1997). Growth of Fagus sylvatica saplings in an old growth forest as affected by soil and light conditions. Journal of Vegetation Science, 8, 789–96.CrossRefGoogle Scholar
Pott, R. & Hüppe, J. (1991). Die Hudenlandschaften Nordwestdeutschlands. Westfälisches Museum für Naturkunde, Landschafsverband Westfalen‐Lippe. Veröffentlichung der Arbeitsgemeinschaft für Biol.‐ökol. Landesforschung, ABÖL, nr. 89, Münster.
Pruski, W. (1963). Ein Regenerationsversuch des Tarpans in Polen. Zeitschrift für Tierzüchtung und Züchtungsbiologie, 79, 1–30.Google Scholar
Putman, R. J. (1986). Grazing in Temperate Ecosystems: Large Herbivores and the Ecology of the New Forest. London: Croom Helm.CrossRefGoogle Scholar
Putman, R. J., Edwards, P. J., Mann, J. C. E., How, R. C. & Hill, S. D. (1989). Vegetational and faunal changes in an area of heavily grazed woodland following relief of grazing. Biological Conservation, 47, 13–22.CrossRefGoogle Scholar
Raben, G. (1980). Geschichtliche Betrachtung der Waldwirtschaftung im Naturwaldreservat Priorteich und deren Einfluss auf den heutigen Bestand. Diplomarbeit. Göttingen: Institut für Waldbau der Universität Göttingen.
Rackham, O. (2003). Ancient Woodland: Its History, Vegetation and Uses in England, New Edition. Kirkcudbrightshire: Castlepoint Press.Google Scholar
Remmert, H. (1991). The mosaic‐cycle concept of ecosystems. An overview. In The Mosaic‐Cycle Concept of Ecosystems, ed., Remmert, H.. Berlin: Springer, pp. 11–21.CrossRefGoogle Scholar
Rousset, O. & Lepart, J. (1999). Shrub facilitation of Quercus humilis regeneration in succession on calcareous grasslands. Journal of Vegetation Science, 10, 493–502.CrossRefGoogle Scholar
Russell, E. W. B. (1983). Indian‐set fires in the forests of the northeastern United States. Ecology, 64, 78–88.CrossRefGoogle Scholar
Sanderson, J. L. (1958). The autecology of Corylus avellana (L.). in the neighbourhood of Sheffield with special reference to its regeneration. Ph.D. thesis, The University of Sheffield, Sheffield.Google Scholar
Schuster, L. (1950). Über den Sammeltrieb des Eichelhähers (Garrulus glandarius). Vogelwelt, 71, 9–17.Google Scholar
Scot, E. L. (1915). A study of pasture trees and shrubbery. Bulletin of the Torrey Botanical Club, 42, 451–61.CrossRefGoogle Scholar
Shaw, M. W. (1974). The reproductive characteristics of oak. In The British Oak: Its History and Natural History, ed. Morris, M. G. & Perring, F. H.. Berkshire: The Botanical Society of the British Isles, E. W. Classey Ltd., pp. 162–81.Google Scholar
Smith, C. (1993). Regeneration of oaks in the Central Appalachians. In Oak Regeneration: Serious Problems, Practical Recommendations. Symposium Proceedings, Knoxville, Tennessee, 8–10 September 1992, ed. Loftis, D. L. & McGee, C. E.. Ashville: Southeastern Forest Experiment Sation, pp. 211–21.Google Scholar
Smith, C. J. (1980). Ecology of the English Chalk. London: Academic Press.Google Scholar
Smith, D. M. (1962). The forest of the United States. In Regional Silviculture of the United States, ed. Barrett, J. W.. New York: The Ronald Press Componay, pp. 3–29.Google Scholar
Snow, B. & Snow, D. (1988). Birds and Berries. A Study of an Ecological Interaction. Calton: T. and A. D. Poyser.Google Scholar
Söffner, W. (1982). Über die Grosssäugerfauna Mitteleuropas im Postglazial. Ein Beitrag zur Kenntnis der Beziehungen zwischen Wild und Vegetation. Zulassungsarbeit. Institut für Botanik der Universität Hohenheim.
