Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T05:22:34.415Z Has data issue: false hasContentIssue false

1 - Large herbivores across biomes

Published online by Cambridge University Press:  16 November 2009

Hervé Fritz
Affiliation:
Centre d'Études Biologiques de Chizé
Anne Loison
Affiliation:
Université Claude Bernard Lyon 1
Kjell Danell
Affiliation:
Swedish University of Agricultural Sciences
Roger Bergström
Affiliation:
The Forestry Research Institute of Sweden
Patrick Duncan
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
John Pastor
Affiliation:
University of Minnesota, Duluth
Get access

Summary

INTRODUCTION

The vertebrate herbivores cover a very wide range of body sizes from a few tens of grams to more than a tonne. It is therefore necessary to define what we consider as large herbivores: Bourlière (1975) described the bimodal distribution of mammal body weights and defined large mammals as being those with an adult body weight of more than 5 kg. A more recent analysis on a restricted set of species from Africa and America (Lovegrove & Haines 2004) also showed a bimodal distribution for herbivore body weights, with a gap slightly before 10 kg, separating most micro‐herbivores (e.g. rodents, lagomorphs) from larger herbivores (mostly ungulates). Recently, however, large herbivores are often defined as those with body weight >2 kg (Ritchie & Olff 1999, Olff et al. 2002). We decided to keep the 2 kg threshold, which restricts large herbivores to mostly ungulates (sensu lato, i.e. Order Artiodactyla, Perissodactyla and including the Order Proboscidea) and to most herbivorous marsupials (sensu Fisher et al. 2001), all belonging to the Order Diprotodonta, and mainly to the Family Macropodidae. However we excluded from this synthesis the few large rodent species (e.g. capybara Hydrochaeris hydrochaeris) and the very large birds (e.g. ratites), which weigh over 2 kg. As it would take too long to show the patterns exhibited by ungulates as well as those from marsupials, we decided to comment on similarities and differences between these phylums, but to limit our main descriptions to ungulates.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, R. H. V. (1982). The effect of soil nutrient availability on the community structure in African ecosystems. In Ecology of Tropical Savannas, ed. Huntley, B. J. & Walker, B. H., Berlin: Springer‐Verlag, pp. 193–216.CrossRefGoogle Scholar
Bonenfant, C., Gaillard, J. M., Loison, A. & Klein, F. (2002). Sex‐ and age‐specific effects of population density on life history traits of Red deer (Cervus elaphus) in a temperate forest. Ecography, 25, 446–58.CrossRefGoogle Scholar
Bourlière, F. (1975). Mammals, small and large: the ecological implications of body size. In Small Mammals: Their Productivity and Population Dynamics, ed. Golley, F. B., Petrusewicz, K. & Ryszkowski, L.. Cambridge: Cambridge University Press, pp. 1–8.Google Scholar
Boyce, M. S. (1979). Seasonality and patterns of natural selection for life histories. American Naturalist, 114, 569–83.CrossRefGoogle Scholar
Brashares, J. S., Garland, T. & Arcese, P. (2000). Phylogenetic analysis of coadaptation in behavior, diet and body size in the African antelope. Behavioral Ecology, 11, 452–63.CrossRefGoogle Scholar
Calder, W. A. (1984). Size, Function and Life History. Cambridge, MA: Harvard University Press.Google Scholar
Caro, T. M., Graham, C. M., Stoner, C. J. & Flores, M. M. (2003). Correlates of horn and antler shape in bovids and cervids. Behavioral Ecology and Sociobiology, 55, 32–41.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J.et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–8.CrossRefGoogle Scholar
