Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T07:07:49.741Z Has data issue: false hasContentIssue false

Chapter Eleven - Plant secondary metabolites and the interactions between plants and other organisms

the potential of a metabolomic approach

Published online by Cambridge University Press:  05 August 2012

Sue E. Hartley
Affiliation:
Department of Biology, University of York
René Eschen
Affiliation:
CABI
Julia M. Horwood
Affiliation:
School of Life Sciences, University of Sussex
Lynne Robinson
Affiliation:
School of Life Sciences, University of Sussex
Elizabeth M. Hill
Affiliation:
School of Life Sciences, University of Sussex
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

The central role of plant secondary metabolites (PSMs) in mediating the ecological interactions between plants and other organisms is both well known and well studied, particularly in the case of the defensive responses of plants against attack by herbivores or pathogens (Dangl & Jones, 2001; Kessler & Baldwin, 2002). Furthermore, because plants face many simultaneous threats (Maleck & Dietrich, 1999; Paul et al., 2000), the chemical changes within plants in response to one attacking organism can influence the behaviour and performance of many others (Thaler et al., 2002; Biere et al., 2004). Thus, chemically mediated plant-based interactions have significant consequences for individual species, ecological communities and ecosystem function, so gaining an in-depth understanding of the chemical basis of these interactions is vital for ecologists (van der Putten, 2003; Dicke, 2006; Schuman & Baldwin, Chapter 15; Dicke et al., Chapter 16).

Recent advances in ecological genomics have demonstrated the complexity of plant responses to biotic challenges at the molecular level: hundreds of genes are now known to be up- or down-regulated in response to herbivore or pathogen attack (Zheng & Dicke, 2008). This has been of great benefit in understanding the molecular basis of plant defence, but microarray data alone cannot unravel the complexity and variability in plant responses, many of which are specific to particular types of natural enemy, and/or vary according to environmental conditions (Kant & Baldwin, 2007). Genomic analysis needs to be supported by manipulative experiments which assess all the metabolic responses of plants to environmental challenges as well as the molecular ones – so-called metabolomic approaches. Metabolomics is the systematic analysis of the set of metabolites synthesised by an organism at a particular ‘snapshot’ in time and can be described as providing the link between genotypes and phenotypes (Fiehn, 2002; Macel et al., 2010). Assuming that this set of metabolites reflects the interactions the plant is having with its abiotic and biotic environment, chemical ecologists can use this technique to study the mechanisms underpinning these interactions (Bundy et al., 2009), including those between plants and other organisms such as herbivores and pathogens (Allwood et al., 2008).

