Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T18:49:20.389Z Has data issue: false hasContentIssue false

Chapter Six - Volatile isoprenoids and abiotic stresses

Published online by Cambridge University Press:  05 August 2012

Francesca Bagnoli
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante
Silvia Fineschi
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante
Francesco Loreto
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

Plants produce thousands of chemicals that are not recognised as primary or basic metabolites (i.e. necessary for the survival of the cells). These secondary metabolites usually only occur in special, differentiated cells and are not necessary for the cells themselves, but may be useful for the plant as a whole. Plants at different taxonomic levels (family, genus, species) produce a characteristic mix of secondary metabolites that can be utilised as characters in classifying plants. Both primary and secondary metabolism overlap (Gershenzon et al., Chapter 4) and it is often not understood why a certain compound is produced.

Secondary metabolites can be classified on the basis of their chemical structure, composition, solubility in various solvents or the pathway by which they are synthesised. Three main groups are recognised: isoprenoids (composed almost entirely of carbon and hydrogen); phenolics (made from simple sugars, containing benzene rings, hydrogen and oxygen); and nitrogen-containing compounds (extremely diverse, may also contain sulfur).

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 101 - 119
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affek, H. P.Yakir, D. 2002 Protection by isoprene against singlet oxygen in leavesPlant Physiology 129 269CrossRefGoogle ScholarPubMed
Aharoni, A.Giri, A. P.Deuerlein, S. 2003 Terpenoid metabolism in wild-type and transgenic plantsPlant Cell 15 2866CrossRefGoogle Scholar
Behnke, K.Ehlting, B.Teuber, M. 2007 Transgenic, non-isoprene emitting poplars do not like it hotPlant Journal 51 485CrossRefGoogle Scholar
Behnke, K.Loivamaki, M.Zimmer, I. 2010 Isoprene emission protects photosynthesis in sunfleck exposed grey poplarPhotosynthesis Research 104 5CrossRefGoogle ScholarPubMed
Bernstein, J. A.Alexis, N.Barnes, C. 2004 Health effects of air pollutionJournal of Allergy and Clinical Immunology 114 1116CrossRefGoogle ScholarPubMed
Brilli, F.Barta, C.Fortunati, A. 2007 Response of isoprene emission and carbon metabolism to drought in white poplar () saplingsNew Phytologist 175 244CrossRefGoogle ScholarPubMed
Brilli, F.Ciccioli, P.Frattoni, M. 2009 Constitutive and herbivore-induced monoterpenes emitted by Populus x euroamericana leaves are key volatiles that orient beetlesPlant Cell and Environment 32 542CrossRefGoogle ScholarPubMed
Calfapietra, C.Scarascia Mugnozza, G. S.Karnosky, D. F.Loreto, F.Sharkey, T. D. 2008 Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing for their sensitivity to O3New Phytologist 179 55CrossRefGoogle ScholarPubMed
Chameides, W. L.Lindsay, R. W.Richardson, J.Kiang, C. S. 1988 The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case studyScience 241 1473CrossRefGoogle ScholarPubMed
Chen, F.Tholl, D.D’Auria, J. C. 2003 Biosynthesis and emission of terpenoid volatiles from flowersPlant Cell 15 481CrossRefGoogle ScholarPubMed
Delledonne, M.Xia, Y.Dixon, R. A.Lamb, C. 1998 Nitric oxide functions as a signal in plant disease resistanceNature 394 585CrossRefGoogle ScholarPubMed
Denman, K. L.Brasseur, G.Chidthaisong, A. 2007 Couplings between changes in the climate system and biogeochemistrySolomon, S.Qin, D.Manning, M.Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeCambridge and New YorkCambridge University PressGoogle Scholar
Desikan, R.Burnett, E. C.Hancock, J. T.Neill, S. J. 1998 Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in suspension culturesJournal of Experimental Botany 49 1767CrossRefGoogle Scholar
Devletova, S.Rizhsky, L.Liang, H. 2005 Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of ArabidopsisPlant Cell 17 268CrossRefGoogle Scholar