Cerling, T. E., Ehleringer, J. R. & Harris, J. M. (1998). Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London, Series B, 353, 159–71.CrossRefGoogle ScholarPubMed
Clutton‐Brock, T. H. (1989). Mammalian mating systems. Proceedings of the Royal Society of London, Series B, 236, 339–72.CrossRefGoogle ScholarPubMed
Clutton‐Brock, T. H. & Harvey, P. H. (1978). Mammals, resources and reproductive strategies. Nature, 273, 191–5.CrossRefGoogle ScholarPubMed
Coe, M. J., Cumming, D. H. M. & Phillipson, J. (1976). Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia, 22, 341–54.CrossRefGoogle ScholarPubMed
Colbert, E. H. & Morales, M. (1994). Evolution of the Vertebrates: a History of the Backboned Animals Through Time. New York: Wiley‐Liss, Inc.Google Scholar
Colwell, R. K. (1974). Predictability, constancy and contingency of periodic phenomena. Ecology, 55, 1148–53.CrossRefGoogle Scholar
Coulson, T., Guinness, F. E., Pemberton, J. M. & Clutton‐Brock, T. H. (2004). The demographic consequences of releasing a population of red deer from culling. Ecology, 85, 411–22.CrossRefGoogle Scholar
Crampe, J.‐P., Gaillard, J.‐M. & Loison, A. (2002). L'enneigement hivernal: un facteur de variation du recrutement chez l'isard (Rupicapra pyrenaica pyrenaica). Canadian Journal of Zoology, 80, 1306–12.CrossRefGoogle Scholar
Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699–700.CrossRefGoogle Scholar
Danell, K., Lundberg, P. & Niemelä, P. (1996). Species richness in mammalian herbivores: patterns in the boreal zone. Ecography, 19, 404–9.CrossRefGoogle Scholar
Deshmukh, I. K. (1984). A common relationship between precipitation and grassland peak biomass for East and southern Africa. African Journal of Ecology, 22, 181–6.CrossRefGoogle Scholar
Eberhardt, L. L. (1985). Assessing the dynamics of wild populations. Journal of Wildlife Management, 49, 997–1012.CrossRefGoogle Scholar
Eisenberg, J. F. (1981). The Mammalian Radiations: an Analysis of Trends in Evolution, Adaptation and Behavior. Chicago: University of Chicago Press.Google Scholar
Emlen, S. T. & Oring, L. W. (1977). Ecology, sexual selection and the evolution of mammalian mating systems. Science, 197, 215–23.CrossRefGoogle Scholar
Ernest, M. S. K. (2003). Life history characteristics of placental non‐volant mammals. Ecology, 84, 3401.CrossRefGoogle Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
Fisher, D. O. & Owens, I. P. F. (2000). Female home range size and the evolution of social organisation in macropod marsupials. Journal of Animal Ecology, 69, 1093–8.CrossRefGoogle Scholar
Fisher, D. O., Owens, I. P. F. & Johnson, C. N. (2001). The ecological basis of life history variation in marsupials. Ecology, 82, 3531–40.CrossRefGoogle Scholar
Fisher, D. O., Blomberg, S. P. & Owens, I. P. F. (2002). Convergent maternal care strategies in ungulates and macropods. Evolution, 56, 167–76.CrossRefGoogle ScholarPubMed
Fowler, C. W. & MacMahon, J. A. (1982). Selective extinction and speciation: their influence on the structure and functioning of communities and ecosystems. American Naturalist, 119, 480–98.CrossRefGoogle Scholar
Fritz, H. & Duncan, P. (1994). On the carrying capacity for large ungulates of African savanna ecosystems. Proceedings of the Royal Society of London, Series B, 256, 77–82.CrossRefGoogle ScholarPubMed
Fritz, H., Duncan, P., Gordon, J. & Illius, A. W. (2002). Megaherbivores influence trophic guilds structure in African ungulate communities. Oecologia, 131, 620–5.CrossRefGoogle ScholarPubMed
Gaillard, J. M., Pontier, D., Allainé, A. et al. (1997). Variation in growth form and precocity at birth in eutherian mammals. Proceedings of the Royal Society of London, Series B, 264, 859–68.CrossRef