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 204 - 225
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, J. W.Ellis, D. I.Goodacre, R. 2008 Biomarker metabolites capturing the metabolite variance present in a rice plant developmental periodPhysiologia Plantarum 132 117Google Scholar
Andersson, M. X.Hamberg, M.Kourtchenko, O. 2006 Oxylipin profiling of the hypersensitive response in – formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside EJournal of Biological Chemistry 281 31528CrossRefGoogle ScholarPubMed
Bacon, C. W. 1993 Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescueAgriculture Ecosystem Environment 44 123CrossRefGoogle Scholar
Barton, K. E.Koricheva, J. 2010 The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysisAmerican Naturalist 175 481CrossRefGoogle ScholarPubMed
Berenbaum, M. R. 1995 Turnabout is fair play: secondary roles for primary compoundsJournal of Chemical Ecology 21 925CrossRefGoogle ScholarPubMed
Biere, A.Marak, H. B.van Damme, J. M. M. 2004 Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs?Oecologia 140 430CrossRefGoogle ScholarPubMed
Broadhurst, D. I.Kell, D. B. 2006 Statistical strategies for avoiding false discoveries in metabolomics and related experimentsMetabolomics 2 171CrossRefGoogle Scholar
Bronstein, L. J. 1994 Conditional outcomes in mutualistic interactionsTrends in Ecology and Evolution 9 214CrossRefGoogle ScholarPubMed
Bundy, J. G.Davey, M. P.Viant, M. R. 2009 Environmental metabolomics: a critical review and future perspectivesMetabolomics 5 3CrossRefGoogle Scholar
Cheeke, P. R.Pierson-Goeger, M. L. 1983 Toxicity of and pyrrolizidine alkaloids in various laboratory-animals and avian speciesToxicology Letters 18 343CrossRefGoogle ScholarPubMed
Cheplick, G. P. 2004 Recovery from drought stress in (Poaceae): are fungal endophytes detrimental?American Journal of Botany 91 1960CrossRefGoogle ScholarPubMed
Dangl, J. L.Jones, J. D. G. 2001 Plant pathogens and integrated defence responses to infectionNature 411 826CrossRefGoogle Scholar
Davitt, A. J.Stansberry, M.Rudgers, J. A. 2010 Do the costs and benefits of fungal endophyte symbiosis vary with light availability?New Phytologist 188 824CrossRefGoogle ScholarPubMed
de Boer, N. J. 1999 Pyrrolizidine alkaloid distribution in rosettes minimises losses to generalist feedingEntomologia Experimentalis et Applicata 91 169CrossRefGoogle Scholar
Dicke, M. 2006 Dicke, M.Takken, W.
Edgar, J. A.Culvenor, C. C. J.Cockrum, P. A.Smith, L. W.Rothschild, M. 1980 Callimorphine – identification and synthesis of the cinnabar moth metaboliteTetrahedron Letters 21 1383CrossRefGoogle Scholar
Faeth, S. H. 2002 Are endophytic fungi defensive plant mutualists?Oikos 98 25CrossRefGoogle Scholar
Faeth, S. H.Sullivan, T. J. 2003 Mutualistic asexual endophytes in a native grass are usually parasiticAmerican Naturalist 161 310CrossRefGoogle Scholar
Fiehn, O. 2002 Metabolomics – the link between genotypes and phenotypesPlant Molecular Biology 48 155CrossRefGoogle ScholarPubMed
Gange, A. C.Ayres, R. L. 1999 On the relation between arbuscular mycorrhizal colonization and plant benefit?Oikos 87 615CrossRefGoogle Scholar
Gange, A. C.Dey, S.Currie, A. F.Sutton, B. C. 2007 Site- and species-specific differences in endophyte occurrence in two herbaceous plantsJournal of Ecology 95 614CrossRefGoogle Scholar
Hartley, S. E.Gange, A. C. 2009 Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic contextAnnual Review of Entomology 54 323CrossRefGoogle Scholar
Herms, D. A.Mattson, W. J. 1992 The dilemma of plants – to grow or defendQuarterly Review of Biology 67 283CrossRefGoogle Scholar
Hol, W. H. G.van Veen, J. A. 2002 Pyrrolizidine alkaloids from affect fungal growthJournal of Chemical Ecology 28 1763CrossRefGoogle ScholarPubMed
Jansen, J. J.Alwood, J. W.Marsden-Edwards, E. 2009 Metabolomic analysis of the interaction between plants and herbivoresMetabolomics 5 150CrossRefGoogle Scholar