Di Carlo, P.Brune, W. H.Martinez, M. 2004 Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCsScience 304 722CrossRefGoogle Scholar
Dicke, M.Baldwin, I. T. 2010 The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’Trends in Plant Science 15 167CrossRefGoogle ScholarPubMed
Durner, J.Klessig, D. 1999 Nitric oxide as a signal in plantsCurrent Opinions in Plant Biology 2 369CrossRefGoogle ScholarPubMed
Edreva, A. 2005 Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approachAgriculture Ecosystems and Environment 106 119CrossRefGoogle Scholar
Fares, S.Barta, C.Brilli, F. 2006 Impact of high ozone on isoprene emission, photosynthesis and histology of developing leaves directly or indirectly exposed to the pollutantPhysiologia Plantarum 128 456CrossRefGoogle Scholar
Firn, R. D.Jones, C. G. 2006 Do we need a new hypothesis to explain plant VOC emissions?Trends in Plant Science 11 112CrossRefGoogle Scholar
Firn, R. D.Jones, C. G. 2009 A Darwinian view of metabolism: molecular properties determine fitnessJournal of Experimental Botany 60 719CrossRefGoogle ScholarPubMed
Fortunati, A.Barta, C.Brilli, F. 2008 Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysisPlant Journal 55 687CrossRefGoogle Scholar
Gershenzon, J.Dudareva, N. 2007 The function of terpene natural products in the natural worldNature Chemical Biology 3 408CrossRefGoogle ScholarPubMed
Grant, J. J.Yun, B. W.Loake, G. J. 2000 Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activityPlant Journal 24 569CrossRefGoogle ScholarPubMed
Hanson, D. T.Swanson, S.Graham, L. E.Sharkey, T. D. 1999 Evolutionary significance of isoprene emission from mossesAmerican Journal of Botany 86 634CrossRefGoogle ScholarPubMed
Harley, P. C.Monson, R. K.Lerdau, M. T. 1999 Ecological and evolutionary aspects of isoprene emission from plantsOecologia 118 109CrossRefGoogle ScholarPubMed
Kappers, I. F.Aharoni, A.van Herpen, T. W. J. M. 2005 Genetic engineering of terpenoid metabolism attracts bodyguards to ArabidopsisScience 309 2070CrossRefGoogle ScholarPubMed
Karpinski, S.Escobar, C.Karpinska, B.Creissen, G.Mullineaux, P. M. 1997 Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stressPlant Cell 9 627CrossRefGoogle ScholarPubMed
Kavouras, I. G.Mihalopoulos, N.Stephanou, E. G. 1998 Formation of atmospheric particles from organic acids produced by forestsNature 395 683CrossRefGoogle Scholar
Kesselmeier, J.Staudt, M. 1999 Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecologyJournal of Atmospheric Chemistry 33 23CrossRefGoogle Scholar
Knudsen, J. T.Tollsten, L.Bergstorm, L. G. 1993 Floral scents: a checklist of volatile compounds isolated by head-space techniquesPhytochemistry 33 253CrossRefGoogle Scholar
Kössel, A. 1891 Archives of analytical physiologyPhysiologie Abteilung181Google Scholar
Laothawornkitkul, J.Paul, N. D.Vickers, C. E. 2008 Isoprene emissions influence herbivore feeding decisionsPlant, Cell and Environment 31 1410CrossRefGoogle ScholarPubMed
Lerdau, M.Gray, D. 2003 Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbonNew Phytologist 157 199CrossRefGoogle Scholar
Levine, A.Tenhaken, R.Dixon, R.Lamb, C. 1994 H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance responseCell 79 583CrossRefGoogle ScholarPubMed
Lichtenthaler, H. K.Schwender, J.Disch, A. 1997 Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathwayFEBS Letters 400 271CrossRefGoogle Scholar
Logan, B. A.Monson, R. K. 1999 Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprenePlant Physiology 120 821CrossRefGoogle Scholar
Loivamäki, M.Gilmer, F.Fischbach, R. J. 2007 Arabidopsis, a model to study biological functions of isoprene emission?Plant Physiology 144 1066CrossRefGoogle ScholarPubMed
Loivamäki, M.Mumm, R.Dicke, M.Schnitzler, J. P. 2008 Isoprene interferes with the attraction of bodyguards by herbaceous plantsProceedings of the National Academy of Sciences USA 105 17430CrossRefGoogle ScholarPubMed
Loreto, F.Delfine, S. 2000 Emission of isoprene from salt-stressed leavesPlant Physiology 123 1605CrossRefGoogle Scholar
