Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T20:47:51.497Z Has data issue: false hasContentIssue false

Chapter Twelve - Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales

Published online by Cambridge University Press:  05 August 2012

Ben D. Moore
Affiliation:
Ecological Sciences Group, The James Hutton Institute
Jane L. DeGabriel
Affiliation:
School of Biological Sciences, University of Aberdeen
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

Since Fraenkel (1959) proposed a leading role for plant secondary metabolites (PSMs) in the interactions between plants and herbivores, science has achieved broad insight into the diversity of PSMs and herbivores’ counter-adaptations to them (Freeland & Janzen, 1974; Foley et al., 1999; Foley & Moore, 2005). However, the more we learn about the distributions and functions of PSMs in natural systems, the sharper the limitations of our understanding become. In countless plant–herbivore interactions, ecologists have identified PSMs that act as feeding deterrents, toxins, digestibility reducers, feeding or oviposition cues, and signals for communicating to neighbouring plants and natural enemies of herbivores. However, most studies focus on the interaction between single species of herbivore and plant, usually with observations of captive animals fed diets containing PSMs under highly simplified conditions. Although such approaches are a necessary first step in isolating and characterising the actions of PSMs, they greatly oversimplify the complex interactions that occur between wild herbivores and plants. The next challenge for ecologists is to ‘scale up’ the roles of PSMs in plant–herbivore interactions, as we understand them from controlled experiments at small temporal scales, to predict ecological interactions at greater temporal and spatial extents.

A captive herbivore may commonly eat less as PSM concentrations in its food increase, but can this predict the foraging decisions of a wild animal within its home range, or, ultimately the distributions and abundances of plant and herbivore species and genotypes? Scaling up has an obvious spatial component, because wild animals forage more extensively than do captive animals, but it also has a temporal component. Experiments usually describe plant–herbivore interactions over very short time intervals, but in nature they are continuous and the effects of PSMs can be long-lasting (Cheeke, 1998). Animal feeding preferences are dynamic and often change with season or reproductive state, or through the ongoing process of refinement of conditioned flavour aversions (Provenza, 1996). With increasing spatial extent and finer spatial grain size comes greater complexity in the interactions between plants and animals; PSMs are rarely distributed evenly throughout landscapes, and understanding how this influences plant–animal interactions requires approaches adopted from resource ecology, foraging theory and spatial ecology and often an extensive, high-resolution picture of the foodscapes within which animals forage (van Langevelde & Prins, 2008).

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 226 - 246
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrew, R. L.Peakall, R.Wallis, I. R.Foley, W. J. 2007 Spatial distribution of defense chemicals and markers and the maintenance of chemical variationEcology 88 716CrossRefGoogle ScholarPubMed
Atsatt, P. R.O’Dowd, D. J. 1976 Plant defense guildsScience 193 24CrossRefGoogle ScholarPubMed
Bailey, D. W.Provenza, F. D. 2008 Mechanisms determining large-herbivore distributionResource Ecology: Spatial and Temporal Dynamics of Foraging7CrossRefGoogle Scholar
Barbosa, P.Hines, J.Kaplan, I. 2009 Associational resistance and associational susceptibility: having right or wrong neighborsAnnual Review of Ecology, Evolution and Systematics 40 1CrossRefGoogle Scholar
Behmer, S. T.Simpson, S. J.Raubenheimer, D. 2002 Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolitesEcology 83 2489CrossRefGoogle Scholar
Belovsky, G. E. 1990 How important are nutrient constraints in optimal foraging models or are spatial/temporal factors more important?Behavioural Mechanisms of Food SelectionBerlinSpringer-Verlag255CrossRefGoogle Scholar
Belovsky, G. E. 1994 How good must models and data be in ecology?Oecologia 100 475CrossRefGoogle ScholarPubMed