Gaillard, J. M., Festa‐Bianchet, M. & Yoccoz, N. G. (1998). Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology and Evolution, 13, 58–63.CrossRefGoogle ScholarPubMed
Gaillard, J. M., Festa‐Bianchet, M., Yoccoz, N. G., Loison, A. & Toïgo, C. (2000). Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics, 31, 367–93.CrossRefGoogle Scholar
Gagnon, M. & Chew, A. E. (2000). Dietary preferences in extant African bovidae. Journal of Mammalogy, 81, 490–511.2.0.CO;2>CrossRefGoogle Scholar
Garland, T., Harvey, P. H. & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematics Biology, 41, 18–32.CrossRefGoogle Scholar
Gaston, K. J. & Blackburn, T. M. (2000). Pattern and Process in Macroecology. Oxford: Blackwell Science.CrossRefGoogle Scholar
Giraldeau, L.‐A. & Caraco, T. (2000). Social Foraging Theory. Princeton: Princeton University Press.Google Scholar
Gordon, I. J. (2003). Browsing and grazing ruminants: are they different beasts?Forest Ecology and Management, 181, 13–21.CrossRefGoogle Scholar
Gordon, I. J. & Illius, A. W. (1994). The functional significance of the browser‐grazer dichotomy in African ruminants. Oecologia, 98, 167–75.CrossRefGoogle ScholarPubMed
Greenacre, M. J. & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–97.CrossRefGoogle Scholar
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. In Teeth Revisited, ed. Russel, D. E., Santoro, J.‐P. & Sigoneau‐Russel, D.. Proceedings of the VIIth International Symposium on Dental Morphology. Paris: Musée d'Histoire Naturelle, pp. 367–87.
Janis, C., Damuth, J. & Theodor, J. M. (2000). Miocene ungulates and terrestrial primary productivity: where have all the browsers gone?Proceeding of the National Academy of Science, 97, 7899–904.CrossRefGoogle ScholarPubMed
Janis, C., Damuth, J. & Theodor, J. M. (2002). The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 183–98.CrossRefGoogle Scholar
Jarman, P. J. (1974). The social organisation of antelope in relation to their ecology. Behaviour, 48, 215–65.CrossRefGoogle Scholar
Jarman, P. J. (1983). Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores. Biological Reviews, 58, 485–520.CrossRefGoogle Scholar
Johnson, C. N. & Prideaux, G. J. (2004). Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environment change as cause of extinction. Austral Ecology, 29, 553–7.CrossRefGoogle Scholar
Klein, R. G. (2000). Human evolution and large extinctions. In Antelopes, Deer and Relatives, ed. Vrba, E. S. & Schaller, G. B.. London & New Haven: Yale University Press, pp. 128–42.Google Scholar
Kozlowski, J. & Gawelczyk, A. T. (2002). Why are species' body size distributions usually skewed to the right?Functional Ecology, 16, 419–32.CrossRefGoogle Scholar
Houérou, H. N. (1989). The Grazing Land Ecosystems Of the African Sahel. Berlin: Springer‐Verlag.CrossRefGoogle Scholar
Lent, P. C. (1974). Mother‐infant relationships in ungulates. In The Behaviour of Ungulates and its Relation to Management, ed. Geist, V. and Walther, F.. IUCN Publications No. 24. Morges, Switzerland: International Union for Conservation and Natural Resources, pp. 14–55.Google Scholar
Lieth, H. (1975). Some prospects beyond production measurements. In Primary Productivity of the Biosphere, ed. Lieth, H. & Whittaker, R. H.. New York: Springer‐Verlag, pp. 286–304.CrossRefGoogle Scholar
Linnell, J. D. C., Aanes, R. & Andersen, R. (1995). Who killed Bambi? The role of predation in the neonatal mortality of temperate ungulates. Wildlife Biology, 1, 209–23.CrossRefGoogle Scholar
Loison, A., Gaillard, J. M., Pelabon, C. & Yoccoz, N. G. (1999). What factors shape sexual size dimorphism in ungulates?Evolutionary Ecology Research, 1, 611–33.Google Scholar