Loreto, F.Fares, S. 2007 Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studiesPlant Physiology 143 1096CrossRefGoogle Scholar
Loreto, F.Schnitzler, J. P. 2010 Abiotic stresses and induced BVOCsTrends in Plant Science 15 154CrossRefGoogle ScholarPubMed
Loreto, F.Sharkey, T. D. 1990 A gas exchange study of photosynthesis and isoprene emission in red oak ( L.)Planta 182 523CrossRefGoogle Scholar
Loreto, F.Sharkey, T. D. 1993 On the relationship between isoprene emission and photosynthetic metabolites under different environmental-conditionsPlanta 189 420CrossRefGoogle ScholarPubMed
Loreto, F.Velikova, V. 2001 Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranesPlant Physiology 127 1781CrossRefGoogle ScholarPubMed
Loreto, F.Ciccioli, P.Brancaleoni, E. 1996 Different sources of reduced carbon contribute to form three classes of terpenoid emitted by L. leavesProceedings of the National Academy of Sciences USA 93 9966CrossRefGoogle ScholarPubMed
Loreto, F.Forster, A.Durr, M.Csiky, O.Seufert, G. 1998 On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of L. fumigated with selected monoterpenesPlant Cell and Environment 21 101CrossRefGoogle Scholar
Loreto, F.Mannozzi, M.Maris, C. 2001 Ozone quenching properties of isoprene and its antioxidant role in plantsPlant Physiology 126 993CrossRefGoogle Scholar
Loreto, F.Pinelli, P.Brancaleoni, E.Ciccioli, P. 2004 C-13 labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formationPlant Physiology 135 1903CrossRefGoogle Scholar
Loreto, F.Pinelli, P.Manes, F.Kollist, H. 2004 Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by leavesTree Physiology 24 361CrossRefGoogle ScholarPubMed
Loreto, F.Bagnoli, F.Fineschi, S. 2009 One species, many terpenes: matching chemical and biological diversityTrends in Plant Science 14 416CrossRefGoogle ScholarPubMed
Magri, D.Fineschi, S.Bellarosa, R. 2007 The distribution of chloroplast haplotypes matches the palaeogeographical history of the western MediterraneanMolecular Ecology 16 5259CrossRefGoogle ScholarPubMed
Neill, S.Desikan, R.Clarke, A.Hancock, J. 1999 H2O2 signaling in plant cellsSmallwood, M. F.Calvert, C. M.Bowels, D. J.Plant Responses to Environmental StressOxfordBIOS Scientific Publishers59Google Scholar
Niinemets, Ü.Loreto, F.Reichstein, M. 2004 Physiological and physicochemical controls on foliar volatile organic compound emissionsTrends in Plant Science 9 180CrossRefGoogle ScholarPubMed
Nogues, I.Brilli, F.Loreto, F. 2006 Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissionsPlant Physiology 141 721CrossRefGoogle ScholarPubMed
Owen, S.Peñuelas, J. 2005 Opportunistic emissions of volatile isoprenoidsTrends in Plant Science 10 420CrossRefGoogle ScholarPubMed
Owen, S. M.Peñuelas, J. 2006 Response to Firn and Jones: volatile isoprenoids, a special case of secondary metabolismTrends in Plant Science 11 113CrossRefGoogle Scholar
Panchuk, I. I.Volkov, R. A.Schöffl, F. 2002 Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in ArabidopsisPlant Physiology 129 838CrossRefGoogle ScholarPubMed
Pasqua, G.Monacelli, B.Manfredini, C.Loreto, F.Perez, G. 2002 The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pinesPlant Science 163 355CrossRefGoogle Scholar
Peñuelas, J.Llusià, J. 1999 Seasonal emission of monoterpenes by the Mediterranean tree in field conditions relations with photosynthetic rates, temperature and volatilityPhysiologia Plantarum 105 641CrossRefGoogle Scholar
Peñuelas, J.Staudt, M. 2010 BVOCs and global changeTrends in Plant Science 15 133CrossRefGoogle ScholarPubMed
Pichersky, E.Sharkey, T. D.Gershenzon, J. 2006 Plant volatiles: a lack of function or a lack of knowledge?Trends in Plant Science 11 421CrossRefGoogle ScholarPubMed
Possell, M.Ryan, A.Vickers, C. E.Mullineaux, P. M.Hewitt, C. N. 2010 Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescencePhotosynthesis Research 104 49CrossRefGoogle ScholarPubMed
Rosenstiel, T. N.Potosnak, M. J.Griffin, K. L.Fall, R.Monson, R. K. 2003 Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystemNature 421 256CrossRefGoogle Scholar
