Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T10:59:40.690Z Has data issue: false hasContentIssue false

Chapter Nine - The soil microbial community and plant foliar defences against insects

Published online by Cambridge University Press:  05 August 2012

Alan C. Gange
Affiliation:
School of Biological Sciences, Royal Holloway, University of London
René Eschen
Affiliation:
CABI
Viviane Schroeder
Affiliation:
School of Biological Sciences, Royal Holloway, University of London
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Soil microbial communities

No plant in nature grows in a soil devoid of microorganisms. Plant roots are surrounded by a rich microbial community, which reaches greatest levels of abundance and diversity in the zone immediately surrounding the root, a micro-habitat known as the rhizosphere. It has been claimed that the rhizosphere is where most biodiversity on Earth exists (Hinsinger et al., 2009) and it is certainly one of the most dynamic and important ecosystems, through effects on plant growth and thus crop production and the structure and function of natural communities (Barrios, 2007).

The microbial community associated with plant roots contains a diverse array of bacteria, protozoa and fungi, some of which can be antagonistic to plant growth (pathogens), while others may appear to be benign or to have a range of beneficial effects. These latter effects include improved nutrient uptake by roots, chiefly through fixation and cycling of nitrogen, and mineralisation and uptake of phosphorus. Furthermore, soil microbes may increase plant growth by the synthesis of phytohormones (Costacurta & Vanderleyden, 1995), antagonism of deleterious soil bacteria and fungi by antibiotic production or depriving them of iron (Kloepper et al., 1980), alleviation of salt and drought stress (Evelin et al., 2009), enhancement of photosynthesis, and increasing resistance to foliar pathogens and insect predators (van der Ent et al., 2009). The fact that root-associated microorganisms can alter the resistance of foliar tissues to insect herbivores is a relatively recent discovery, and the aim of this review is to document these interactions and to explore their mechanisms.

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 170 - 189
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achatz, B.von Ruden, S.Andrade, D. 2010 Root colonization by enhances grain yield in barley under diverse nutrient regimes by accelerating plant developmentPlant and Soil 333 59CrossRefGoogle Scholar
Adesemoye, A. O.Kloepper, J. W. 2009 Plant–microbe interactions in enhanced fertilizer-use efficiencyApplied Microbiology and Biotechnology 85 1CrossRefGoogle Scholar
Alström, S. 1991 Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonadsJournal of General and Applied Microbiology 37 495CrossRefGoogle Scholar
Artursson, V.Finlay, R. D.Jansson, J. K. 2006 Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growthEnvironmental Microbiology 8 1CrossRefGoogle ScholarPubMed
Barrios, E. 2007 Soil biota, ecosystem services and land productivityEcological Economics 64 269CrossRefGoogle Scholar
Barto, E. K.Rillig, M. C. 2010 Does herbivory really suppress mycorrhiza? A meta-analysisJournal of Ecology 98 745CrossRefGoogle Scholar
Bennett, A. E.Bever, J. D.Bowers, M. D. 2009 Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivoryOecologia 160 711CrossRefGoogle ScholarPubMed
