Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T12:20:21.630Z Has data issue: false hasContentIssue false

Part IV - Biological Perspectives: Evolution, Genetics and Neuroscience of Personality

Published online by Cambridge University Press:  18 September 2020

Philip J. Corr
Affiliation:
City, University London
Gerald Matthews
Affiliation:
University of Central Florida
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Al-Shawaf, L., Lewis, D. M. G., Wehbe, Y., & Buss, D. M. (2019). Context, environment, and learning in evolutionary psychology. In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of Evolutionary Psychological Science (pp. 112). New York: Springer.Google Scholar
Al-Shawaf, L., Zreik, K. A., & Buss, D. M. (2018). Thirteen misunderstandings about natural selection. In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of Evolutionary Psychological Science (pp. 114). New York: Springer.Google Scholar
Al-Shawaf, L., & Zreik, K. A. (2018). Richard Dawkins on constraints on natural selection. In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of evolutionary psychological science (pp. 15). New York: Springer.Google Scholar
Alvergne, A., Jokela, M., & Lummaa, V. (2010). Personality and reproductive success in a high-fertility human population. Proceedings of the National Academy of Sciences, 107, 1174511750.CrossRefGoogle Scholar
Baldwin, J. D. (1995). Continua outperform dichotomies. Behavioral and Brain Sciences, 18, 543544.Google Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.Google Scholar
Buss, D. M. (1984). Evolutionary biology and personality psychology: Toward a conception of human nature and individual differences. American Psychologist, 39, 11351147.Google Scholar
Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behavioral and Brain Sciences, 12, 149.Google Scholar
Buss, D. M. (1991). Evolutionary personality psychology. Annual Review of Psychology. Palo Alto, CA: Annual Reviews, Inc.Google Scholar
Buss, D. M. (2000). The dangerous passion: Why jealousy is as necessary as love and sex. New York: The Free Press.Google Scholar
Buss, D. M. (2009). How can evolutionary psychology explain personality and individual differences? Perspectives in Psychological Science, 4, 359366.Google Scholar
Buss, D. M., Goetz, C., Duntley, J. D., Asao, K., & Conroy-Beam, D. (2017). The mate switching hypothesis. Personality and Individual Differences, 104, 143149.Google Scholar
Buss, D. M., & Greiling, H. (1999). Adaptive individual differences. Journal of Personality, 67, 209243.Google Scholar
Buss, D. M., & Haselton, M. G. (2005). The evolution of jealousy. Trends in Cognitive Science, 9, 506507.Google Scholar
Buss, D. M., Larsen, R. J., Westen, D., & Semmelroth, J. (1992). Sex differences in jealousy: Evolution, physiology, and psychology. Psychological Science, 3, 251255.Google Scholar
Buss, D. M., & Penke, L. (2014). Evolutionary personality psychology. In Mikulincer, M. & Shaver, P. R. (Series Eds.) & Cooper, L. & Larsen, R. (Vol. Eds.), APA handbook of personality and social psychology: Vol. 4. Personality processes and individual differences (pp. 329). Washington, DC: American Psychological Association.Google Scholar
Buss, D., & Schmitt, D. P. (1993). Sexual strategies theory: An evolutionary perspective on human mating. Psychological Review, 100, 204232.Google Scholar
Buss, D. M., & Shackelford, T. K. (1997). From vigilance to violence: Mate retention tactics in married couples. Journal of Personality and Social Psychology, 72, 346361.Google Scholar
Buunk, A. P., Angleitner, A., Oubaid, V., & Buss, D. M. (1996). Sex differences in jealousy in evolutionary and cultural perspective: Tests from the Netherlands, Germany, and the United States. Psychological Science, 7, 359363.Google Scholar
Buunk, A. P., & Hupka, R. B. (1987). Cross-cultural differences in the elicitation of sexual jealousy. Journal of Sex Research, 23, 1222.Google Scholar
Camperio Ciani, A., Veronese, V., Capiluppi, , & Sartori, C. G. (2007). The adaptive values of personality differences revealed by small island population dynamics. European Journal of Personality, 21, 322.CrossRefGoogle Scholar
Cerda‐Flores, R. M., Barton, S. A., Marty‐Gonzalez, L. F., Rivas, F., & Chakraborty, R. (1999). Estimation of nonpaternity in the Mexican population of Nuevo Leon: A validation study with blood group markers. American Journal of Physical Anthropology, 109, 281293.Google Scholar
Chen, C., Burton, M., Greenberger, E., & Dmitrieva, J. (1999). Population migration and the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe. Evolution and Human Behavior, 20, 309324.Google Scholar
Cleckley, H. (1982). The mask of sanity. New York: New American Library.Google Scholar
Daly, M., Wilson, M., & Weghorst, S. J. (1982). Male sexual jealousy. Ethology and Sociobiology, 3, 1127.CrossRefGoogle Scholar
Dawkins, R. (1982). The extended phenotype. San Francisco, CA: W.H. Freeman.Google Scholar
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201211.CrossRefGoogle ScholarPubMed
Deary, I. J., Weiss, A., & Batty, G. D. (2010). Intelligence and personality as predictors of illness and death: How researchers in differential psychology and chronic disease epidemiology are collaborating to understand and address health inequalities. Psychological Science in the Public Interest, 11, 5379.Google Scholar
Del Giudice, M. (2009). Sex, attachment, and the development of reproductive strategies. Behavioral and Brain Sciences, 32, 121.Google Scholar
Denissen, J. J. A., & Penke, L. (2008). Individual reaction norms underlying the Five-Factor Model of personality: First steps towards a theory-based conceptual framework. Journal of Research in Personality, 42, 12851302.CrossRefGoogle Scholar
Duckworth, A. (2010). Evolution of personality: Developmental constraints on behavioral flexibility. The Auk, 127, 752758.CrossRefGoogle Scholar
Edlund, J. E., & Sagarin, B. J. (2017). Sex differences in jealousy: A 25-year retrospective. Advances in Experimental Social Psychology, 55, 259302.Google Scholar
Eisenberg, D. T., Campbell, B., Gray, P. B., & Sorenson, M. D. (2008). Dopamine receptor genetic polymorphisms and body composition in undernourished pastoralists: An exploration of nutrition indices among nomadic and recently settled Ariaal men of northern Kenya. BMC Evolutionary Biology, 8, 173.Google Scholar
Ellis, B. J., Schlomer, G. L., Tilley, E. H., & Butler, E. A. (2012). Impact of fathers on risky sexual behavior in daughters: A genetically and environmentally controlled sibling study. Development and Psychopathology, 24, 317332.Google Scholar
Eysenck, H. J. (1995). Psychopathology: Type or trait? Behavioral and Brain Sciences, 18, 355356.Google Scholar
Fay, J. C., Wyckoff, G. J., & Wu, C. (2001). Positive and negative selection of the human genome. Genetics, 158, 12271234.Google Scholar
Forstmeier, W., Martin, K., Bolund, E., Schielzeith, H., & Kempenaers, B. (2011). Female extrapair mating behavior can evolve via indirect selection on males. Proceedings of the National Academy of Sciences, 108, 1060810613.Google Scholar
Fu, W., O’Connor, T. D., Jun, G., Kang, H. M., Acecasis, G., Leal, S. M., … Akey, J. M. (2012). Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature, 493, 216220.Google Scholar
Funder, D. C., & Colvin, C. R. (1991). Explorations in behavioral consistency: Properties of persons, situations, and behaviors. Journal of Personality and Social Psychology, 60, 773794.Google Scholar
Gangestad, S. W., & Simpson, J. A. (2000). The evolution of human mating: Trade-offs and strategic pluralism. Behavioral and Brain Sciences, 23, 573644.Google Scholar
Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (2005). Women’s sexual interests across the ovulatory cycle depend on primary partner developmental instability. Proceedings of the Royal Society of London B, 272, 20232027.Google Scholar