Loison, A., Toigo, C., Appolinaire, J. & Michallet, J. (2002). Demographic processes in colonizing populations of isard (Rupicapra pyrenaica) and ibex (Capra ibex). Journal of Zoology, 256, 199–205.CrossRefGoogle Scholar
Lott, D. F. (1991). Intraspecific Variation in the Social Systems of Wild Vertebrates. Cambridge: Cambridge University Press.Google Scholar
Lovegrove, B. G. & Haines, L. (2004). The evolution of placental mammal body sizes: evolutionary history, form and function. Oecologia, 138, 13–27.CrossRefGoogle Scholar
Martin, P. S. & Klein, R. G. (eds.) (1984). Quaternary Extinctions: a Prehistoric Revolution. Tucson: University of Arizona Press.Google Scholar
Martin, P. S. & Steadman, D. W. (1999). Prehistoric extinctions on islands and continents. In Extinctions in Near Time: Causes, Contexts and Consequences, ed. MacPhee, R. D. E.. New York: Kluwer Academic/Plenum Publishers, pp. 17–56.CrossRefGoogle Scholar
Martin, R. D., Willner, L. A. & Dettling, A. (1994). The evolution of sexual dimorphism in primates. In The Differences Between the Sexes. ed. Short, R. V. & Balaban, E.. Cambridge: Cambridge University Press, pp. 159–200.Google Scholar
McNaughton, S. J., Oesterheld, D. A., Frank, D. A. & Williams, K. J. (1989). Ecosystem‐level patterns of primary productivity and herbivory in terrestrial habitats. Nature, 341, 142–4.CrossRefGoogle ScholarPubMed
Nowak, R. M. (1991). Walker's Mammals of the World. Baltimore: Johns Hopkins University Press.Google Scholar
Oftedal, O. T. (1985). Pregnancy and lactation. In Bioenergetics of Wild Herbivores. ed. Hudson, R. J. & White, R. E.. Florida: CRD Press, Inc., pp. 215–38.Google Scholar
Olff, H., Ritchie, M. E. & Prins, H. H. T. (2002). Global environment controls of diversity in large herbivores. Nature, 415, 901–4.CrossRefGoogle ScholarPubMed
Pérez‐Barbería, F. J. & Gordon, I. J. (1999). The functional relationship between feeding type and jaw and cranial morphology in ungulates. Oecologia, 118, 157–65.Google ScholarPubMed
Pérez‐Barbería, F. J. & Gordon, I. J. (2001). Relationships between oral morphology and feeding style in the Ungulata: a phylogenetically controlled evaluation. Proceedings of the Royal Society of London, Series B, 68, 1021–30.Google Scholar
Pérez‐Barbería, F. J., Gordon, I. J. & Nores, C. (2001). Evolutionary transitions among feeding styles and habitats in ungulates. Evolutionary Ecology Research, 3, 221–30.Google Scholar
Pérez‐Barbería, F. J., Gordon, I. J. & Pagel, M. (2002). The origins of sexual dimorphism in body size in ungulates. Evolution, 56, 1276–85.CrossRefGoogle ScholarPubMed
Peters, R. H. (1983). The Ecological Implication of Body Size. Cambridge:Cambridge University Press.CrossRefGoogle Scholar
Peters, R. H. & Wassenberg, K. (1983). The effect of body size on animal abundance. Oecologia, 60, 89–96.CrossRefGoogle ScholarPubMed
Ralls, K. (1977). Sexual dimorphism in mammals: avian models and unanswered questions. American Naturalist, 111, 917–38.CrossRefGoogle Scholar
Ritchie, M. E. & Olff, H. (1999). Spatial scaling laws yield a synthetic theory of biodiversity. Nature, 400, 557–60.CrossRefGoogle ScholarPubMed
Robbins, C. T. & Robbins, B. L. (1979). Fetal and maternal growth patterns and maternal reproductive effort in ungulates and subungulates. American Naturalist, 114, 101–16.CrossRefGoogle Scholar
Robbins, C. T., Spalinger, D. E. & Van, Hoven W. (1995). Adaptation of ruminants to browse and grass diets: are anatomical‐based browser‐grazer interpretation valid?Oecologia, 103, 208–13.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge:Cambridge University Press.CrossRefGoogle Scholar