Bonello, P.Storer, A. J.Gordon, T. R.Wood, D. L. 2003 Systemic effects of on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark-beetle-associated fungiJournal of Chemical Ecology 29 1167CrossRefGoogle Scholar
Bong, C. F. J.Sikorowski, P. P. 1991 Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, (Lepidoptera: Noctuidae)Journal of Invertebrate Pathology 57 406CrossRefGoogle Scholar
Boutard-Hunt, C.Smart, C. D.Thaler, J.Nault, B. A. 2009 Impact of plant growth-promoting rhizobacteria and natural enemies on (Hemiptera: Aphididae) infestations in pepperJournal of Economic Entomology 102 2183CrossRefGoogle ScholarPubMed
Çakmakçi, R.Erat, M.Erdogan, U.Dönmez, M. E. 2007 The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plantsJournal of Plant Nutrition and Soil Science 170 288CrossRefGoogle Scholar
Carter-Wientjes, C. H.Russin, J. S.Boethel, D. J.Griffin, J. L.McGawley, E. C. 2004 Feeding and maturation by soybean looper (Lepidoptera: Noctuidae) larvae on soybean affected by weed, fungus, and nematode pestsJournal of Economic Entomology 97 14CrossRefGoogle ScholarPubMed
Choi, G. J.Kim, J. C.Jang, K. S. 2009 Biocontrol activity of BCP against diseasesPlant Pathology Journal 25 165CrossRefGoogle Scholar
Commare, R. R.Nandakumara, R.Kandana, A. 2002 based bio-formulation for the management of sheath blight disease and leaffolder insect in riceCrop Protection 21 671CrossRefGoogle Scholar
Compant, S.Duffy, B.Nowak, J.Clément, C.Barka, E. A. 2005 Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospectsApplied and Environmental Microbiology 71 4951CrossRefGoogle ScholarPubMed
Conrath, U. 2009 Priming of induced plant defense responsesAdvances in Botanical Research 51 361CrossRefGoogle Scholar
Costacurta, A.Vanderleyden, J. 1995 Synthesis of phytohormones by plant associated bacteriaCritical Reviews in Microbiology 21 1CrossRefGoogle ScholarPubMed
de Vleesschauwer, D.Höfte, M. 2009 Rhizobacteria-induced systemic resistanceAdvances in Botanical Research 51 223CrossRefGoogle Scholar
de Vos, M.van Oosten, V. R.Jander, G.Dicke, M.Pieterse, C. M. J. 2007 Plants under attack: multiple interactions with insects and microbesPlant Signaling and Behavior 2 527CrossRefGoogle ScholarPubMed
del Amor, F. M.Serrano-Martínez, A.Fortea, M. I.Legua, P.Núñez-Delicado, E. 2008 The effect of plant-associative bacteria ( and ) on the fruit quality of sweet pepper under limited nitrogen supplyScientia Horticulturae 117 191CrossRefGoogle Scholar
Durrant, W. E.Dong, X. 2004 Systemic acquired resistanceAnnual Review of Phytopathology 42 185CrossRefGoogle ScholarPubMed
Evelin, H.Kapoor, R.Giri, B. 2009 Arbuscular mycorrhizal fungi in alleviation of salt stress: a reviewAnnals of Botany 104 1263CrossRefGoogle ScholarPubMed
Eyles, E.Bonello, P.Ganley, R.Mohammed, C. 2010 Induced resistance to pests and pathogens in treesNew Phytologist 185 893CrossRefGoogle ScholarPubMed
Fontana, A.Reichelt, M.Hempel, S.Gershenzon, J.Unsicker, S. B. 2009 The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of LJournal of Chemical Ecology 35 833CrossRefGoogle Scholar
Gange, A. C. 2007 Insect–mycorrhizal interactions: patterns, processes and consequencesOhgushi, T.Craig, T.Price, P. W.Indirect Interaction Webs: Nontrophic Linkages through Induced Plant TraitsCambridge University Press124Google Scholar
Gange, A. C.West, H. M. 1994 Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in LNew Phytologist 128 79CrossRefGoogle Scholar
Gange, A. C.Stagg, P. G.Ward, L. K. 2002 Arbuscular mycorrhizal fungi affect phytophagous insect specialismEcology Letters 5 11CrossRefGoogle Scholar