Greiling, H., & Buss, D. M. (2000). Women’s sexual strategies: The hidden dimension of extra-pair mating. Personality and Individual Differences, 28, 929963.Google Scholar
Hamilton, W.D. (1964). The genetical evolution of social behavior. I and II. Journal of Theoretical Biology, 7, 152.Google Scholar
Jokela, M., Hintsa, T., Hintsanen, M., & Keltikangas-Järvinen, L. (2010). Adult temperament and childbearing over the life course. European Journal of Personality, 24, 151166.Google Scholar
Keightley, P. D. (2012). Rates and fitness consequences of new mutations in humans. Genetics, 190, 295304.Google Scholar
Keller, M. C., & Miller, G. F. (2006). Resolving the paradox of common, harmful, heritable mental disorders: Which evolutionary genetic models work best? Behavioral and Brain Sciences, 29, 385452.Google Scholar
Krupp, D. B., Sewall, L. A., Lalumière, M. L., Sheriff, C., & Harris, G. T. (2012). Nepotistic patterns of violent psychopathy: Evidence for adaptation? Frontiers in Psychology, 3, 18.Google Scholar
Kurzban, R., & Leary, M. (2001). Evolutionary origins of stigmatization: The functions of social exclusion. Psychological Bulletin, 127, 187208.Google Scholar
Larsen, R. J., & Buss, D. M. (2018). Personality psychology: Domains of knowledge about human nature (6th ed.). New York: McGraw-Hill.Google Scholar
Lewis, D. M. G. (2011). The sibling uncertainty hypothesis: Facial resemblance as a sibling recognition cue. Personality and Individual Differences, 51, 969974.Google Scholar
Lewis, D. M. G. (2013). Individual differences and universal condition-dependent mechanisms (Unpublished doctoral dissertation).Google Scholar
Lewis, D. M. G. (2015). Evolved individual differences: Advancing a condition-dependent model of personality. Personality and Individual Differences, 84, 6372.Google Scholar
Lewis, D. M. G., Al-Shawaf, L., Conroy-Beam, D., Asao, K., & Buss, D. M. (2017). Evolutionary psychology: A how-to guide. American Psychologist, 72, 353373.Google Scholar
Lewis, D. M. G., Al-Shawaf, L., Janiak, M., & Akunebu, S. (2018). Integrating molecular genetics and evolutionary psychology: Sexual jealousy and the androgen receptor (AR) gene. Personality and Individual Differences, 120, 276282.CrossRefGoogle Scholar
Li, N. P., Bailey, J. M., Kenrick, D. T., & Linsenmeier, J. A. W. (2002). The necessities and luxuries of mate preferences: Testing the tradeoffs. Journal of Personality and Social Psychology, 82, 947955.Google Scholar
Li, N., & Kenrick, D. (2006). Sex similarities and differences in preferences for short-term mates: What, whether and why. Journal of Personality and Social Psychology, 90, 468489.Google Scholar
Lieberman, D., Tooby, J., & Cosmides, L. (2003). Does morality have a biological basis? An empirical test of the factors governing moral sentiments relating to incest. Proceedings of the Royal Society London (Biological Sciences), 270, 819826.Google Scholar
Lieberman, D., Tooby, J., & Cosmides, L. (2007). The architecture of human kin detection. Nature, 445, 727731.Google Scholar
Lukaszewski, A. W. (2013). Testing an adaptationist theory of trait covariation: Relative bargaining power as a common calibrator of an interpersonal syndrome. European Journal of Personality, 27, 328345.Google Scholar
Lukaszewski, A. W., & Roney, J. R. (2011). The origins of extraversion: Joint effects of facultative calibration and genetic polymorphism. Personality and Social Psychology Bulletin, 37, 409421.Google Scholar
McCrae, R. R., & John, O. P. (1992). An introduction to the Five-Factor Model and its applications. Journal of Personality, 60, 175215.Google Scholar
Mealey, L. (1995). The sociobiology of sociopathy: An integrated evolutionary model. Behavioral and Brain Sciences, 18, 523599.Google Scholar
Mendle, J., Harden, K. P., Turkheimer, E., van Hulle, C., D’Onofrio, B. M., Brooks-Gunn, J., … Lahey, B. B. (2009). Associations between father absence and age of first sexual intercourse. Child Development, 80, 14631480.Google Scholar
Munafo, M. R., & Flint, J. (2011). Dissecting the genetic architecture of human personality. Trends in Cognitive Sciences, 15, 395400.Google Scholar
Munafo, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J. (2008). Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biological Psychiatry, 63, 197206.CrossRefGoogle ScholarPubMed
Nettle, D. (2005). An evolutionary approach to the extraversion continuum. Evolution and Human Behavior, 26, 363373.Google Scholar
Nettle, D. (2006). The evolution of personality variation in humans and other animals. American Psychologist, 61, 622631.Google Scholar
Ozer, D. J. (1985). Correlation and the coefficient of determination. Psychological Bulletin, 97, 307315.Google Scholar
Ozer, D. J., & Benet-Martinez, V. (2006). Personality and the prediction of consequential outcomes. Annual Review of Psychology , 57, 401421.Google Scholar
Penke, L. (2011). Bridging the gap between modern evolutionary psychology and the study of individual differences. In Buss, D. M. & Hawley, P. H. (Eds.), The evolution of personality and individual differences (pp. 243279). New York: Oxford University Press.Google Scholar
Penke, L., Denissen, J. J. A., & Miller, G. F. (2007). The evolutionary genetics of personality. European Journal of Personality, 21, 549587.Google Scholar
Penton-Voak, I. S., & Perrett, D. I. (2000). Female preference for male faces changes cyclically: Further evidence. Evolution & Human Behavior, 21, 3948.Google Scholar
Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007). The power of personality: The comparative validity of personality traits, socio-economic status, and cognitive ability for predicting important life outcomes. Perspectives on Psychological Science, 2, 313345.Google Scholar
Ross, L., & Nisbett, R. E. (1991). The person and the situation: Perspectives of social psychology. New York: McGraw-Hill.Google Scholar
Rowe, D. C. (1995). Evolution, mating effort, and crime. Behavioral and Brain Sciences, 18, 573574.Google Scholar
Rowe, D. C., Clapp, M., & Wallis, J. (1987). Physical attractiveness and the personality resemblance of identical twins. Behavior Genetics, 17, 191201.Google Scholar
Schmitt, D. P. (2004). The Big Five related to risky sexual behaviour across 10 world regions: Differential personality associations of sexual promiscuity and relationship infidelity. European Journal of Personality, 18, 301319.Google Scholar
Schützwohl, A. (2006). Sex differences in jealousy: Information search and cognitive preoccupation. Personality and Individual Differences, 40, 285292.Google Scholar
Sell, A., Tooby, J., & Cosmides, L. (2009). Formidability and the logic of human anger. Proceedings of the National Academy of Sciences, 106, 1507315078.Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality disorders. American Journal of Genetics Part B: Neuropsychiatric Genetics, 127B, 8589.Google Scholar
Sih, A., Bell, A. M., Johnson, J. C ., & Ziemba, R. E. (2004). Behavioral syndromes: An integrative overview. The Quarterly Review of Biology, 79, 241277.Google Scholar
Shackelford, T. K., & Buss, D. M. (1997). Cues to infidelity. Personality and Social Psychology Bulletin, 23, 10341045.Google Scholar
Silventoinen, K., Magnusson, P. K. E., Tynelius, P., Kaprio, J., & Rasmussen, F. (2008). Heritability of body size and muscle strength in young adulthood: A study of one million Swedish men. Genetic Epidemiology, 32, 341349.Google Scholar
Symons, D. (1979). The evolution of human sexuality. New York: Oxford University Press.Google Scholar
Symons, D. (1987). If we’re all Darwinians, what’s the fuss about? In Crawford, C., Krebs, D. & Smith, M. (Eds.), Sociobiology and psychology (pp. 121145). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Thornhill, R., & Gangestad, S. W. (1994). Human fluctuating asymmetry and sexual behavior. Psychological Science, 5, 297302.Google Scholar
