Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:40:39.270Z Has data issue: false hasContentIssue false

18 - Genetics of Personality

from Part IV - Biological Perspectives: Evolution, Genetics and Neuroscience of Personality

Published online by Cambridge University Press:  18 September 2020

Philip J. Corr
Affiliation:
City, University London
Gerald Matthews
Affiliation:
University of Central Florida
Get access

Summary

Despite the early promise of behavioral genetic research, efforts to disentangle the genetic contribution to individual differences in behavior (e.g., personality traits) have been slow. Early studies relied on a candidate gene approach to identify genes influencing these traits; however, many of these failed to replicate, despite having a plausible biological mechanism. More recent studies have used whole genome approaches to investigate the genetic architecture of behavioral traits. However, unlike many other complex traits such as height (Marouli et al., 2017; Wood et al., 2014) and schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), relatively few genetic variants have been identified which are robustly associated with temperament and individual differences in personality.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amos, C. I., Wu, X., Broderick, P., Gorlov, I. P., Gu, J., Eisen, T., … Houlston, R. S. (2008). Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genetics, 40, 616622.Google Scholar
Bae, H. T., Sebastiani, P., Sun, J. X., Andersen, S. L., Daw, E. W., Terracciano, A., … Perls, T. T. (2013). Genome-wide association study of personality traits in the long life family study. Frontiers in Genetics, 4, 65.Google Scholar
Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J. J., Tropf, F. C., … Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 48, 14621472.CrossRefGoogle ScholarPubMed
Beam, C. R., & Turkheimer, E. (2017). Gene–environment correlation as a source of stability and diversity in development. In Tolan, P. H. & Leventhal, B. L. (Eds.), Gene-environment transactions in developmental psychopathology: The role in intervention research (pp. 111130). Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nature Genetics, 12, 8184.CrossRefGoogle ScholarPubMed
Boutwell, B., Hinds, D., Agee, M., Alipanahi, B., Auton, A., Bell, R. K., … Perry, J. R. B. (2017). Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon, 3, e00349.Google Scholar
Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., … Neale, B. M. (2015). An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47, 12361241.Google Scholar
Bundy, H., Stahl, D., & MacCabe, J. H. (2011). A systematic review and meta-analysis of the fertility of patients with schizophrenia and their unaffected relatives. Acta Psychiatrica Scandinavica, 123, 98106.CrossRefGoogle ScholarPubMed
Cesarini, D., & Visscher, P. M. (2017). Genetics and educational attainment. Npj Science of Learning, 2, 4.Google Scholar
Chao, M., Li, X., & McGue, M. (2017). The causal role of alcohol use in adolescent externalizing and internalizing problems: A Mendelian randomization study. Alcoholism: Clinical and Experimental Research, 41, 19531960.Google Scholar
Clarke, G. M., Anderson, C. A., Pettersson, F. H., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2011). Basic statistical analysis in genetic case-control studies. Nature Protocols, 6, 121133.CrossRefGoogle Scholar
Cloninger, C. R. (1994). Temperament and personality. Current Opinion in Neurobiology, 4, 266273.Google Scholar
Colhoun, H. M., McKeigue, P. M., & Davey Smith, G. (2003). Problems of reporting genetic associations with complex outcomes. The Lancet, 361, 865872.Google Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V, Purcell, S. M., … Wray, N. R. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984994.Google Scholar
Davey Smith, G. (2011). Epidemiology, epigenetics and the “Gloomy Prospect”: Embracing randomness in population health research and practice. International Journal of Epidemiology, 40, 537562.Google Scholar
Davey Smith, G., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 122.Google Scholar
Davey Smith, G., & Ebrahim, S. (2005). What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? British Medical Journal, 330, 10761079.CrossRefGoogle ScholarPubMed
Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23, R89R98.Google Scholar
Day, F. R., Helgason, H., Chasman, D. I., Rose, L. M., Loh, P.-R., Scott, R. A., … Perry, J. R. B. (2016). Physical and neurobehavioral determinants of reproductive onset and success. Nature Genetics, 48, 617623.CrossRefGoogle ScholarPubMed
de Moor, M. H. M., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J. C., Toshiko, T., … Boomsma, D. I. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337349.Google Scholar
Eaves, L. J., Heath, A. C., Neale, M. C., Hewitt, J. K., & Martin, N. G. (1998). Sex differences and non-additivity in the effects of genes on personality. Twin Research: The Official Journal of the International Society for Twin Studies, 1, 131137.Google ScholarPubMed
Eysenck, H. J. (1991). Dimensions of personality: 16, 5 or 3? Criteria for a taxonomic paradigm. Personality and Individual Differences, 12, 773790.CrossRefGoogle Scholar
Fanous, A., Gardner, C. O., Prescott, C. A., Cancro, R., & Kendler, K. S. (2002). Neuroticism, major depression and gender: A population-based twin study. Psychological Medicine, 32, 719728.CrossRefGoogle Scholar
Finkel, D., & McGue, M. (1997). Sex differences and nonadditivity in heritability of the Multidimensional Personality Questionnaire Scales. Journal of Personality and Social Psychology, 72, 929938.Google Scholar
Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J., & Kenny, P. J. (2011). Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature, 471, 597601.Google Scholar
Gage, S. H., Davey Smith, G., Ware, J. J., Flint, J., Munafò, M. R., & Koifman, R. (2016). G = E: What GWAS can tell us about the environment. PLOS Genetics, 12, e1005765.Google Scholar
Gale, C. R., Hagenaars, S. P., Davies, G., Hill, W. D., Liewald, D. C. M., Cullen, B., … Harris, S. E. (2016). Pleiotropy between neuroticism and physical and mental health: Findings from 108, 038 men and women in UK Biobank. Translational Psychiatry, 6, e791.Google Scholar
Genetics of Personality Consortium, de Moor, M. H. M., van den Berg, S. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., … Boomsma, D. I. (2015). Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder. JAMA Psychiatry, 72, 642650.Google ScholarPubMed
Hakulinen, C., Hintsanen, M., Munafò, M. R., Virtanen, M., Kivimäki, M., Batty, G. D., & Jokela, M. (2015). Personality and smoking: Individual-participant meta-analysis of nine cohort studies. Addiction, 110, 18441852.Google Scholar
Hill, W. D., Arslan, R. C., Xia, C., Luciano, M., Amador, C., Navarro, P., … Penke, L. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry, 23, 23472362.Google Scholar
Hopwood, C. J., Wright, A. G. C., & Donnellan, M. B. (2011). Evaluating the evidence for the general factor of personality across multiple inventories. Journal of Research in Personality, 45, 468478.Google Scholar
Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2018). Genome-wide meta-analysis of depression in 807,553 individuals identifies 102 independent variants with replication in a further 1,507,153 individuals. bioRxiv, 433367.Google Scholar
Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R., … Winslow, A. R. (2016). Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature Genetics, 48, 10311036.Google Scholar
Johnson, E. C., Border, R., Melroy-Greif, W. E., de Leeuw, C. A., Ehringer, M. A., & Keller, M. C. (2017). No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes. Biological Psychiatry, 15, 702708.CrossRefGoogle Scholar
Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., … Cho, J. H. (2012). Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491, 119124.Google Scholar
Karlsson Linnér, R., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., … Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51, 245257.Google Scholar
Keskitalo, K., Broms, U., Heliövaara, M., Ripatti, S., Surakka, I., Perola, M., … Kaprio, J. (2009). Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Human Molecular Genetics, 18, 40074012.CrossRefGoogle ScholarPubMed
Kim, B.-H., Kim, H.-N., Roh, S.-J., Lee, M. K., Yang, S., Lee, S. K., … Kim, H.-L. (2015). GWA meta-analysis of personality in Korean cohorts. Journal of Human Genetics, 60, 455460.Google Scholar