Gange, A. C.Brown, V. K.Aplin, D. M. 2003 Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoidsEcology Letters 6 1051CrossRefGoogle Scholar
Gange, A. C.Brown, V. K.Aplin, D. M. 2005 Ecological specificity of arbuscular mycorrhizae: evidence from foliar- and seed-feeding insectsEcology 86 603CrossRefGoogle Scholar
Gara, R. I.Geiszler, D. R.Littke, W. R. 1984 Primary attraction of the mountain pine beetle to lodgepole pine in OregonAnnals of the Entomological Society of America 77 333CrossRefGoogle Scholar
Guerrieri, E.Lingua, G.Digilio, M. C.Massa, N.Berta, G. 2004 Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?Ecological Entomology 29 753CrossRefGoogle Scholar
Hanafi, A.Traoré, M.Schnitzler, W. H.Woitke, M. 2007 Induced resistance of tomato to whiteflies and with the PGPR in a soilless crop grown under greenhouse conditionsActa Horticulturae 747 315CrossRefGoogle Scholar
Hempel, S.Stein, C.Unsicker, S. B. 2009 Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid systemOecologia 160 267CrossRefGoogle ScholarPubMed
Herman, M. A. B.Nault, B. A.Smart, C. D. 2008 Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New YorkCrop Protection 27 996CrossRefGoogle Scholar
Herms, D. A.Mattson, W. J. 1992 The dilemma of plants – to grow or defendQuarterly Review of Biology 67 283CrossRefGoogle Scholar
Hertert, H. D.Miller, D. L.Partridge, A. D. 1975 Interactions of bark beetles (Coleoptera:Scolytidae) and root rot pathogens in northern IdahoCanadian Entomologist 107 899CrossRefGoogle Scholar
Hinsinger, P.Bengough, A. G.Vetterlein, D.Young, I. M. 2009 Rhizosphere: biophysics, biogeochemistry and ecological relevancePlant and Soil 321 117CrossRefGoogle Scholar
Hol, W. H. G.de la Pena, E.Moens, M.Cook, R. 2007 Interaction between a fungal endophyte and root herbivores of Basic and Applied Ecology 8 500Google Scholar
Jaber, L. R.Vidal, S. 2010 Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generationEcological Entomology 35 25CrossRefGoogle Scholar
Jaleel, C. A.Manivannan, P.Sankar, B. 2007 enhances biomass yield and ajmalicine production in under water deficit stressColloids and Surfaces B: Biointerfaces 60 7CrossRefGoogle ScholarPubMed
James, R. L.Goheen, D. J. 1981 Conifer mortality associated with root disease and insects in ColoradoPlant Disease 65 506CrossRefGoogle Scholar
Kandan, A.Commare, R. R.Nandakumar, R. 2002 Induction of phenylpropanoid metabolism by against tomato spotted wilt virus in tomatoFolia Microbiologica 47 121CrossRefGoogle ScholarPubMed
Kempel, A.Schmidt, A. K.Brandl, R.Schädler, M. 2010 Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungiFunctional Ecology 24 293CrossRefGoogle Scholar
Kloepper, J. W.Leong, J.Teintze, M.Schroth, M. N. 1980 Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteriaNature 286 885CrossRefGoogle Scholar
Kloepper, J. W.Tuzun, S.Kuć, J. A. 1992 Proposed definitions related to induced disease resistanceBiocontrol Science and Technology 2 349CrossRefGoogle Scholar
Koide, R. T.Li, M. 1989 Appropriate controls for vesicular arbuscular mycorrhizal researchNew Phytologist 111 35CrossRefGoogle Scholar
Koricheva, J.Gange, A. C.Jones, T. 2009 Effects of mycorrhizal fungi on insect herbivores: a meta-analysisEcology 90 2088CrossRefGoogle ScholarPubMed
Lavania, M.Chauhan, P. S.Chauhan, S. V. S.Singh, H. B.Nautiyal, C. S. 2006 Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria NBRI1213Current Microbiology 52 363CrossRefGoogle ScholarPubMed