Tochigi, M., Hibuno, H., Otowa, T., Kato, C., Marui, T., Ohtani, T., … Sasaki, T. (2006). Association between dopamine D4 receptor (DRD4) exon III polymorphism and neuroticism in the Japanese population. Neuroscience Letters, 398, 333336.Google Scholar
Tooby, J., & Cosmides, L. (1990). On the universality of human nature and the uniqueness of the individual: The role of genetics and adaptation. Journal of Personality, 58, 1767.Google Scholar
Tufto, J. (2000). The evolution of plasticity and nonplastic spatial and temporal adaptations in the presence of imperfect environmental cues. American Naturalist, 156, 121123.Google Scholar
Verweij, K. J. H., Yang, J., Lahti, J., Veijola, J., Hintsanen, M., Pulkki-Råback, L., … Zietsch, B. P. (2012). Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding. Evolution, 66, 32383251.Google Scholar
Verweij, K. J. H., Zietsch, B. P., Medland, S. E., Gordon, S. D., Benyamin, B., Nyholt, D. R., … Wray, N. R. (2010). A genome-wide association study of Cloninger’s Temperament scales: Implications for the evolutionary genetics of personality. Biological Psychology, 85, 306317.Google Scholar
Vinkhuyzen, A. E., Pedersen, N. L., Yang, J., Lee, S. H., Magnussen, P. K. E., Iacono, W. G., … Wray, N. R. (2012). Common SNPs explain a significant proportion of the “missing heritability” in the personality dimensions of neuroticism and extraversion. Translational Psychiatry, 2, e102.CrossRefGoogle Scholar
Westberg, L., Henningsson, S., Landén, M., Annerbrink, K., Melke, J., Nilsson, S., … Eriksson, E. (2009). Influence of androgen receptor repeat polymorphisms on personality traits in men. Journal of Psychiatry and Neuroscience, 34, 205211.Google Scholar
Wiederman, M. W., & Allgeier, R. R. (1993). Gender differences in sexual jealousy: Adaptationist or social learning explanation? Ethology and Sociobiology, 14, 115140.Google Scholar
Wiggins, J. S. (1979). A psychological taxonomy of trait-descriptive terms: The interpersonal domain. Journal of Personality and Social Psychology, 37, 395412.Google Scholar
Willerman, L., Loehlin, J. C., & Horn, J. M. (1992). An adoption and a cross-fostering study of the Minnesota Multiphasic Personality Inventory (MMPI) Psychopathic Deviate scale. Behavior Genetics, 22, 515529.Google Scholar
Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar
Wilson, D. S. (1995). Sociopathy within and between small groups. Behavioral and Brain Sciences, 18, 577.Google Scholar
Yang, J. A., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., … Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569.Google Scholar
Zietsch, B. P., Verweij, K. J. H., Heath, A. C., & Martin, N. G. (2011). Variation in human mate choice: Simultaneously investigating heritability, parental influence, sexual imprinting, and assortative mating. American Naturalist, 177, 605616.Google Scholar

References

Araya-Ajoy, Y. G., Mathot, K. J., & Dingemanse, N. J. (2015). An approach to estimate short-term, long-term and reaction norm repeatability. Methods in Ecology and Evolution, 6, 14621473.Google Scholar
Arnett, J. J. (2000). Emerging adulthood. A theory of development from the late teens through the twenties. American Psychologist, 55, 469480.Google Scholar
Aubin-Horth, N., Landry, C. R., Letcher, B. H., & Hofmann, H. A. (2005). Alternative life histories shape brain gene expression profiles in males of the same population. Proceedings of the Royal Society B: Biological Sciences, 272, 16551662.Google Scholar
Barton, N. H., & Keightley, P. D. (2002). Understanding quantitative genetic variation. Nature Reviews Genetics, 3, 11.Google Scholar
Beekman, M., & Jordan, L. A. (2017). Does the field of animal personality provide any new insights for behavioral ecology? Behavioral Ecology, 28, 617623.CrossRefGoogle Scholar
Bell, A. M. (2005). Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). Journal of Evolutionary Biology, 18, 464473.CrossRefGoogle ScholarPubMed
Bell, A. M. (2007). Future directions in behavioural syndromes research. Proceedings of the Royal Society B: Biological Sciences, 274, 755761.Google Scholar
Bell, A. M., & Aubin-Horth, N. (2010). What whole genome expression data can tell us about the ecology and evolution of personality in animals. Philosophical Transactions of the Royal Society, 365, 40014012.Google Scholar
Bell, A. M., Bukhari, S. A., & Sanogo, Y. O. (2016). Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks. Behaviour, 153, 17231743.Google Scholar
Bell, A. M., & Dochtermann, N. A. (2015). Integrating molecular mechanisms into quantitative genetics to understand consistent individual differences in behavior. Current Opinion in Behavioral Sciences, 6, 111114.Google Scholar
Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The repeatability of behaviour: A meta-analysis. Animal Behaviour, 77, 771783.Google Scholar
Bengston, S., Dahan, R., Donaldson, Z., Phelps, S., van Oers, K., Sih, A., & Bell, A. M. (2018). Genomic tools for behavioral ecologists: Advancing the understanding of repeatable individual differences in behavior. Nature Ecology and Evolution, 2, 944955.Google Scholar
Bengston, S. E., & Jandt, J. M. (2014). The development of collective personality: The ontogenetic drivers of behavioral variation across groups. Frontiers in Ecology and Evolution, 2.Google Scholar
Biro, P. A., & Adriaenssens, B. (2013). Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. American Naturalist, 182, 621629.Google Scholar
Biro, P. A., & Dingemanse, N. J. (2009). Sampling bias resulting from animal personality. Trends in Ecology & Evolution, 24, 6667.Google Scholar
Biro, P. A., & Stamps, J. A. (2008). Are animal personality traits linked to life-history productivity? Trends in Ecology & Evolution, 23, 361368.Google Scholar
Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25, 653659.Google Scholar
Bolhuis, J. E., Schouten, W. G., de Leeuw, J. A., Schrama, J. W., & Wiegant, V. M. (2004). Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behavioral Brain Research, 152, 351360.Google Scholar
Brown, C., & Braithwaite, V. A. (2004). Size matters: A test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Animal Behaviour, 68, 13251329.Google Scholar
Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.Google Scholar
Careau, V., Reale, D., Humphries, M. M., & Thomas, D. W. (2010). The pace of life under artificial selection: Personality, energy expenditure, and longevity are correlated in domestic dogs. American Naturalist, 175, 753758.Google Scholar
Careau, V., Thomas, D., Humphries, M. M., & Reale, D. (2008). Energy metabolism and animal personality. Oikos, 117, 641653.Google Scholar
Carere, C., Welink, D., Drent, P. J., Koolhaas, J. M., & Groothuis, T. G. G. (2001). Effect of social defeat in a territorial bird (Parus major) selected for different coping styles. Physiology & Behavior, 73, 427433.Google Scholar
Caspi, A., Roberts, B. W., & Shiner, R. L. (2005). Personality development: Stability and change. Annual Review of Psychology, 56, 453484.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.Google Scholar
Church, A. T. (2001). Personality measurement in cross-cultural perspective. Journal of Personality, 69, 9791006.Google Scholar
Clark, A. B., & Ehlinger, T. J. (1987). Pattern and adaptation in individual behavioral differences. In Bateson, P. P. G. & Klopfer, P. H. (Eds.), Perspectives in ethology (pp. 147). New York: Plenum Press.Google Scholar
Crews, D. (2013). Animal personalities: Behavior, physiology, and evolution. Integrative and Comparative Biology, 53, 873875.Google Scholar
Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecology Letters, 7, 734739.Google Scholar
Dall, S. R. X., McNamara, J. M., & Leimar, O. (2015). Genes as cues: Phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends in Ecology & Evolution, 30, 327333.Google Scholar