Spurr, H. S. (1956). Natural restocking of forests following the 1938 hurricane in central New England. Ecology, 33, 426–7.CrossRefGoogle Scholar
Stähr, F. & Peters, T. (2000). Hähersaat – Qualität und Vitalität natürlicher Eichenverjüngung im nordostdeutschen Tiefland. AFZ/Der Wald, 32, 1231–5.Google Scholar
Sugita, S. MacDonald, G. & Larsen, C. P. S. (1997). Reconstruction of fire disturbance and forest succession from fossil pollen in lake sediments: potential and limitations. In Sediment Records of Biomass Burning and Global Change, ed. Clark, J. S., Cashier, H., Goldmmer, J. G. & Stocks, B. J.. Berlin: Springer, pp. 387–412.CrossRefGoogle Scholar
Sugita, S., Gaillard, M.‐J. & Broström, A. (1999). Landscape openness and pollen records: a simulation approach. The Holocene, 9, 409–21.CrossRefGoogle Scholar
Suner, A. & Röhrig, E. (1980). Die Entwicklung der Buchennaturverjüngung in Abhängigkeit von der Auflichtung des Altbestandes. Forstarchiv, 51, 145–9.Google Scholar
Svenning, J.‐S. (2002). A review of natural vegetation openness in north‐western Europe. Biological Conservation, 104, 133–48.CrossRefGoogle Scholar
Szafer, W. (1968). The ure‐ox, extinct in Europe since the seventeenth century: an early attempt at conservation that failed. Biological Conservation, 1, 45–7.CrossRefGoogle Scholar
Tallis, J. H. (1991). Plant Community History: Long‐term Changes in Plant Distribution and Diversity. London: Chapman and Hall.Google Scholar
Tansley, A. G. (ed.) (1911). Types of British Vegetation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tansley, A. G. (1922). Studies on the vegetation of the English chalk. II. Early stages of redevelopment of woody vegetation on chalk grassland. Journal of Ecology, 10, 168–77.CrossRefGoogle Scholar
Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.CrossRefGoogle Scholar
Tansley, A. G. (1953). The British Islands and their Vegetation, Vol. 1, 2nd, 3rd edn. Cambridge: Cambridge University Press.Google Scholar
Tubbs, C. R. (1988). The New Forest, A Natural History. London: The New Naturalist, Collins.Google Scholar
Hees, A. F. M. (1997). Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Annales des Sciences Forestières, 54, 9–18.CrossRefGoogle Scholar
Van de Veen, H. E. & Van Wieren, S. E. (1980). Van Grote Grazers, Kieskeurige Fijnproevers en Opportunistische Gelegenheidsvreters; over het Gebruik van Grote Herbivoren bij de Ontwikkeling en Duurzame Instandhouding van Natuurwaarden. Rapport 80/11, Instituut voor Milieuvraagstukken, Amsterdam.
Vanselow, K. (1926). Die Waldbautechniek im Spessart. Eine historisch‐kritische Untersuchung ihrer Epochen. Berlin: Verlag von Julius Springer.Google Scholar
Vera, F. W. M. (1997). Metaforen voor de wildernis. Eik, hazelaar, rund en paard. Ph.D. thesis, Wageningen University, Wageningen.
Vera, F. W. M. (2000). Grazing Ecology and Forest History. Wallingford, UK: CAB International.
Vereshchagin, N. K. & Baryshnikov, G. F. (1989). Quaternary mammalian extinctions in northern Eurasia. In Quaternary Extinctions: A Prehistoric Revolution, Martin, ed. P. S. & Klein, R. G.. Tucson: The University of Arizona Press, pp. 483–516.Google Scholar
von Koenigswald, W. (1983). Die Säugetierfauna des süddeutschen Pleistozäns. In Urgeschichte in Baden‐Württemberg, ed. Müller‐Beck, H. J.. Stuttgart: Konrad Theiss Verlag, pp. 167–216.Google Scholar
von Lüpke, B. V. (1982). Versuche zur Einbringung von Lärche und Eiche in Buchenbestände. Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt 74.