Leath, K. T.Byers, R. A. 1977 Interaction of root rot with pea aphid and potato leafhopper feeding on forage legumesPhytopathology 67 226CrossRefGoogle Scholar
Leitner, M.Kaiser, R.Hause, B.Boland, W.Mithöfer, A. 2010 Does mycorrhization influence herbivore-induced volatile emission in ?Mycorrhiza 20 89CrossRefGoogle Scholar
Lewis, K. J.Lindgren, B. S. 2002 Relationship between spruce beetle and tomentosus root disease: two natural disturbance agents of spruceCanadian Journal of Forest Research 32 31CrossRefGoogle Scholar
Liu, J.Maldonado-Mendoza, I.Lopez-Meyer, M. 2007 Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shootsPlant Journal 50 529CrossRefGoogle ScholarPubMed
Lugtenberg, B. J. J.Kamilova, F. 2009 Plant growth-promoting rhizobacteriaAnnual Review of Microbiology 63 541CrossRefGoogle ScholarPubMed
Mabrouk, Y.Simier, P.Delavault, P. 2007 Molecular and biochemical mechanisms of defence induced in pea by against Weed Research 47 452CrossRefGoogle Scholar
Madziaraborusiewicz, K.Strzelecka, H. 1977 Conditions of spruce () infestation by engraver beetle () in mountains of Poland I. Chemical composition of volatile oils from healthy trees and those infested with honey fungus ()Journal of Applied Entomology 83 409Google Scholar
Maharning, A. R.Mills, A. A. S.Adl, S. M. 2009 Soil community changes during secondary succession to naturalized grasslandsApplied Soil Ecology 41 137CrossRefGoogle Scholar
Moellenbeck, D. J.Quisenberry, S. S.Colyer, P. D. 1992 crown-rot development in alfalfa stressed by threecornered alfalfa hopper (Homoptera: Membracidae) feedingJournal of Economic Entomology 58 1442CrossRefGoogle Scholar
Narula, N.Kothe, E.Behl, R. K. 2009 Role of root exudates in plant-microbe interactionsJournal of Applied Botany and Food Quality 82 122Google Scholar
Nebeker, T. E.Schmitz, R. F.Tisdale, R. A.Hobson, K. R. 1995 Chemical and nutritional status of dwarf mistleltoe, root-rot, and blister rust infected trees which may influence tree susceptibility to bark beetle attackCanadian Journal of Botany 73 360CrossRefGoogle Scholar
Nishida, T.Katayama, N.Izumi, N.Ohgushi, T. 2010 Arbuscular mycorrhizal fungi species-specifically affect induced plant responses to a spider mitePopulation Ecology 52 507CrossRefGoogle Scholar
Oelmuller, R.Sherameti, I.Tripathi, S.Varma, A. 2009 , a cultivable root endophyte with multiple biotechnological applicationsSymbiosis 49 1CrossRefGoogle Scholar
Paterson, E. 2003 Importance of rhizodeposition in the coupling of plant and microbial productivityEuropean Journal of Soil Science 54 741CrossRefGoogle Scholar
Pieterse, C. M. J.Dicke, M. 2007 Plant interactions with microbes and insects: from molecular mechanisms to ecologyTrends in Plant Science 12 564CrossRefGoogle ScholarPubMed
Pieterse, C. M. Jvan Wees, S. C. Mvan Pelt, J. A. 1998 A novel signalling pathway controlling induced systemic resistance in Plant Cell 10 1571CrossRefGoogle Scholar
Piskiewicz, A. M.Duyts, H.van der Putten, W. H. 2009 Soil microorganisms in coastal foredunes control the ectoparasitic root-feeding nematode by local interactionsFunctional Ecology 23 621CrossRefGoogle Scholar
Pozo, M. J.Azcón-Aguilar, C. 2007 Unraveling mycorrhiza-induced resistanceCurrent Opinion in Plant Biology 10 393CrossRefGoogle ScholarPubMed
Qingwen, Z.Ping, L.Gang, W. 1998 On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axisActa Phytophylactica Sinica 25 209Google Scholar