Bergvall, U. A.Balogh, A. C. V. 2009 Consummatory simultaneous positive and negative contrast in fallow deer: implications for selectivityMammalian Biology 74 238CrossRefGoogle Scholar
Bergvall, U. A.Rautio, P.Kesti, K.Tuomi, J.Leimar, O. 2006 Associational effects of plant defences in relation to within- and between-patch food choice by a mammalian herbivore: neighbour contrast susceptibility and defenceOecologia 147 253CrossRefGoogle Scholar
Brenes-Aguedas, T.Coley, P. D. 2005 Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree speciesOikos 108 410CrossRefGoogle Scholar
Brophy, J. J.Forster, P. I.Goldsack, R. J.Hibbert, D. B.Punruckvong, A. 2009 Essential oil variationEucalyptus crebra, E. melanophloia 57 425Google Scholar
Bryant, J. P.Wieland, G. D.Reichardt, P. B.Lewis, V. E.McCarthy, M. C. 1983 Pinosylvin methyl ether deters snowshoe hare feeding on green alderScience 222 1023CrossRefGoogle ScholarPubMed
Bryant, J. P.Clausen, T. P.Swihart, R. K. 2009 Fire drives transcontinental variation in tree birch defense against browsing by snowshoe haresAmerican Naturalist 174 13CrossRefGoogle ScholarPubMed
Chapman, C. A.Chapman, L. J. 2002 Foraging challenges of red colobus monkeys: influence of nutrients and secondary compoundsComparative Biochemistry and Physiology A – Molecular and Integrative Physiology 133 861CrossRefGoogle ScholarPubMed
Charnov, E. L. 1976 Optimal foraging, the marginal value theoremTheoretical Population Biology 9 129CrossRefGoogle ScholarPubMed
Cheeke, P. R. 1998 Natural Toxicants in Feeds, Forages and Poisonous PlantsDanville, ILInterstate PublishersGoogle Scholar
DeGabriel, J. L.Wallis, I. R.Moore, B. D.Foley, W. J. 2008 A simple, integrative assay to quantify nutritional quality of browses for herbivoresOecologia 156 107CrossRefGoogle ScholarPubMed
DeGabriel, J. L.Moore, B. D.Foley, W. J.Johnson, C. N. 2009 The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammalEcology 90 711CrossRefGoogle Scholar
DeGabriel, J. L.Moore, B. D.Shipley, L. A. 2009 Inter-population differences in the tolerance of a marsupial folivore to plant secondary metabolitesOecologia 161 539CrossRefGoogle ScholarPubMed
DeGroot, M. H. 1970 Optimal Statistical DecisionsNew YorkMcGraw-HillGoogle Scholar
Farentinos, R. C.Capretta, P. J.Kepner, R. E.Littlefield, V. M. 1981 Selective herbivory in tassel-eared squirrels: role of monoterpenes in ponderosa pines chosen as feeding treesScience 213 1273CrossRefGoogle ScholarPubMed
Felton, A. M.Felton, A.Wood, J. T. 2009 Nutritional ecology of in lowland Bolivia: how macronutrient balancing influences food choicesInternational Journal of Primatology 30 675CrossRefGoogle Scholar
Feng, Z. L.Liu, R. S.DeAngelis, D. L. 2008 Plant–herbivore interactions mediated by plant toxicityTheoretical Population Biology 73 449CrossRefGoogle ScholarPubMed
Feng, Z. L.Liu, R. S.DeAngelis, D. L. 2009 Plant toxicity, adaptive herbivory, and plant community dynamicsEcosystems 12 534CrossRefGoogle Scholar
Foley, W. J.McIlwee, A.Lawler, I. 1998 Ecological applications of near infrared reflectance spectroscopy: a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance (review)Oecologia 116 293CrossRefGoogle Scholar
Foley, W. J.Iason, G. R.McArthur, C. 1999 Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years?Nutritional Ecology of Herbivores: Proceedings of the Vth International Symposium on the Nutrition of HerbivoresSavoy, ILAmerican Society of Animal Science130Google Scholar
Foley, W. J.Moore, B. D. 2005 Plant secondary metabolites and vertebrate herbivores – from physiological regulation to ecosystem functionCurrent Opinion in Plant Biology 8 430CrossRefGoogle ScholarPubMed
Fraenkel, G. S. 1959 The of secondary plant substancesScience 129 1466CrossRefGoogle ScholarPubMed
Freeland, W. J.Janzen, D. H. 1974 Strategies in herbivory by mammals: the role of plant secondary compoundsAmerican Naturalist 108 269CrossRefGoogle Scholar
Fryxell, J. M. 2008 Predictive modelling of patch use by terrestrial herbivoresResource Ecology. Spatial and Temporal Dynamics of ForagingDordrechtSpringer105Google Scholar
Fryxell, J. M.Hazell, M.Borger, L. 2008 Multiple movement modes by large herbivores at multiple spatiotemporal scalesProceedings of the National Academy of Sciences USA 105 19114CrossRefGoogle ScholarPubMed