David, M., Cézilly, F., & Giraldeau, L.-A. (2011). Personality affects zebra finch feeding success in a producer–scrounger game. Animal Behaviour, 82, 6167.Google Scholar
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13, 7781.Google Scholar
Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L., & Drent, P. J. (2003). Natal dispersal and personalities in great tits (Parus major). Proceedings of the Royal Society of London– Series B: Biological Sciences, 270, 741747.Google Scholar
Dingemanse, N. J., & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: Mixed-effect modelling approaches. Journal of Animal Ecology, 82, 3954.Google Scholar
Dingemanse, N. J., Kazem, A. J. N., Reale, D., & Wright, J. (2009). Behavioural reaction norms: animal personality meets individual plasticity. Trends in Ecology & Evolution, 25, 8189.Google Scholar
Dingemanse, N. J., & Reale, D. (2005). Natural selection and animal personality. Behaviour, 142, 11591184.CrossRefGoogle Scholar
Dingemanse, N. J., & Wolf, M. (2010). Recent models for adaptive personality differences: A review. Philosophical Transactions of the Royal Society B- Biological Sciences, 365, 39473958.Google Scholar
Dochtermann, N. A., & Roff, D. A. (2010). Applying a quantitative genetics framework to behavioural syndrome research. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 40134020.Google Scholar
Drent, P. J., van Oers, K., & van Noordwijk, A. J. (2003). Realized heritability of personalities in the great tit (Parus major). Proceedings of the Royal Society B: Biological Sciences, 270, 4551.Google Scholar
Duckworth, R. A. (2010). Evolution of personality: Developmental constraints on behavioral flexibility. Auk, 127, 752758.Google Scholar
Evans, L. J., & Raine, N. E. (2014). Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris) colonies. PLOS ONE, 9, e90556.Google Scholar
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Essex, UK: Longman.Google Scholar
Frommen, J. G., Mehlis, M., & Bakker, T. C. M. (2009). Predator-inspection behaviour in female three-spined sticklebacks Gasterosteus aculeatus is associated with status of gravidity. Journal of Fish Biology, 75, 21432153.Google Scholar
Funder, D. C., & Colvin, C. R. (1991). Explorations in behavioral consistency: Properties of persons, situations, and behaviors. Journal of Personality and Social Psychology, 60, 773794.Google Scholar
Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127, 4586.Google Scholar
Griffin, A. S., Guillette, L. M., & Healy, S. D. (2015). Cognition and personality: An analysis of an emerging field. Trends in Ecology and Evolution, 30, 207214.Google Scholar
Guillette, L. M., Reddon, A. R., Hoeschele, M., & Sturdy, C. B. (2011). Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proceedings of the Royal Society B: Biological Sciences, 278, 767773.Google Scholar
Hedrick, P. W. (2006). Genetic polymorphism in heterogeneous environments: The age of genomics. Annual Review of Ecology Evolution and Systematics, 37, 6793.Google Scholar
Herborn, K. A., Heidinger, B. J., Alexander, L., & Arnold, K. E. (2014). Personality predicts behavioral flexibility in a fluctuating, natural environment. Behavioral Ecology, 25, 13741379.Google Scholar
Herborn, K. A., Macleod, R., Miles, W. T. S., Schofield, A. N. B., Alexander, L., & Arnold, K. E. (2010). Personality in captivity reflects personality in the wild. Animal Behaviour, 79, 835843.Google Scholar
Hinde, R. A. (1956). Ethological models and the concept of “drive.” British Journal for the Philosophy of Science, 6, 321331.Google Scholar
Houston, A. I., & McNamara, J. M. (1999). Models of adaptive behaviour. Cambridge, UK. Cambridge University Press.Google Scholar
Hui, A., & Pinter-Wollman, N. (2014). Individual variation in exploratory behaviour improves speed and accuracy of collective nest selection by Argentine ants. Animal Behaviour, 93, 261266.Google Scholar
Johnson, J., & Sih, A. (2005). Pre-copulatory sexual cannibalism in fishing spiders (Dolomedes triton): A role for behavioral syndromes. Behavioral Ecology Sociobiology, 58, 390396.Google Scholar
Johnson, J. C. (2001). Sexual cannibalism in fishing spiders (Dolomedes triton): An evaluation of two explanations for female aggression towards potential mates. Animal Behaviour, 61, 905914.Google Scholar
Ketterson, E. D., & Nolan, V. (1999). Adaptation, exaptation, and constraint: A hormonal perspective. American Naturalist, 154, S4S25.Google Scholar
Koolhaas, J. M., de Boer, S. F., Coppens, C. M., & Buwalda, B. (2010). Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Frontiers in Neuroendocrinology, 31, 307321.Google Scholar
Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., … Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience & Biobehavioral Reviews, 23, 925935.Google Scholar
Korsten, P., Mueller, J. C., Hermannstädter, C., Bouwman, K. M., Dingemanse, N. J., Drent, P. J., … Kempenaers, B. (2010). Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Molecular Ecology, 19, 832843.Google Scholar
Kosten, T. A., Kim, J. J., & Lee, H. J. (2012). Early life manipulations alter learning and memory in rats. Neuroscience & Biobehavioral Reviews, 36, 19852006.Google Scholar
Kralj-Fišer, S., Schneider, J. M., & Kuntner, M. (2013). Challenging the aggressive spillover hypothesis: Is pre-copulatory sexual cannibalism a part of a behavioural syndrome? Ethology, 119, 615623.Google Scholar
Laskowski, K. L., & Bell, A. M. (2013). Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecology Letters, 16, 746753.Google Scholar
Laskowski, K. L., & Bell, A. M. (2014). Strong personalities, not social niches, drive individual differences in social behaviours in sticklebacks. Animal Behaviour, 90, 287295.Google Scholar
Laskowski, K. L., Pearish, S., Bensky, M., & Bell, A. M. (2015). Predictors of individual variation in movement in a natural population of threespine stickleback (Gasterosteus aculeatus). Advances in Ecological Research, 52, 6590.Google Scholar
Laskowski, K. L., & Pruitt, J. N. (2014). Evidence of social niche construction: persistent and repeated social interactions generate stronger personalities in a social spider. Proceedings of the Royal Society B: Biological Sciences, 281, 20133166.Google Scholar
Luttbeg, B., & Sih, A. (2010). Risk, resources and state- dependent adaptive behavioural syndromes. Royal Society Philosophical Transactions Biological Sciences, 365, 39773990.Google Scholar
Manuck, S. B., Flory, J. D., Ferrell, R. E., Mann, J. J., & Muldoon, M. F. (2000). A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Research, 95, 923.Google Scholar
Martin, J. G. A., Nussey, D. H., Wilson, A. J., & Reale, D. (2011). Measuring individual differences in reaction norms in field and experimental studies: A power analysis of random regression models. Methods in Ecology and Evolution, 2, 362374.Google Scholar
McCrae, R. R., & John, O. P. (1992). An introduction to the Five-Factor Model and its applications. Journal of Personality, 60, 175215.Google Scholar
Mischel, W. (1979). Interface of cognition and personality: Beyond the person-situation debate. American Psychologist, 34, 740754.Google Scholar
Morand-Ferron, J., & Quinn, J. L. (2011). Larger groups of passerines are more efficient problem solvers in the wild. Proceedings of the National Academy of Sciences of the United States of America, 108, 1589815903.Google Scholar
Munafo, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene X environment interactions at the serotonin transporter locus. Biolological Psychiatry, 65, 211219.Google Scholar
Neff, B. D., & Sherman, P. W. (2004). Behavioral syndromes versus Darwinian algorithms. Trends in Ecology & Evolution, 19, 621622.Google Scholar
Nussey, D. H., Wilson, A. J., & Brommer, J. E. (2007). The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20, 831844.Google Scholar