Lüpke, B. V. & Hauskeller‐Bullerjahn, K. (1999). Kahlschlagfreire Waldbau: wird die Eiche an den Rand gedrängt?Forst und Holz, 18, 563–8.Google Scholar
Vullmer, H. & Hanstein, U. (1995). Der Beitrag des Eichelhähers zur Eichenverjüngung in einem Naturnah Bewirtschafteten Wald in der Lünerburger Heide. Forst und Holz, 50, 643–6.Google Scholar
Watt, A. S. (1919). On the causes of failure of natural regeneration in British oakwoods. Journal of Ecology, 7, 173–203.CrossRefGoogle Scholar
Watt, A. S. (1924). On the ecology of British beech woods with special reference to their regeneration. Part II. The development and structure of beech communities on the Sussex downs. Journal of Ecology, 12, 145–204.CrossRefGoogle Scholar
Watt, A. S. (1925). On the ecology of British beech woods with special reference to their regeneration. Part II, sections II & III. The Development and structure of beech communities. Journal of Ecology, 13, 27–73.CrossRefGoogle Scholar
Watt, A. S. (1934). The vegetation of the Chiltern Hills with special reference to the beechwoods and their seral relationship. Part II. Journal of Ecology, 22, 445–507.CrossRefGoogle Scholar
Watts, W. A. (1979). Late Quaternary vegetation of central Appalachia and the New Jersey coastal plain. Ecological Monographs, 49, 427–69.CrossRefGoogle Scholar
Whitehouse, N. J. & Smith, D. N. (2004). ‘Islands’ in Holocene forests: implications for forest openness, landscape clearance and ‘culture‐steppe’ species. Environmental Archaeology, 9, 203–12.CrossRefGoogle Scholar
Whitney, G. C. & Davis, W. C. (1986). From primitive woods to cultivated woodlots: Thoreau and the forest history Concord, Massachusetts. Journal of Forest History, 30, 70–81.Google Scholar
Whitney, G. G. & Somerlot, W. J. (1985). A case study of woodland continuity and change in the American midwest. Biological Conservation, 31, 265–87.CrossRefGoogle Scholar
Whittaker, R. H. (1977). Animal effects on plant species diversity. In Vegetation und Fauna. Berichte der Internationalen Symposium der Internationalen Vereinigung für Vegetationskunde, ed. Tüxen, R.. Vaduz: Cramer, pp. 409–25.Google Scholar
Wolf, G. (1982). Beobachtungen zur Entwicklung von Baumsämlingen im Eichen‐Hainbuchen und Eichen‐Buchenwald. In Struktur und Dynamik von Wäldern. ed. Dierschke, H.. Berichte der Internationale Symposium der Internationale Verein für Vegetationskunde. Valduz: J. Cramer, pp. 475–94.Google Scholar
Wolf, G. (1988). Dauerflächen‐Beobachtungen in Naturwaldzellen derNiederrheinischen Bucht. Veränderungen in der Feldschicht. Natur und Landschaft, 63, 167–72.Google Scholar
Wolfe, M. L. & Berg, F. C. (1988). Deer and forestry in Germany. Half a Century after Aldo Leopold. Journal of Forestry, 86, 25–31.Google Scholar
Ziegenhagen, B. & Kausch, W. (1995). Productivity of young shaded oaks (Quercus robur L.) as corresponding to shoot morphology and leaf anatomy. Forest Ecology and Management, 72, 97–108.CrossRefGoogle Scholar
Zimov, S. A., Chuprynin, V. I., Oreshko, A. P.Chapin, F. S., III, Reynolds, J. F., & Chapin, M. C. (1995). Steppe‐tundra transition: a herbivore‐driven biome shift at the end of the Pleistocene. American Naturalist, 146, 765–94.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×