Ramamoorthy, V.Viswanathan, R.Raguchander, T.Prakasam, V.Samiyappan, R. 2008 Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseasesCrop Protection 20 1CrossRefGoogle Scholar
Ross, A. F. 1961 Systemic acquired resistance induced by localized virus infections in plantsVirology 14 340CrossRefGoogle ScholarPubMed
Saravanakumar, D.Muthumeena, K.Lavanya, N. 2007 -induced defence molecules in rice plants against leaffolder () pestPest Management Science 63 714CrossRefGoogle ScholarPubMed
Saravanakumar, D.Lavanya, N.Muthumeena, B. 2008 enhances resistance and natural enemy population in rice plants against leaffolder pestJournal of Applied Entomology 132 469CrossRefGoogle Scholar
Schenk, P. M.McGrath, K. C.Lorito, M.Pieterse, C. M. J. 2008 Plant–microbe and plant–insect interactions meet common groundsNew Phytologist 179 251CrossRefGoogle ScholarPubMed
Schoonhoven, L. M.van Loon, J. J. A.Dicke, M. 2005 Insect–Plant BiologyOxfordOxford University PressGoogle Scholar
Schroth, M. N.Hancock, J. G. 1982 Disease-suppressive soil and root-colonizing bacteriaScience 216 1376CrossRefGoogle ScholarPubMed
Selvaraj, T.Rajeshkumar, S.Nisha, M. C.Wondimu, L.Tesso, M. 2008 Effect of and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in LamMaejo International Journal of Science and Technology 2 516Google Scholar
Senthilraja, G.Anand, T.Durairaj, C. 2010 A new microbial consortia containing entomopathogenic fungus, and plant growth promoting rhizobacteria, for simultaneous management of leafminers and collar rot disease in groundnutBiocontrol Science and Technology 20 449CrossRefGoogle Scholar
Shoresh, M.Harman, G. E.Mastouri, F. 2010 Induced systemic resistance and plant responses to fungal biocontrol agentsAnnual Review of Phytopathology 48 21CrossRefGoogle ScholarPubMed
Singh, U. P.Sarma, B. K.Singh, D. P.Bahadur, A. 2002 Plant growth-promoting rhizobacteria-mediated induction of phenolics in pea () after infection with Current Microbiology 44 396CrossRefGoogle ScholarPubMed
Smith, S. E.Read, D. J. 2008 Mycorrhizal SymbiosisLondonAcademic PressGoogle Scholar
Stein, E.Molitor, A.Kogel, K.-H.Waller, F. 2008 Systemic resistance in conferred by the mycorrhizal fungus requires jasmonic acid signaling and the cytoplasmic function of NPR1Plant and Cell Physiology 49 1747CrossRefGoogle ScholarPubMed
Stout, M. J.Thaler, J. S.Thomma, B. P. H. J. 2006 Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropodsAnnual Review of Entomology 51 663CrossRefGoogle ScholarPubMed
Sun, C. A.Johnson, J.Cai, D. G. 2010 confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS proteinJournal of Plant Physiology 167 1009CrossRefGoogle ScholarPubMed
Trillas, M. I.Segarra, G. 2009 Interactions between nonpathogenic fungi and plantsAdvances in Botanical Research 51 321CrossRefGoogle Scholar
Valenzuela-Soto, J. H.Estrada-Hernández, M. G.Ibarra-Laclette, E.Délano-Frier, J. P. 2010 Inoculation of tomato plants () with growth-promoting retards whitefly developmentPlanta 231 397CrossRefGoogle ScholarPubMed
van der Ent, S.Van Wees, S. C. M.Pieterse, C. M. J. 2009 Jasmonate signalling in plant interactions with resistance-inducing beneficial microbesPhytochemistry 70 1581CrossRefGoogle Scholar
van Hulten, M.Pelser, M.van Loon, L. C.Pieterse, C. M. J.Ton, J. 2006 Costs and benefits of priming for defense in Proceedings of the National Academy of Sciences USA 103 5602CrossRefGoogle Scholar
van Loon, L. C. 1997 Induced resistance and the role of pathogenesis related proteinsEuropean Journal of Plant Pathology 103 753CrossRefGoogle Scholar