Overli, O., Winberg, S., & Pottinger, T. G. (2005). Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout: A review. Integrative and Comparative Biology, 45, 463474.Google Scholar
Peterson, R. E., Cai, N., Bigdeli, T. B., Li, Y., Reimers, M., Nikulova, A., … Kendler, K. S. (2017). The genetic architecture of major depressive disorder in Han Chinese women. JAMA Psychiatry, 74, 162168.Google Scholar
Pottinger, T. G., & Carrick, T. R. (1999). Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. General and Comparative Endocrinology, 116, 122132.Google Scholar
Reale, D., Dingemanse, N. J., Kazem, A. J. N., & Wright, J. (2010). Evolutionary and ecological approaches to the study of personality. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 39373946.Google Scholar
Reale, D., & Festa-Bianchet, M. (2003). Predator-induced natural selection on temperament in bighorn ewes. Animal Behaviour, 65, 463470.Google Scholar
Reale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P. O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 40514063.Google Scholar
Reale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291318.Google Scholar
Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychological Bulletin, 132, 125.Google Scholar
Ruiz-Gomez Mde, L., Huntingford, F. A., Overli, O., Thornqvist, P. O., & Hoglund, E. (2011). Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiology & Behavior, 102, 317322.Google Scholar
Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: An ecological and evolutionary overview. Trends in Ecology & Evolution, 19, 372378.Google Scholar
Sih, A., & Bell, A. M. (2008). Insights for behavioral ecology from behavioral syndromes. In Advances in the Study of Behavior, 38, 227281.Google Scholar
Sih, A., Bell, A. M., Johnson, J. C., & Ziemba, R. (2004). Behavioral syndromes: An integrative overview. Quarterly Review of Biology, 79, 241277.Google Scholar
Sih, A., & Del Giudice, M. (2012). Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 27622772.Google Scholar
Sih, A., Kats, L. B., & Maurer, E. F. (2003). Behavioral correlations across situations and the evolution of antipredator behaviour in a sunfish-salamander system. Animal Behavior, 65, 2944.Google Scholar
Sih, A., Mathot, K. J., Moirón, M., Montiglio, P.-O., Wolf, M., & Dingemanse, N. J. (2015). Animal personality and state–behaviour feedbacks: A review and guide for empiricists. Trends in Ecology & Evolution, 30, 5060.CrossRefGoogle ScholarPubMed
Sih, A., & Watters, J. V. (2005). The mix matters: Behavioural types and group dynamics in water striders. Behaviour, 142, 14171431.Google Scholar
Sinn, D. L., & Moltschaniwskyj, N. A. (2005). Personality traits in dumpling squid (Euprymna tasmanica): Context-specific traits and their correlation with biological characteristics. Journal of Comparative Psychology, 119, 99110.Google Scholar
Smith, B. R., & Blumstein, D. T. (2008). Fitness consequences of personality: A meta-analysis. Behavioral Ecology, 19, 448455.Google Scholar
Snell-Rood, E. C. (2013). An overview of the evolutionary causes and consequences of behavioural plasticity. Animal Behaviour, 85, 10041011.Google Scholar
Stamps, J., & Groothuis, T. G. G. (2010). The development of animal personality: Relevance, concepts and perspectives. Biological Reviews, 85, 301325.Google Scholar
Stamps, J. A. (2007). Growth-mortality tradeoffs and “personality traits” in animals. Ecology Letters, 10, 355363.Google Scholar
Stamps, J. A. (2016). Individual differences in behavioural plasticities. Biological Reviews, 91, 534567.Google Scholar
Stamps, J. A., Briffa, M., & Biro, P. A. (2012). Unpredictable animals: Individual differences in intraindividual variability (IIV). Animal Behaviour, 83, 13251334.Google Scholar
Stamps, J. A., & Krishnan, V. V. (2014). Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. American Naturalist, 184, 647657.Google Scholar
Stein, L. R., & Bell, A. M. (2015). Consistent individual differences in paternal behavior: A field study of three-spined stickleback. Behavioral Ecology and Sociobiology, 69, 227236.Google Scholar
Stirling, D. G., Reale, D., & Roff, D. A. (2002). Selection, structure and the heritability of behaviour. Journal of Evolutionary Biology, 15, 277289.Google Scholar
Thornton, A., & Lukas, D. (2012). Individual variation in cognitive performance: developmental and evolutionary perspectives. Philosophical Transactiosn of the Royal Society of London B Biological Sciences, 367, 27732783.Google Scholar
Trut, L. N. (1999). Early canid domestication: The farm-fox experiment. American Scientist, 87, 160169.Google Scholar
Uher, J. (2008). Comparative personality research: Methodological approaches. European Journal of Personality, 22, 427455.Google Scholar
van den Berg, S. M., de Moor, M. H., Verweij, K. J., Krueger, R. F., Luciano, M., Arias Vasquez, A., … Boomsma, D. I. (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from the genetics of personality consortium. Behavior Genetics, 46, 170182.Google Scholar
van Oers, K., de Jong, G., van Noordwijk, A. J., Kempenaers, B., & Drent, P. J. (2005). Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour, 142, 11851206.Google Scholar
Veenema, A. H., Meijer, O. C., de Kloet, E. R., Koolhaas, J. M., & Bohus, B. G. (2003). Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Hormones and Behavior, 43, 197204.Google Scholar
Verbeek, M. E. M., Drent, P. J., & Wiepkema, P. R. (1994). Consistent individual differences in early exploratory behaviour of male great tits. Animal Behavior, 48, 11131121.Google Scholar
von Merten, S., Zwolak, R., & Rychlik, L. (2017). Social personality: A more social shrew species exhibits stronger differences in personality types. Animal Behaviour, 127, 125134.Google Scholar
Webster, M. M., & Ward, A. J. W. (2011). Personality and social context. Biological Reviews, 86, 759773.Google Scholar
Westneat, D. F., Wright, J., & Dingemanse, N. J. (2015). The biology hidden inside residual within-individual phenotypic variation. Biological Reviews, 90, 729743.Google Scholar
Wolf, M., van Doorn, G. S., Leimar, O., & Weissing, F. J. (2007). Life history tradeoffs favour the evolution of personality. Nature, 447, 581585.Google Scholar
Wolf, M., van Doorn, G. S., & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences of the United States of America, 105, 1582515830.Google Scholar
Wolf, M., Van Doorn, G. S., & Weissing, F. J. (2011). On the coevolution of social responsiveness and behavioural consistency. Proceedings of the Royal Society B: Biological Sciences, 278, 440448.Google Scholar
Wolf, M., & Weissing, F. J. (2010). An explanatory framework for adaptive personality differences. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 39593968.Google Scholar

References

Amos, C. I., Wu, X., Broderick, P., Gorlov, I. P., Gu, J., Eisen, T., … Houlston, R. S. (2008). Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genetics, 40, 616622.Google Scholar
Bae, H. T., Sebastiani, P., Sun, J. X., Andersen, S. L., Daw, E. W., Terracciano, A., … Perls, T. T. (2013). Genome-wide association study of personality traits in the long life family study. Frontiers in Genetics, 4, 65.Google Scholar
Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J. J., Tropf, F. C., … Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 48, 14621472.Google Scholar
Beam, C. R., & Turkheimer, E. (2017). Gene–environment correlation as a source of stability and diversity in development. In Tolan, P. H. & Leventhal, B. L. (Eds.), Gene-environment transactions in developmental psychopathology: The role in intervention research (pp. 111130). Cham, Switzerland: Springer International Publishing.Google Scholar
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nature Genetics, 12, 8184.Google Scholar