Sanadze, G. A. 2004 Biogenic isoprene (a review)Russian Journal of Plant Physiology 51 729CrossRefGoogle Scholar
Sasaki, K.Saito, T.Lamsa, M. 2007 Plants utilize isoprene emission as a thermotolerance mechanismPlant Cell Physiology 48 1254CrossRefGoogle ScholarPubMed
Sharkey, T. D.Loreto, F. 1993 Water-stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leavesOecologia 95 328CrossRefGoogle ScholarPubMed
Sharkey, T. D.Singsaas, E. L. 1995 Why plants emit isopreneNature 374 769CrossRefGoogle Scholar
Sharkey, T. D.Yeh, S. S. 2001 Isoprene emission from plantsAnnual Review of Plant Physiology and Plant Molecular Biology 52 407CrossRefGoogle ScholarPubMed
Sharkey, T. D.Chen, X. Y.Yeh, S. 2001 Isoprene increases thermotolerance of fosmidomycin-fed leavesPlant Physiology 125 2001CrossRefGoogle ScholarPubMed
Sharkey, T. D.Yeh, S.Wiberley, A. E. 2005 Evolution of the isoprene biosynthetic pathway in kudzuPlant Physiology 137 700CrossRefGoogle ScholarPubMed
Sharkey, T. D.Wiberley, A. E.Donohue, A. R. 2008 Isoprene emission from plants: why and howAnnals of Botany 101 5CrossRefGoogle Scholar
Singsaas, E. L.Lerdau, M.Winter, K.Sharkey, T. D. 1997 Isoprene increases thermotolerance of isoprene-emitting speciesPlant Physiology 115 1413CrossRefGoogle ScholarPubMed
Staudt, M.Mir, C.Joffre, R. 2004 Isoprenoid emissions of spp. ( and ) in mixed stands contrasting in interspecific genetic introgressionNew Phytologist 163 573CrossRefGoogle Scholar
Siwko, M. E.Marrink, S. J.de Vries, A. H. 2007 Does isoprene protect plant membranes from thermal shock? A molecular dynamics studyBiochemical and Biophysical Acta: Biomembranes 1768 198CrossRefGoogle Scholar
Steeghs, M.Bais, H. P.de Gouw, J. 2004 Proton-transfer-reaction mass spectrometry (PTR-MS) as a new tool for real time analysis of root-secreted volatile organic compounds (VOCs) in Plant Physiology 135 47CrossRefGoogle Scholar
Tholl, D.Boland, W.Hansel, A. 2006 Practical approaches to plant volatile analysisPlant Journal 45 540CrossRefGoogle ScholarPubMed
Vandenabeele, S.van der Kelen, K.Dat, J. 2003 A comprehensive analysis of hydrogen peroxide-induced gene expression in tobaccoProceedings of the National Academy of Sciences USA 100 16113CrossRefGoogle ScholarPubMed
Velikova, V.Loreto, F. 2005 On the relationship between isoprene emission and thermotolerance in leaves exposed to high temperatures and during the recovery from a heat stressPlant Cell and Environment 28 318CrossRefGoogle Scholar
Velikova, V.Edreva, A.Loreto, F. 2004 Endogenous isoprene protects leaves against singlet oxygenPhysiologia Plantarum 122 219CrossRefGoogle Scholar
Velikova, V.Pinelli, P.Pasqualini, S. 2005 Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozoneNew Phytologist 166 419CrossRefGoogle ScholarPubMed
Velikova, V.Pinelli, P.Loreto, F. 2005 Consequences of inhibition of isoprene synthesis in leaves exposed to elevated temperatureAgriculture, Ecosystems and Environment 106 209CrossRefGoogle Scholar
Velikova, V.Loreto, F.Tsonev, T.Brilli, F.Edreva, A. 2006 Isoprene prevents the negative consequences of high temperature stress in leavesFunctional Plant Biology 33 931CrossRefGoogle Scholar
Velikova, V.Fares, S.Loreto, F. 2008 Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stressPlant Cell and Environment 31 1882CrossRefGoogle ScholarPubMed
Vickers, C. E.Gershenzon, J.Lerdau, M. T.Loreto, F. 2009 A unified mechanism of action for volatile isoprenoids in plant abiotic stressNature Chemical Biology 5 283CrossRefGoogle ScholarPubMed
Vickers, C. E.Possell, M.Cojocariu, C. I. 2009 Isoprene synthesis protects tobacco plants from oxidative stressPlant Cell and Environment 32 520CrossRefGoogle ScholarPubMed
Volkov, R. A.Panchuk, I. I.Mullineaux, P. M.Schöffl, F. 2006 Heat stress-induced H2O2 is required for effective expression of heat shock genes in Plant Molecular Biology 61 733CrossRefGoogle Scholar
Zhong, M.Orosz, A.Wu, C. 1998 Direct sensing of heat and oxidation by Drosophila heat shock transcription factorMolecular Cell 2 101CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×