Gleadow, R. M.Woodrow, I. E. 2002 Constraints on effectiveness of cyanogenic glycosides in herbivore defense {review}Journal of Chemical Ecology 28 1301CrossRefGoogle Scholar
Hakes, A. S.Cronin, J. T. 2011 Environmental heterogeneity and spatiotemporal variability in plant defense traitsOikos 120 452CrossRefGoogle Scholar
Hobbs, N. T.Gross, J. E.Shipley, L. A.Spalinger, D. E.Wunder, B. A. 2003 Herbivore functional response in heterogeneous environments: a contest among modelsEcology 84 666CrossRefGoogle Scholar
Iason, G. 2005 The role of plant secondary metabolites in mammalian herbivory: ecological perspectivesProceedings of the Nutrition Society 64 123CrossRefGoogle ScholarPubMed
Iason, G. R.Palo, R. T. 1991 Effects of birch phenolics on a grazing and a browsing mammal – a comparison of haresJournal of Chemical Ecology 17 1733CrossRefGoogle Scholar
Jakubas, W. J.Karasov, W. H.Guglielmo, C. G. 1993 Ruffed grouse tolerance and biotransformation of the plant secondary metabolite coniferyl benzoateCondor 95 625CrossRefGoogle Scholar
Kokaly, R. F.Asner, G. P.Ollinger, S. V.Martin, M. E.Wessman, C. A. 2009 Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studiesRemote Sensing of Environment 113 S78CrossRefGoogle Scholar
Kotliar, N. B.Wiens, J. A. 1990 Multiple scales of patchiness and patch structure – a hierarchical framework for the study of heterogeneityOikos 59 253CrossRefGoogle Scholar
Krockenberger, A. K.Hume, I. D. 2007 A flexible digestive strategy accommodates the nutritional demands of reproduction in a free-living folivore, the koala ()Functional Ecology 21 748CrossRefGoogle Scholar
Laca, E. A. 2008 Foraging in a heterogeneous environment: intake and diet choiceResource Ecology: Spatial and Temporal Dynamics of ForagingDordrechtSpringer81CrossRefGoogle Scholar
Lambdon, P. W.Hassall, M. 2005 How should toxic secondary metabolites be distributed between the leaves of a fast-growing plant to minimize the impact of herbivory?Functional Ecology 19 299CrossRefGoogle Scholar
Li, Y.Feng, Z. L.Swihart, R.Bryant, J.Huntly, N. 2006 Modeling the impact of plant toxicity on plant–herbivore dynamicsJournal of Dynamics and Differential Equations 18 1021CrossRefGoogle Scholar
Logan, M.Sanson, G. D. 2002 The effect of tooth wear on the feeding behaviour of free-ranging koalas ( Goldfuss)Journal of Zoology 256 63CrossRefGoogle Scholar
Marsh, K. J.Wallis, I. R.McLean, S.Sorensen, J. S.Foley, W. J. 2006 Conflicting demands on detoxification pathways influence how common brushtail possums choose their dietsEcology 87 2103CrossRefGoogle ScholarPubMed
Marsh, K. J.Wallis, I. R.Foley, W. J. 2007 Behavioural contributions to the regulated intake of plant secondary metabolites in koalasOecologia 154 283CrossRefGoogle ScholarPubMed
McArt, S. H.Spalinger, D. E.Collins, W. B. 2009 Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central AlaskaEcology 90 1400CrossRefGoogle ScholarPubMed
McLean, S.Duncan, A. J. 2006 Pharmacological perspectives on the detoxification of plant secondary metabolites: implications for ingestive behavior of herbivoresJournal of Chemical Ecology 32 1213CrossRefGoogle ScholarPubMed
McLean, S.Brandon, S.Boyle, R. R.Wiggins, N. L. 2008 Development of tolerance to the dietary plant secondary metabolite 1,8-cineole by the brushtail possum ()Journal of Chemical Ecology 34 672CrossRefGoogle Scholar
McNaughton, S. J. 1978 Serengeti ungulates – feeding selectivity influences effectiveness of plant defense guildsScience 199 806CrossRefGoogle ScholarPubMed
Milchunas, D. G.Noy-Meir, I. 2002 Grazing refuges, external avoidance of herbivory and plant diversityOikos 99 113CrossRefGoogle Scholar
Moore, B. D.Foley, W. J. 2005 Tree use by koalas in a chemically complex landscapeNature 435 488CrossRefGoogle Scholar
Moore, B. D.Wallis, I. R.Wood, J.Foley, W. J. 2004 Foliar nutrition, site quality and temperature affect foliar chemistry of tallowwood ()Ecological Monographs 74 553CrossRefGoogle Scholar
Moore, B. D.Foley, W. J.Wallis, I. R.Cowling, A.Handasyde, K. A. 2005 A simple understanding of complex chemistry explains feeding preferences of koalasBiology Letters 1 64CrossRefGoogle Scholar
Moore, B. D.Lawler, I. R.Wallis, I. R.Beale, C. M.Foley, W. J. 2010 Palatability mapping: a koala’s eye view of spatial variation in habitat qualityEcology 91 3165CrossRefGoogle ScholarPubMed