Boutwell, B., Hinds, D., Agee, M., Alipanahi, B., Auton, A., Bell, R. K., … Perry, J. R. B. (2017). Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon, 3, e00349.Google Scholar
Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., … Neale, B. M. (2015). An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47, 12361241.Google Scholar
Bundy, H., Stahl, D., & MacCabe, J. H. (2011). A systematic review and meta-analysis of the fertility of patients with schizophrenia and their unaffected relatives. Acta Psychiatrica Scandinavica, 123, 98106.Google Scholar
Cesarini, D., & Visscher, P. M. (2017). Genetics and educational attainment. Npj Science of Learning, 2, 4.Google Scholar
Chao, M., Li, X., & McGue, M. (2017). The causal role of alcohol use in adolescent externalizing and internalizing problems: A Mendelian randomization study. Alcoholism: Clinical and Experimental Research, 41, 19531960.Google Scholar
Clarke, G. M., Anderson, C. A., Pettersson, F. H., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2011). Basic statistical analysis in genetic case-control studies. Nature Protocols, 6, 121133.Google Scholar
Cloninger, C. R. (1994). Temperament and personality. Current Opinion in Neurobiology, 4, 266273.Google Scholar
Colhoun, H. M., McKeigue, P. M., & Davey Smith, G. (2003). Problems of reporting genetic associations with complex outcomes. The Lancet, 361, 865872.CrossRefGoogle ScholarPubMed
Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V, Purcell, S. M., … Wray, N. R. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984994.Google Scholar
Davey Smith, G. (2011). Epidemiology, epigenetics and the “Gloomy Prospect”: Embracing randomness in population health research and practice. International Journal of Epidemiology, 40, 537562.Google Scholar
Davey Smith, G., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 122.Google Scholar
Davey Smith, G., & Ebrahim, S. (2005). What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? British Medical Journal, 330, 10761079.Google Scholar
Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23, R89R98.Google Scholar
Day, F. R., Helgason, H., Chasman, D. I., Rose, L. M., Loh, P.-R., Scott, R. A., … Perry, J. R. B. (2016). Physical and neurobehavioral determinants of reproductive onset and success. Nature Genetics, 48, 617623.Google Scholar
de Moor, M. H. M., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J. C., Toshiko, T., … Boomsma, D. I. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337349.Google Scholar
Eaves, L. J., Heath, A. C., Neale, M. C., Hewitt, J. K., & Martin, N. G. (1998). Sex differences and non-additivity in the effects of genes on personality. Twin Research: The Official Journal of the International Society for Twin Studies, 1, 131137.Google Scholar
Eysenck, H. J. (1991). Dimensions of personality: 16, 5 or 3? Criteria for a taxonomic paradigm. Personality and Individual Differences, 12, 773790.Google Scholar
Fanous, A., Gardner, C. O., Prescott, C. A., Cancro, R., & Kendler, K. S. (2002). Neuroticism, major depression and gender: A population-based twin study. Psychological Medicine, 32, 719728.Google Scholar
Finkel, D., & McGue, M. (1997). Sex differences and nonadditivity in heritability of the Multidimensional Personality Questionnaire Scales. Journal of Personality and Social Psychology, 72, 929938.Google Scholar
Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J., & Kenny, P. J. (2011). Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature, 471, 597601.Google Scholar
Gage, S. H., Davey Smith, G., Ware, J. J., Flint, J., Munafò, M. R., & Koifman, R. (2016). G = E: What GWAS can tell us about the environment. PLOS Genetics, 12, e1005765.Google Scholar
Gale, C. R., Hagenaars, S. P., Davies, G., Hill, W. D., Liewald, D. C. M., Cullen, B., … Harris, S. E. (2016). Pleiotropy between neuroticism and physical and mental health: Findings from 108, 038 men and women in UK Biobank. Translational Psychiatry, 6, e791.Google Scholar
Genetics of Personality Consortium, de Moor, M. H. M., van den Berg, S. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., … Boomsma, D. I. (2015). Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder. JAMA Psychiatry, 72, 642650.Google Scholar
Hakulinen, C., Hintsanen, M., Munafò, M. R., Virtanen, M., Kivimäki, M., Batty, G. D., & Jokela, M. (2015). Personality and smoking: Individual-participant meta-analysis of nine cohort studies. Addiction, 110, 18441852.Google Scholar
Hill, W. D., Arslan, R. C., Xia, C., Luciano, M., Amador, C., Navarro, P., … Penke, L. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular Psychiatry, 23, 23472362.CrossRefGoogle ScholarPubMed
Hopwood, C. J., Wright, A. G. C., & Donnellan, M. B. (2011). Evaluating the evidence for the general factor of personality across multiple inventories. Journal of Research in Personality, 45, 468478.Google Scholar
Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2018). Genome-wide meta-analysis of depression in 807,553 individuals identifies 102 independent variants with replication in a further 1,507,153 individuals. bioRxiv, 433367.Google Scholar
Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R., … Winslow, A. R. (2016). Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature Genetics, 48, 10311036.Google Scholar
Johnson, E. C., Border, R., Melroy-Greif, W. E., de Leeuw, C. A., Ehringer, M. A., & Keller, M. C. (2017). No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes. Biological Psychiatry, 15, 702708.Google Scholar
Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., … Cho, J. H. (2012). Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491, 119124.Google Scholar
Karlsson Linnér, R., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., … Beauchamp, J. P. (2019). Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 51, 245257.Google Scholar
Keskitalo, K., Broms, U., Heliövaara, M., Ripatti, S., Surakka, I., Perola, M., … Kaprio, J. (2009). Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Human Molecular Genetics, 18, 40074012.Google Scholar
Kim, B.-H., Kim, H.-N., Roh, S.-J., Lee, M. K., Yang, S., Lee, S. K., … Kim, H.-L. (2015). GWA meta-analysis of personality in Korean cohorts. Journal of Human Genetics, 60, 455460.Google Scholar
Kim, H.-N., Roh, S.-J., Sung, Y. A., Chung, H. W., Lee, J.-Y., Cho, J., … Kim, H.-L. (2013). Genome-wide association study of the Five-Factor Model of personality in young Korean women. Journal of Human Genetics, 58, 667674.Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256.Google Scholar
Le Marchand, L., Derby, K. S., Murphy, S. E., Hecht, S. S., Hatsukami, D., Carmella, S. G., … Wang, H. (2008). Smokers with the CHRNA lung cancer-associated variants are exposed to higher levels of nicotine equivalents and a carcinogenic tobacco-specific nitrosamine. Cancer Research, 68, 91379140.Google Scholar
Lee, J. C., Biasci, D., Roberts, R., Gearry, R. B., Mansfield, J. C., Ahmad, T., … Smith, K. G. C. (2017). Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nature Genetics, 49, 262268.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (New York), 274, 15271531.Google Scholar
Ligthart, L., & Boomsma, D. I. (2012). Causes of comorbidity: Pleiotropy or causality? Shared genetic and environmental influences on migraine and neuroticism. Twin Research and Human Genetics, 15, 158165.Google Scholar
Liu, J. Z., van Sommeren, S., Huang, H., Ng, S. C., Alberts, R., Takahashi, A., … Weersma, R. K. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 47, 979986.Google Scholar
Lo, M.-T., Hinds, D. A., Tung, J. Y., Franz, C., Fan, C.-C., Wang, Y., … Chen, C.-H. (2017). Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 49, 152156.Google Scholar
Lohoff, F. W. (2010). Overview of the genetics of major depressive disorder. Current Psychiatry Reports, 12, 539546.Google Scholar