Johnson, A. E. 1978 Tolerance of cattle to tansy ragwort ()American Journal of Veterinary Research 39 1542Google Scholar
Johnson, A. E.Molyneux, R. J.Merrill, G. B. 1985 Chemistry of toxic range plants – variation in pyrrolizidine alkaloid content of , , and speciesJournal of Agricultural and Food Chemistry 33 50CrossRefGoogle Scholar
Jones, C. G.Hartley, S. E. 1999 A protein competition model of phenolic allocationOikos 86 27CrossRefGoogle Scholar
Joosten, L.Mulder, P. P. J.Vrieling, K.van Veen, J. A.Klinkhamer, P. G. L. 2010 The analysis of pyrrolizidine alkaloids in ; a comparison of extraction and detection methodsPhytochemical Analysis 21 197Google Scholar
Jordon-Thaden, I. E.Louda, S. M. 2003 Chemistry of and : a role in ecological risk assessment for biological control of weeds?Biochemical Systematics and Ecology 31 1353CrossRefGoogle Scholar
Kant, M. R.Baldwin, I. T. 2007 The ecogenetics and ecogenomics of plant–herbivore interactions: rapid progress on a slippery roadCurrent Opinion in Genetics and Development 17 519CrossRefGoogle ScholarPubMed
Kessler, A.Baldwin, I. T. 2002 Plant responses to insect herbivory: the emerging molecular analysisAnnual Review of Plant Biology 53 299CrossRefGoogle ScholarPubMed
Kirk, H.Choi, Y. H.Kim, H. K.Verpoorte, R.van der Meijden, E. 2005 Comparing metabolomes: the chemical consequences of hybridization in plantsNew Phytologist 167 613CrossRefGoogle ScholarPubMed
Lajide, L.Escoubas, P.Mizutani, J. 1996 Cyclohexadienones-insect growth inhibitors from the foliar surface and tissue extracts of Experientia 52 259CrossRefGoogle Scholar
Leiss, K. A.Choi, Y. H.Abdel-Farid, I. B.Verpoorte, R.Klinkhamer, P. G. L. 2009 NMR metabolomics of thrips () resistance in hybridsJournal of Chemical Ecology 35 1CrossRefGoogle ScholarPubMed
Leiss, K. A.Maltese, F.Choi, Y. H.Verpoorte, R.Klinkhamer, P. G. L. 2009 Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemumPlant Physiology 150 1567CrossRefGoogle ScholarPubMed
Macel, M.Klinkhamer, P. G. L. 2010 Chemotype of affects damage by pathogens and insect herbivores in the fieldEvolutionary Ecology 24 237CrossRefGoogle Scholar
Macel, M.Vrieling, K. 2003 Pyrrolizidine alkaloids as oviposition stimulants for the cinnabar moth, Journal of Chemical Ecology 29 1435CrossRefGoogle Scholar
Macel, M.Bruinsma, M.Dijkstra, S. M. 2005 Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore speciesJournal of Chemical Ecology 31 1493CrossRefGoogle ScholarPubMed
Macel, M.van Dam, N. M.Keurentjes, J. J. B. 2010 Metabolomics: the chemistry between ecology and geneticsMolecular Ecology Resources 10 583CrossRefGoogle ScholarPubMed
Maleck, K.Dietrich, R. A. 1999 Defense on multiple fronts: how do plants cope with diverse enemies?Trends in Plant Science 4 215CrossRefGoogle ScholarPubMed
McCall, A. C.Fordyce, J. A. 2010 Can optimal defence theory be used to predict the distribution of plant chemical defences?Journal of Ecology 98 985CrossRefGoogle Scholar
McKey, D. 1974 Adaptive patterns in alkaloid physiologyAmerican Naturalist 108 305CrossRefGoogle Scholar
Onyilagha, J. C.Lazorko, J.Gruber, M. Y.Soroka, J. J.Erlandson, M. A. 2004 Effect of flavonoids on feeding preference and development of the crucifer pest WalkerJournal of Chemical Ecology 30 109CrossRefGoogle ScholarPubMed
Paul, N. D.Hatcher, P. E.Taylor, J. E. 2000 Coping with multiple enemies: an integration of molecular and ecological perspectivesTrends in Plant Science 5 220CrossRefGoogle ScholarPubMed
Prince, E. K.Pohnert, G. 2010 Searching for signals in the noise: metabolomics in chemical ecologyAnalytical and Bioanalytical Chemistry 396 193CrossRefGoogle ScholarPubMed
Reymond, P.Farmer, E. E. 1998 Jasmonate and salicylate as global signals for defence gene expressionCurrent Opinion in Plant Biology 1 404CrossRefGoogle Scholar