Kim, H.-N., Roh, S.-J., Sung, Y. A., Chung, H. W., Lee, J.-Y., Cho, J., … Kim, H.-L. (2013). Genome-wide association study of the Five-Factor Model of personality in young Korean women. Journal of Human Genetics, 58, 667674.Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256.Google Scholar
Le Marchand, L., Derby, K. S., Murphy, S. E., Hecht, S. S., Hatsukami, D., Carmella, S. G., … Wang, H. (2008). Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Research, 68, 91379140.Google Scholar
Lee, J. C., Biasci, D., Roberts, R., Gearry, R. B., Mansfield, J. C., Ahmad, T., … Smith, K. G. C. (2017). Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nature Genetics, 49, 262268.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (New York), 274, 15271531.CrossRefGoogle ScholarPubMed
Ligthart, L., & Boomsma, D. I. (2012). Causes of comorbidity: Pleiotropy or causality? Shared genetic and environmental influences on migraine and neuroticism. Twin Research and Human Genetics, 15, 158165.Google Scholar
Liu, J. Z., van Sommeren, S., Huang, H., Ng, S. C., Alberts, R., Takahashi, A., … Weersma, R. K. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 47, 979986.CrossRefGoogle ScholarPubMed
Lo, M.-T., Hinds, D. A., Tung, J. Y., Franz, C., Fan, C.-C., Wang, Y., … Chen, C.-H. (2017). Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 49, 152156.CrossRefGoogle ScholarPubMed
Lohoff, F. W. (2010). Overview of the genetics of major depressive disorder. Current Psychiatry Reports, 12, 539546.CrossRefGoogle ScholarPubMed
Luciano, M., Hagenaars, S. P., Davies, G., Hill, W. D., Clarke, T.-K., Shirali, M., … Deary, I. J. (2018). Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nature Genetics, 50, 611.Google Scholar
Luciano, M., Huffman, J. E., Arias-Vasquez, A., Vinkhuyzen, A. A. E., Middeldorp, C. M., Giegling, I., … Deary, I. J. (2012). Genome-wide association uncovers shared genetic effects among personality traits and mood states. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 159B, 684695.CrossRefGoogle ScholarPubMed
Malhotra, A. K., Virkkunen, M., Rooney, W., Eggert, M., Linnoila, M., & Goldman, D. (1996). The association between the dopamine D4 receptor (D4DR) 16 amino acid repeat polymorphism and novelty seeking. Molecular Psychiatry, 1, 388391.Google Scholar
Malouff, J. M., Thorsteinsson, E. B., Rooke, S. E., & Schutte, N. S. (2007). Alcohol involvement and the Five-Factor Model of personality: A meta-analysis. Journal of Drug Education, 37, 277294.Google Scholar
Marouli, E., Graff, M., Medina-Gomez, C., Lo, K. S., Wood, A. R., Kjaer, T. R., … Lettre, G. (2017). Rare and low-frequency coding variants alter human adult height. Nature, 542, 186190.Google Scholar
Matthews, L. J., & Turkheimer, E. (2017). Flynn, the Age-Table Method, and a metatheory of intelligence. Studies in History and Philosophy of Biological and Biomedical Sciences, 65, 3540.CrossRefGoogle Scholar
McCrae, R. R., & Costa, P. T. (1985). Comparison of EPI and psychoticism scales with measures of the Five-FactorModel of personality. Personality and Individual Differences, 6, 587597.Google Scholar
Middeldorp, C. M., de Moor, M. H. M., McGrath, L. M., Gordon, S. D., Blackwood, D. H., Costa, P. T., … Boomsma, D. I. (2011). The genetic association between personality and major depression or bipolar disorder: A polygenic score analysis using genome-wide association data. Translational Psychiatry, 1, e50.CrossRefGoogle ScholarPubMed
Munafò, M. R. (2009). Behavioural genetics: From variance to DNA. In P. J. Corr & Mathews, G. (Eds.), The Cambridge handbook of personality psychology (pp. 287304). Cambridge, UK: Cambridge University Press.Google Scholar
Munafò, M. R., & Flint, J. (2014). Common or rare variants for complex traits? Biological Psychiatry, 75, 752753.Google Scholar
Munafò, M. R., Timofeeva, M. N., Morris, R. W., Prieto-Merino, D., Sattar, N., Brennan, P., … Davey Smith, G. (2012). Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. JNCI: Journal of the National Cancer Institute, 104, 740748.CrossRefGoogle ScholarPubMed