O’Reilly-Wapstra, J. M.McArthur, C.Potts, B. M. 2004 Linking plant genotype, plant defensive chemistry and mammal browsing in a speciesFunctional Ecology 18 677CrossRefGoogle Scholar
Pass, G. J.Foley, W. J. 2000 Plant secondary metabolites as mammalian feeding deterrents: separating the effects of the taste of salicin from its post-ingestive consequences in the common brushtail possum ()Journal of Comparative Physiology B: Biochemical, Systemic and Environmental Physiology 170 185CrossRefGoogle Scholar
Pass, G. J.McLean, S.Stupans, I.Davies, N. 2001 Microsomal metabolism of the terpene 1,8-cineole in the common brushtail possum (), koala (), rat and humanXenobiotica 31 205CrossRefGoogle Scholar
Pigot, A. L.Leather, S. R. 2008 Invertebrate predators drive distance-dependent patterns of seedling mortality in a temperate tree Oikos 117 521CrossRefGoogle Scholar
Provenza, F. D. 1996 Acquired aversions as the basis for varied diets of ruminants foraging on rangelandsJournal of Animal Science 74 2010CrossRefGoogle ScholarPubMed
Raubenheimer, D.Simpson, S. J. 2009 Nutritional PharmEcology: doses, nutrients, toxins, and medicinesIntegrative and Comparative Biology 49 329CrossRefGoogle ScholarPubMed
Schmidt, K. A. 2000 Interactions between food chemistry and predation risk in fox squirrelsEcology 81 2077CrossRefGoogle Scholar
Searle, K. R.Hobbs, N. T.Shipley, L. A. 2005 Should I stay or should I go? Patch departure decisions by herbivores at multiple scalesOikos 111 417CrossRefGoogle Scholar
Searle, K. R.Vandervelde, T.Hobbs, N. T.Shipley, L. A.Wunder, B. A. 2006 Spatial context influences patch residence time in foraging hierarchiesOecologia 148 710CrossRefGoogle ScholarPubMed
Searle, K. R.Hobbs, N. T.Gordon, I. J. 2007 It’s the ‘foodscape’, not the landscape: using foraging behavior to make functional assessments of landscape conditionIsrael Journal of Ecology and Evolution 53 297CrossRefGoogle Scholar
Shipley, L. A.Forbey, J. S.Moore, B. D. 2009 Revisiting the dietary niche: when is a mammalian herbivore a specialist?Integrative and Comparative Biology 49 274CrossRefGoogle ScholarPubMed
Simpson, S. J.Raubenheimer, D. 1999 Assuaging nutritional complexity: a geometrical approachProceedings of the Nutrition Society 58 779CrossRefGoogle ScholarPubMed
Simpson, S. J.Raubenheimer, D. 2005 Obesity: the protein leverage hypothesisObesity Reviews 6 133CrossRefGoogle ScholarPubMed
Skidmore, A. K.Ferwerda, J. G. 2008 Resource distribution and dynamicsResource Ecology: Spatial and Temporal Dynamics of Foraging57CrossRefGoogle Scholar
Sorensen, J. S.McLister, J. D.Dearing, M. D. 2005 Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivoresEcology 86 125CrossRefGoogle Scholar
Sorensen, J. S.Skopec, M. M.Dearing, M. D. 2006 Application of pharmacological approaches to plant–mammal interactionsJournal of Chemical Ecology 32 1229CrossRefGoogle ScholarPubMed
Swihart, R. K.DeAngelis, D. L.Feng, Z.Bryant, J. P. 2009 Troublesome toxins: time to re-think plant–herbivore interactions in vertebrate ecologyBMC Ecology 9 5CrossRefGoogle ScholarPubMed
Torregrossa, A. M.Dearing, M. D. 2009 Nutritional toxicology of mammals: regulated intake of plant secondary compoundsFunctional Ecology 23 48CrossRefGoogle Scholar
van Beest, F. M.Mysterud, A.Loe, L. E.Milner, J. M. 2010 Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivoreJournal of Animal Ecology 79 910Google ScholarPubMed
van Langevelde, F.Prins, H. H. T. 2008 Introduction to resource ecologyResource Ecology: Spatial and Temporal Dynamics of ForagingDordrechtSpringer1Google Scholar
Wallis, I. R.Nicolle, D.Foley, W. J. 2010 Available and not total nitrogen in leaves explains key chemical differences between the eucalypt subgeneraForest Ecology and Management 260 814CrossRefGoogle Scholar
WallisDeVries, M. F.Daleboudt, C. 1994 Foraging strategy of cattle in patchy grasslandOecologia 100 98Google Scholar
Wiggins, N. L.Marsh, K. J.Wallis, I. R.Foley, W. J.McArthur, C. 2006 Sideroxylonal in foliage influences foraging behaviour of an arboreal folivoreOecologia 147 272CrossRefGoogle ScholarPubMed
Wiggins, N. L.McArthur, C.Davies, N. W.McLean, S. 2006 Spatial scale of the patchiness of plant poisons: a critical influence on foraging efficiencyEcology 87 2236CrossRefGoogle ScholarPubMed
Wilmshurst, J. F.Fryxell, J. M.Hudson, R. J. 1995 Forage quality and patch choice by wapiti ()Behavioral Ecology 6 209CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×