Sæther, B. E. (1997). Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution, 12, 143–9.CrossRefGoogle ScholarPubMed
Sæther, B. E. & Gordon, I. J. (1994). The adaptative significance of productive strategies in ungulates. Proceedings of the Royal Society of London, Series B, 256, 263–8.CrossRefGoogle Scholar
Schmidt‐Nielsen, K. (1984). Scaling: Why is Animal Size so Important?Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Solberg, E. J., Jordhøy, P., Strand, O.et al. (2001). Effects of density‐dependence and climate on the dynamics of a Svalbard reindeer population. Ecography, 24, 441–51.CrossRefGoogle Scholar
Sinclair, A. R. E., Mduma, S. & Brashares, J. S. (2003). Patterns of predation in a diverse predator‐prey system. Nature, 425, 288–90.CrossRefGoogle Scholar
Smith, F. A., Lyons, S. K., Ernest, S. K. M.et al. (2003). Body mass of late quaternary mammals. Ecology, 84, 3403.CrossRefGoogle Scholar
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University Press.Google Scholar
Strahan, R. (ed.) (1983). The Australian Museum Complete Book of Australian Mammals. North Ryde: Cornstalk Publishing, Collins Angus & Robertson Publishers.Google Scholar
Toïgo, C. & Gaillard, J. M. (2003). Causes of sex‐biased adult survival in ungulates: sexual size dimorphism, mating tactic or environment harshness?Oikos, 101, 376–84.CrossRefGoogle Scholar
Soest, P. J. (1994). Nutritional Ecology of the Ruminant. Corvallis, Oregon: O & B Books.Google Scholar
Van Wieren, S. E. (1996). Digestive strategies in ruminants and nonruminants. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands.
Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of Miocene‐Recent mammal clades. Evolutionary Ecology, 1, 283–300.CrossRefGoogle Scholar
Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28.CrossRefGoogle Scholar
Vrba, E. S. & Schaller, G. B. (2000). Antelopes, Deer and Relatives. London & New Haven: Yale University Press.Google Scholar
Western, D. (1989). Conservation without parks: wildlife in rural landscape. In Conservation for the 21st Century, ed. Western, D. & Pearl, M.. Oxford: Oxford University Press, pp. 158–65.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Large herbivores across biomes
  • Edited by Kjell Danell, Swedish University of Agricultural Sciences, Roger Bergström, The Forestry Research Institute of Sweden, Patrick Duncan, Centre National de la Recherche Scientifique (CNRS), Paris, John Pastor, University of Minnesota, Duluth
  • Book: Large Herbivore Ecology, Ecosystem Dynamics and Conservation
  • Online publication: 16 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617461.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Large herbivores across biomes
  • Edited by Kjell Danell, Swedish University of Agricultural Sciences, Roger Bergström, The Forestry Research Institute of Sweden, Patrick Duncan, Centre National de la Recherche Scientifique (CNRS), Paris, John Pastor, University of Minnesota, Duluth
  • Book: Large Herbivore Ecology, Ecosystem Dynamics and Conservation
  • Online publication: 16 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617461.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Large herbivores across biomes
  • Edited by Kjell Danell, Swedish University of Agricultural Sciences, Roger Bergström, The Forestry Research Institute of Sweden, Patrick Duncan, Centre National de la Recherche Scientifique (CNRS), Paris, John Pastor, University of Minnesota, Duluth
  • Book: Large Herbivore Ecology, Ecosystem Dynamics and Conservation
  • Online publication: 16 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511617461.003
Available formats
×