Nagel, M., Jansen, P. R., Stringer, S., Watanabe, K., de Leeuw, C. A., Bryois, J., … Posthuma, D. (2018). Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nature Genetics, 50, 920927.Google Scholar
Nettle, D., & Clegg, H. (2006). Schizotypy, creativity and mating success in humans. Proceedings. Biological Sciences, 273, 611615.Google Scholar
Okbay, A., Baselmans, B. M. L., De Neve, J.-E., Turley, P., Nivard, M. G., Fontana, M. A., … Cesarini, D. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48, 624633.Google Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542.Google Scholar
Ormel, J., Jeronimus, B. F., Kotov, R., Riese, H., Bos, E. H., Hankin, B., … Oldehinkel, A. J. (2013). Neuroticism and common mental disorders: Meaning and utility of a complex relationship. Clinical Psychology Review, 33, 686697.Google Scholar
Palla, L., & Dudbridge, F. (2015). A fast method that uses polygenic scores to estimate the variance explained by genome-wide marker panels and the proportion of variants sffecting a trait. The American Journal of Human Genetics, 97, 250259.Google Scholar
Pasman, J. A., Verweij, K. J. H., Gerring, Z., Stringer, S., Sanchez-Roige, S., Treur, J. L., … Vink, J. M. (2018). GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nature Neuroscience, 21, 11611170.Google Scholar
Pillai, S. G., Ge, D., Zhu, G., Kong, X., Shianna, K. V., Need, A. C., … ICGN Investigators. (2009). A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genetics, 5, e1000421.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709.Google Scholar
Power, R. A., & Pluess, M. (2015). Heritability estimates of the Big Five personality traits based on common genetic variants. Translational Psychiatry, 5, e604.Google Scholar
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904909.Google Scholar
Purves, K. L., Coleman, J. R. I., Meier, S. M. et al. A major role for common genetic variation in anxiety disorders. Molecular Psychiatry (2019). https://doi.org/10.1038/s41380-019-0559-1.Google Scholar
Rettew, D. C., Vink, J. M., Willemsen, G., Doyle, A., Hudziak, J. J., & Boomsma, D. I. (2006). The genetic architecture of neuroticism in 3301 Dutch adolescent twins as a function of age and sex: A study from the Dutch twin register. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 9, 2429.Google Scholar
Rijsdijk, F. V., & Sham, P. C. (2002). Analytic approaches to twin data using structural equation models. Briefings in Bioinformatics, 3, 119133.Google Scholar
Rushton, J. P., Bons, T. A., Ando, J., Hur, Y.-M., Irwing, P., Vernon, P. A., … Barbaranelli, C. (2009). A general factor of personality from multitrait–multimethod data and cross–national twins. Twin Research and Human Genetics, 12, 356365.Google Scholar
Saccone, S. F., Hinrichs, A. L., Saccone, N. L., Chase, G. A., Konvicka, K., Madden, P. A. F., … Bierut, L. J. (2006). Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Human Molecular Genetics, 16, 3649.Google Scholar
Sanchez-Roige, S., Fontanillas, P., Elson, S. L., Gray, J. C., Wit, H., MacKillop, J., & Palmer, A. A. (2019). Genome-wide association studies of impulsive personality traits (BIS-11 and UPPSP) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1l and CADM2 genes. Journal of Neuroscience, 39, 25622572.Google Scholar
Sanchez-Roige, S., Palmer, A. A., Fontanillas, P., Elson, S. L., Adams, M. J., Howard, D. M., … Clarke, T.-K. (2018). Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. American Journal of Psychiatry, 176, 107118.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427.Google Scholar
Service, S. K., Verweij, K. J. H., Lahti, J., Congdon, E., Ekelund, J., Hintsanen, M., … Freimer, N. B. (2012). A genome-wide meta-analysis of association studies of Cloninger’s Temperament Scales. Translational Psychiatry, 2, e116.Google Scholar
Smith, D. J., Escott-Price, V., Davies, G., Bailey, M. E. S., Colodro-Conde, L., Ward, J., … O’Donovan, M. C. (2016). Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry, 21, 749757.CrossRefGoogle ScholarPubMed
Speed, D., Cai, N., Johnson, M. R., Nejentsev, S., Balding, D. J., & Balding, D. J. (2017). Reevaluation of SNP heritability in complex human traits. Nature Genetics, 49, 986992.Google Scholar