Reuveni, M.Reuveni, R. 2000 Prior inoculation with non-pathogenic fungi induces systemic resistance to powdery mildew on cucumber plantsEuropean Journal of Plant Pathology 106 633CrossRefGoogle Scholar
Rodriguez, R. J.White, J. F.Arnold, A. E.Redman, R. S. 2009 Fungal endophytes: diversity and functional rolesNew Phytologist 182 314CrossRefGoogle ScholarPubMed
Saikkonen, K.Lehtonen, P.Helander, M.Koricheva, J.Faeth, S. 2006 Model systems in ecology: dissecting the endophyte-grass literatureTrends in Plant Science 11 428CrossRefGoogle ScholarPubMed
Saito, K.Matsuda, F. 2010 Metabolomics for functional genomics, systems biology, and biotechnologyAnnual Review of Plant Biology 61 463CrossRefGoogle ScholarPubMed
Sana, T. R.Fischer, S.Wohlgemuth, G. 2010 Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Metabolomics 6 451CrossRefGoogle ScholarPubMed
Schulz, B.Wanke, U.Draeger, S.Aust, H.-J. 1993 Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methodsMycological Research 97 1447CrossRefGoogle Scholar
Schwachtje, J.Baldwin, I. T. 2008 Why does herbivore attack reconfigure primary metabolism?Plant Physiology 146 845CrossRefGoogle ScholarPubMed
Shao, H. B.Chu, L. Y.Jaleel, C. A. 2009 Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globeCritical Reviews in Biotechnology 29 131CrossRefGoogle ScholarPubMed
Sieber, T. 2007 Endophytic fungi in forest trees: are they mutualists?Fungal Biology Reviews 21 75CrossRefGoogle Scholar
Siegel, M. R.Bush, L. P. 1996 Romeo, J. T.Saunders, J. A.Barbosa, P.New York and LondonPlenum Press
Stone, J.Bacon, C.White, J. 2001 An overview of endophytic microbes: endophytism definedBacon, C. W.White, J.Microbial EndophytesNew YorkMarcel Dekker3Google Scholar
Thaler, J. S.Karban, R.Ullman, D. E.Boege, K.Bostock, R. M. 2002 Cross-talk between jasmonate and salicate plant defence pathways: effects on several plant parasitesOecologia 131 227CrossRefGoogle Scholar
Thoden, T. C.Boppre, M.Hallmann, J. 2009 Effects of pyrrolizidine alkaloids on the performance of plant-parasitic and free-living nematodesPest Management Science 65 823CrossRefGoogle ScholarPubMed
Tucker, C.Avila-Sakar, G. 2010 Ontogenetic changes in tolerance to herbivory in ArabidopsisOecologia 164 1005CrossRefGoogle ScholarPubMed
van der Putten, W. H. 2003 Plant defense belowground and spatiotemporal processes in natural vegetationEcology 84 2269CrossRefGoogle Scholar
Verpoorte, R.Choi, Y. H.Kim, H. K. 2010 Metabolomics: what’s new?Flavour and Fragrance Journal 25 128CrossRefGoogle Scholar
Vidal, S. 1996 Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungusEntomologia Experimentalis et Applicata 80 272CrossRefGoogle Scholar
Vrieling, K.van Wijk, C. A. M. 1994 Cost assessment of the production of pyrrolizidine alkaloids in ragwort ( L)Oecologia 97 541CrossRefGoogle Scholar
Vrieling, K.van Wijk, C. A. M. 1994 Estimating costs and benefits of the pyrrolizidine alkaloids of under natural conditionsOikos 70 449CrossRefGoogle Scholar
Wiklund, S.Johansson, E.Sjostrom, L. 2008 Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class modelsAnalytical Chemistry 80 115CrossRefGoogle ScholarPubMed
Wilkinson, H. H.Siegel, M. R.Blankenship, J. D. 2000 Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualismMolecular Plant–Microbe Interactions 13 1027CrossRefGoogle Scholar
Witte, L.Ernst, L.Adam, H.Hartmann, T. 1992 Chemotypes of 2 pyrrolizidine alkaloid-containing speciesPhytochemistry 31 559CrossRefGoogle Scholar
Wu, J.Baldwin, I. T. 2010 New insights into plant responses to the attack from insect herbivoresAnnual Review of Genetics 44 1CrossRefGoogle ScholarPubMed
Zangerl, A. R.Rutledge, C. E. 1996 The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theoryAmerican Naturalist 147 599CrossRefGoogle Scholar
Zheng, S. J.Dicke, M. 2008 Ecological genomics of plant–insect interactions: from gene to communityPlant Physiology 146 812CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×