van Loon, L. C. 2007 Plant responses to plant-growth promoting rhizobacteriaEuropean Journal of Plant Pathology 119 243CrossRefGoogle Scholar
van Oosten, V. R.Bodenhausen, N.Reymond, P. 2008 Differential effectiveness of microbially induced resistance against herbivorous insects in AMolecular Plant–Microbe Interactions 21 919CrossRefGoogle Scholar
van Peer, R.Niemann, G. J.Schippers, B. 1991 Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by sp. strain WCS417rPhytopathology 81 728CrossRefGoogle Scholar
van Veen, J. A.van Overbeek, L. S.van Elsas, J. D. 1997 Fate and activity of microorganisms introduced into soilMicrobiology and Molecular Biology Reviews 61 121Google ScholarPubMed
van Wees, S. C. M.de Swart, E. A. M.van Pelt, J. A.van Loon, L. C.Pieterse, C. M. J. 2000 Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Proceedings of the National Academy of Sciences USA 97 8711CrossRefGoogle Scholar
van Wees, S. C. M.van der Ent, S.Pieterse, C. M. J. 2008 Plant immune responses triggered by beneficial microbesCurrent Opinion in Plant Biology 11 443CrossRefGoogle ScholarPubMed
Vannette, R. L.Hunter, M. D. 2009 Mycorrhizal fungi as mediators of defence against insect pests in agricultural systemsAgricultural and Forest Entomology 11 351CrossRefGoogle Scholar
Verhagen, B. W. M.Glazebrook, J.Zhu, T. 2004 The transcriptome of rhizobacteria-induced systemic resistance in Molecular Plant–Microbe Interactions 17 895CrossRefGoogle Scholar
Vestergard, M.Henry, F.Rangel-Castro, J. I. 2008 Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cuttingFEMS Microbiology Ecology 64 78CrossRefGoogle Scholar
Vidal, S. 1996 Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungusEntomologia Experimentalis et Applicata 80 272CrossRefGoogle Scholar
Vogt, T. 2010 Phenylpropanoid biosynthesisMolecular Plant 3 2CrossRefGoogle ScholarPubMed
Waller, F.Achatz, B.Baltruschat, H. 2005 The endophytic fungus reprograms barley to salt-stress tolerance, disease resistance, and higher yieldProceedings of the National Academy of Sciences USA 102 13386CrossRefGoogle ScholarPubMed
Walters, D.Heil, M. 2007 Costs and trade-offs associated with induced resistancePhysiological and Molecular Plant Pathology 71 3CrossRefGoogle Scholar
Wei, G.Kloepper, J. W.Tuzun, S. 1991 Induction of systemic resistance of cucumber to by select strains of plant growth promoting rhizobacteriaPhytopathology 81 1508CrossRefGoogle Scholar
Yao, C.Wei, G.Zehnder, G. W.Shelby, R. A.Kloepper, J. W. 1996 Induced systemic resistance against bacterial wilt of cucumber by select plant growth-promoting rhizobacteriaPhytopathology 84 1082Google Scholar
Yao, C.Zehnder, G. W.Bauske, E.Kloepper, J. W. 1996 Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wiltJournal of Economic Entomology 89 510CrossRefGoogle Scholar
Zehnder, G. W.Kloepper, J. W.Tuzun, S. 1997 Insect feeding on cucumber mediated by rhizobacteria-induced plant resistanceEntomologia Experimentalis et Applicata 83 81CrossRefGoogle Scholar
Zehnder, G. W.Kloepper, J. W.Yao, CWei, G. 1997 Induction of systemic resistance against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteriaJournal of Economic Entomology 90 391CrossRefGoogle Scholar
Zehnder, G. W.Murphy, J. F.Sikora, E. J.Kloepper, J. W. 2001 Application of rhizobacteria for induced resistanceEuropean Journal of Plant Pathology 107 39CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×