Speed, D., Hemani, G., Johnson, M. R., & Balding, D. J. (2012). Improved heritability estimation from genome-wide SNPs. American Journal of Human Genetics, 91, 10111021.Google Scholar
Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Børglum, A. D., Breen, G., … Consortium, for the P. G. (2017). Psychiatric genomics: An update and an agenda. American Journal of Psychiatry, 175, 1527.Google Scholar
Taylor, A. E., Fluharty, M. E., Bjørngaard, J. H., Gabrielsen, M. E., Skorpen, F., Marioni, R. E., … Munafò, M. R. (2014). Investigating the possible causal association of smoking with depression and anxiety using Mendelian randomisation meta-analysis: The CARTA consortium. BMJ Open, 4, e006141.Google Scholar
Terracciano, A., Esko, T., Sutin, A. R., de Moor, M. H. M., Meirelles, O., Zhu, G., … Uda, M. (2011). Meta-analysis of genome-wide association studies identifies common variants in CTNNA2 associated with excitement-seeking. Translational Psychiatry, 1, e49.Google Scholar
Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., … Costa, P. T. J. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647656.CrossRefGoogle ScholarPubMed
Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P., … Stefansson, K. (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 452, 638642.Google Scholar
Tillmann, T., Vaucher, J., Okbay, A., Pikhart, H., Peasey, A., Kubinova, R., … Holmes, M. V. (2017). Education and coronary heart disease: A Mendelian randomization study. BMJ, 358, j3542.CrossRefGoogle Scholar
Tropf, F. C., Lee, S. H., Verweij, R. M., Stulp, G., van der Most, P. J., de Vlaming, R., … Mills, M. C. (2017). Hidden heritability due to heterogeneity across seven populations. Nature Human Behaviour, 1, 757765.Google Scholar
Tupes, E. C., & Christal, R. E. (1992). Recurrent personality factors based on trait ratings. Journal of Personality, 60, 225251.Google Scholar
van den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., … Boomsma, D. I. (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from the genetics of personality Consortium. Behavior Genetics, 46, 170182.Google Scholar
Verweij, K. J. H., Yang, J., Lahti, J., Veijola, J., Hintsanen, M., Pulkki-Raback, L., … Zietsch, B. P. (2012). Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding. Evolution; International Journal of Organic Evolution, 66, 32383251.Google Scholar
Verweij, K. J. H., Zietsch, B. P., Medland, S. E., Gordon, S. D., Benyamin, B., Nyholt, D. R., … Wray, N. R. (2010). A genome-wide association study of Cloninger’s temperament scales: Implications for the evolutionary genetics of personality. Biological Psychology, 85, 306317.Google Scholar
Veselka, L., Schermer, J. A., Petrides, K. V., & Vernon, P. A. (2009). Evidence for a heritable general factor of personality in two studies. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 12, 254260.Google Scholar
Vinkhuyzen, A. A. E., Pedersen, N. L., Yang, J., Lee, S. H., Magnusson, P. K. E., Iacono, W. G., … Wray, N. R. (2012). Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Translational Psychiatry, 2, e102.Google Scholar
Vukasović, T., & Bratko, D. (2015). Heritability of personality: A meta-analysis of behavior genetic studies. Psychological Bulletin, 141, 769785.Google Scholar
Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., … Frayling, T. M. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46, 11731186.Google Scholar
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., … Sullivan, P. F. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50, 668681.Google Scholar
Wray, N. R., & Visscher, P. M. (2008). Estimating trait heritability. Nature Education, 1, 29.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 7682.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2013). Genome-wide complex trait analysis (GCTA): Methods, data analyses, and interpretations. Methods in Molecular Biology, 1019, 215236.Google Scholar
Yang, J., Zeng, J., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2017). Concepts, estimation and interpretation of SNP-based heritability. Nature Genetics, 49, 13041310.Google Scholar
Zuckerman, M. (1992). What is a basic factor and which factors are basic? Turtles all the way down. Personality and Individual Differences, 13, 675681.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×