Luciano, M., Hagenaars, S. P., Davies, G., Hill, W. D., Clarke, T.-K., Shirali, M., … Deary, I. J. (2018). Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nature Genetics, 50, 611.Google Scholar
Luciano, M., Huffman, J. E., Arias-Vasquez, A., Vinkhuyzen, A. A. E., Middeldorp, C. M., Giegling, I., … Deary, I. J. (2012). Genome-wide association uncovers shared genetic effects among personality traits and mood states. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 159B, 684695.Google Scholar
Malhotra, A. K., Virkkunen, M., Rooney, W., Eggert, M., Linnoila, M., & Goldman, D. (1996). The association between the dopamine D4 receptor (D4DR) 16 amino acid repeat polymorphism and novelty seeking. Molecular Psychiatry, 1, 388391.Google Scholar
Malouff, J. M., Thorsteinsson, E. B., Rooke, S. E., & Schutte, N. S. (2007). Alcohol involvement and the Five-Factor Model of personality: A meta-analysis. Journal of Drug Education, 37, 277294.Google Scholar
Marouli, E., Graff, M., Medina-Gomez, C., Lo, K. S., Wood, A. R., Kjaer, T. R., … Lettre, G. (2017). Rare and low-frequency coding variants alter human adult height. Nature, 542, 186190.Google Scholar
Matthews, L. J., & Turkheimer, E. (2017). Flynn, the Age-Table Method, and a metatheory of intelligence. Studies in History and Philosophy of Biological and Biomedical Sciences, 65, 3540.Google Scholar
McCrae, R. R., & Costa, P. T. (1985). Comparison of EPI and psychoticism scales with measures of the Five-FactorModel of personality. Personality and Individual Differences, 6, 587597.Google Scholar
Middeldorp, C. M., de Moor, M. H. M., McGrath, L. M., Gordon, S. D., Blackwood, D. H., Costa, P. T., … Boomsma, D. I. (2011). The genetic association between personality and major depression or bipolar disorder: A polygenic score analysis using genome-wide association data. Translational Psychiatry, 1, e50.Google Scholar
Munafò, M. R. (2009). Behavioural genetics: From variance to DNA. In P. J. Corr & Mathews, G. (Eds.), The Cambridge handbook of personality psychology (pp. 287304). Cambridge, UK: Cambridge University Press.Google Scholar
Munafò, M. R., & Flint, J. (2014). Common or rare variants for complex traits? Biological Psychiatry, 75, 752753.Google Scholar
Munafò, M. R., Timofeeva, M. N., Morris, R. W., Prieto-Merino, D., Sattar, N., Brennan, P., … Davey Smith, G. (2012). Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. JNCI: Journal of the National Cancer Institute, 104, 740748.Google Scholar
Nagel, M., Jansen, P. R., Stringer, S., Watanabe, K., de Leeuw, C. A., Bryois, J., … Posthuma, D. (2018). Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nature Genetics, 50, 920927.Google Scholar
Nettle, D., & Clegg, H. (2006). Schizotypy, creativity and mating success in humans. Proceedings. Biological Sciences, 273, 611615.Google Scholar
Okbay, A., Baselmans, B. M. L., De Neve, J.-E., Turley, P., Nivard, M. G., Fontana, M. A., … Cesarini, D. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48, 624633.Google Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542.Google Scholar
Ormel, J., Jeronimus, B. F., Kotov, R., Riese, H., Bos, E. H., Hankin, B., … Oldehinkel, A. J. (2013). Neuroticism and common mental disorders: Meaning and utility of a complex relationship. Clinical Psychology Review, 33, 686697.Google Scholar
Palla, L., & Dudbridge, F. (2015). A fast method that uses polygenic scores to estimate the variance explained by genome-wide marker panels and the proportion of variants sffecting a trait. The American Journal of Human Genetics, 97, 250259.Google Scholar
Pasman, J. A., Verweij, K. J. H., Gerring, Z., Stringer, S., Sanchez-Roige, S., Treur, J. L., … Vink, J. M. (2018). GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nature Neuroscience, 21, 11611170.Google Scholar
Pillai, S. G., Ge, D., Zhu, G., Kong, X., Shianna, K. V., Need, A. C., … ICGN Investigators. (2009). A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genetics, 5, e1000421.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709.Google Scholar
Power, R. A., & Pluess, M. (2015). Heritability estimates of the Big Five personality traits based on common genetic variants. Translational Psychiatry, 5, e604.Google Scholar
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904909.Google Scholar
Purves, K. L., Coleman, J. R. I., Meier, S. M. et al. A major role for common genetic variation in anxiety disorders. Molecular Psychiatry (2019). https://doi.org/10.1038/s41380-019-0559-1.Google Scholar
Rettew, D. C., Vink, J. M., Willemsen, G., Doyle, A., Hudziak, J. J., & Boomsma, D. I. (2006). The genetic architecture of neuroticism in 3301 Dutch adolescent twins as a function of age and sex: A study from the Dutch twin register. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 9, 2429.Google Scholar
Rijsdijk, F. V., & Sham, P. C. (2002). Analytic approaches to twin data using structural equation models. Briefings in Bioinformatics, 3, 119133.Google Scholar
Rushton, J. P., Bons, T. A., Ando, J., Hur, Y.-M., Irwing, P., Vernon, P. A., … Barbaranelli, C. (2009). A general factor of personality from multitrait–multimethod data and cross–national twins. Twin Research and Human Genetics, 12, 356365.Google Scholar
Saccone, S. F., Hinrichs, A. L., Saccone, N. L., Chase, G. A., Konvicka, K., Madden, P. A. F., … Bierut, L. J. (2006). Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Human Molecular Genetics, 16, 3649.Google Scholar
Sanchez-Roige, S., Fontanillas, P., Elson, S. L., Gray, J. C., Wit, H., MacKillop, J., & Palmer, A. A. (2019). Genome-wide association studies of impulsive personality traits (BIS-11 and UPPSP) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1l and CADM2 genes. Journal of Neuroscience, 39, 25622572.Google Scholar
Sanchez-Roige, S., Palmer, A. A., Fontanillas, P., Elson, S. L., Adams, M. J., Howard, D. M., … Clarke, T.-K. (2018). Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. American Journal of Psychiatry, 176, 107118.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427.Google Scholar
Service, S. K., Verweij, K. J. H., Lahti, J., Congdon, E., Ekelund, J., Hintsanen, M., … Freimer, N. B. (2012). A genome-wide meta-analysis of association studies of Cloninger’s Temperament Scales. Translational Psychiatry, 2, e116.Google Scholar
Smith, D. J., Escott-Price, V., Davies, G., Bailey, M. E. S., Colodro-Conde, L., Ward, J., … O’Donovan, M. C. (2016). Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry, 21, 749757.Google Scholar
Speed, D., Cai, N., Johnson, M. R., Nejentsev, S., Balding, D. J., & Balding, D. J. (2017). Reevaluation of SNP heritability in complex human traits. Nature Genetics, 49, 986992.Google Scholar
Speed, D., Hemani, G., Johnson, M. R., & Balding, D. J. (2012). Improved heritability estimation from genome-wide SNPs. American Journal of Human Genetics, 91, 10111021.Google Scholar
Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Børglum, A. D., Breen, G., … Consortium, for the P. G. (2017). Psychiatric genomics: An update and an agenda. American Journal of Psychiatry, 175, 1527.Google Scholar
Taylor, A. E., Fluharty, M. E., Bjørngaard, J. H., Gabrielsen, M. E., Skorpen, F., Marioni, R. E., … Munafò, M. R. (2014). Investigating the possible causal association of smoking with depression and anxiety using Mendelian randomisation meta-analysis: The CARTA consortium. BMJ Open, 4, e006141.Google Scholar
Terracciano, A., Esko, T., Sutin, A. R., de Moor, M. H. M., Meirelles, O., Zhu, G., … Uda, M. (2011). Meta-analysis of genome-wide association studies identifies common variants in CTNNA2 associated with excitement-seeking. Translational Psychiatry, 1, e49.Google Scholar
Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., … Costa, P. T. J. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647656.Google Scholar
Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P., … Stefansson, K. (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 452, 638642.Google Scholar
Tillmann, T., Vaucher, J., Okbay, A., Pikhart, H., Peasey, A., Kubinova, R., … Holmes, M. V. (2017). Education and coronary heart disease: A Mendelian randomization study. BMJ, 358, j3542.Google Scholar
Tropf, F. C., Lee, S. H., Verweij, R. M., Stulp, G., van der Most, P. J., de Vlaming, R., … Mills, M. C. (2017). Hidden heritability due to heterogeneity across seven populations. Nature Human Behaviour, 1, 757765.Google Scholar
Tupes, E. C., & Christal, R. E. (1992). Recurrent personality factors based on trait ratings. Journal of Personality, 60, 225251.Google Scholar
van den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., … Boomsma, D. I. (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from the genetics of personality Consortium. Behavior Genetics, 46, 170182.Google Scholar
Verweij, K. J. H., Yang, J., Lahti, J., Veijola, J., Hintsanen, M., Pulkki-Raback, L., … Zietsch, B. P. (2012). Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding. Evolution; International Journal of Organic Evolution, 66, 32383251.Google Scholar
Verweij, K. J. H., Zietsch, B. P., Medland, S. E., Gordon, S. D., Benyamin, B., Nyholt, D. R., … Wray, N. R. (2010). A genome-wide association study of Cloninger’s temperament scales: Implications for the evolutionary genetics of personality. Biological Psychology, 85, 306317.Google Scholar
Veselka, L., Schermer, J. A., Petrides, K. V., & Vernon, P. A. (2009). Evidence for a heritable general factor of personality in two studies. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 12, 254260.Google Scholar
Vinkhuyzen, A. A. E., Pedersen, N. L., Yang, J., Lee, S. H., Magnusson, P. K. E., Iacono, W. G., … Wray, N. R. (2012). Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Translational Psychiatry, 2, e102.Google Scholar
Vukasović, T., & Bratko, D. (2015). Heritability of personality: A meta-analysis of behavior genetic studies. Psychological Bulletin, 141, 769785.Google Scholar
Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., … Frayling, T. M. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46, 11731186.Google Scholar
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., … Sullivan, P. F. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50, 668681.Google Scholar
Wray, N. R., & Visscher, P. M. (2008). Estimating trait heritability. Nature Education, 1, 29.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 7682.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2013). Genome-wide complex trait analysis (GCTA): Methods, data analyses, and interpretations. Methods in Molecular Biology, 1019, 215236.Google Scholar
Yang, J., Zeng, J., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2017). Concepts, estimation and interpretation of SNP-based heritability. Nature Genetics, 49, 13041310.Google Scholar
Zuckerman, M. (1992). What is a basic factor and which factors are basic? Turtles all the way down. Personality and Individual Differences, 13, 675681.Google Scholar

References

Aluja, A., & Blanch, A. (2011). Neuropsychological behavioral inhibition system (BIS) and behavioral approach system (BAS) assessment: A shortened sensitivity to punishment and sensitivity to reward questionnaire version (SPSRQ-20). Journal of Personality Assessment, 93, 628636.Google Scholar
Aluja, A., García, L. F., García, Ó., & Blanco, E. (2016). Testosterone and disinhibited personality in healthy males. Physiology and Behavior, 164, 227232.Google Scholar
Aluja, A., Kuhlman, M., & Zuckerman, M. (2010). Development of the Zuckerman-Kuhlman-Aluja Personality Questionnaire (ZKA-PQ): A factor/facet version of the Zuckerman-Kuhlman Personality Questionnaire (ZKPQ). Journal of Personality Assessment, 92, 416431.Google Scholar
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nature Genetics, 12, 8184.Google Scholar
Bentham, J. (1781). An introduction to the principles of morals and legislation. London: Payne and sons.Google Scholar
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507513.Google Scholar
Bijttebier, P., Beck, I., Claes, L., & Vandereycken, W. (2009). Gray’s Reinforcement Sensitivity Theory as a framework for research on personality–psychopathology associations. Clinical Psychology Review, 29, 421430.Google Scholar
Bizot, J. C., Le Bihan, C., Puech, A. J., Hamon, M., & Thiébot, M. H. (1999). Serotonin and tolerance to delay of reward in rats. Psychopharmacology, 146, 400412.Google Scholar
Blum, K., Cull, J. G., Braverman, E. R., & Comings, D. E. (1996). Reward deficiency syndrome. American Scientist, 84, 132145.Google Scholar
Carré, J. M., & Olmstead, N. A. (2015). Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience, 286, 171186.Google Scholar
Carré, J. M., Geniole, S. N., Ortiz, T. L., Bird, B. M., Videto, A., & Bonin, P. L. (2017). Exogenous testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biological Psychiatry, 82, 249256.Google Scholar
Carver, C. S. (2005). Impulse and constraint: Perspectives from personality psychology, convergence with theory in other areas, and potential for integration. Personality and Social Psychology Review, 9, 312333.Google Scholar
Carver, C. S., & Scheier, F. (2009). Self-regulation and control in personality functioning. In Corr, P. J. & Matthews, G. (Eds.), The Cambridge handbook of personality psychology (pp. 427440). Cambridge, UK: Cambridge University Press.Google Scholar
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319333.Google Scholar
Casey, B. J., Somerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., … Shoda, Y. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences of the United States of America, 108, 1499815003.Google Scholar
Cloninger, C. R. (1986). A unified biosocial theory of personality and its role in the development of anxiety states. Psychiatric Developments, 3, 167226.Google Scholar
Cloninger, C. R., Przybeck, T. R., & Svrakic, D. M. (1991). The Tridimensional Personality Questionnaire: US normative data. Psychological Reports, 69, 10471057.Google Scholar
Cooper, A. J., Perkins, A., & Corr, P. J. (2007). A confirmatory factor analytic study of anxiety, fear and Behavioural Inhibition System measures. Journal of Individual Differences, 28, 179187.CrossRefGoogle Scholar
Cooper, S. E., Goings, S. P., Kim, J. Y., & Wood, R. I. (2014). Testosterone enhances risk tolerance without altering motor impulsivity in male rats. Psychoneuroendocrinology, 40, 201212.Google Scholar
Corr, P. J. (2001). Testing problems in J. A. Gray’s personality theory: A commentary on Matthews and Gilliland (1999). Personality and Individual Differences, 30, 333352.CrossRefGoogle Scholar
Corr, P. J. (2002a). J. A. Gray’s reinforcement sensitivity theory: Tests of the joint subsystem hypothesis of anxiety and impulsivity. Personality and Individual Differences, 33, 511532.Google Scholar
Corr, P. J. (2002b). J. A. Gray’s reinforcement sensitivity theory and frustrative nonreward: A theoretical note on expectancies in reactions to rewarding stimuli. Personality and Individual Differences, 32, 12471253.Google Scholar
Corr, P. J. (2004). Reinforcement sensitivity theory and personality. Neuroscience and Biobehavioral Reviews, 28, 317332.Google Scholar
Corr, P. J. (2008). Reinforcement sensitivity theory (RST): Introduction. In Corr, P. J. (Ed.), The reinforcement sensitivity theory of personality (pp. 143). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Corr, P. J. (2010). Automatic and controlled processes in behavioral control: Implications for personality psychology. European Journal of Personality, 24, 376403.Google Scholar
Corr, P. J. (2013). Approach and avoidance behaviour: Multiple systems and their interactions. Emotion Review, 5, 285290.CrossRefGoogle Scholar
Corr, P. J. (2016a). Hans Eysenck: A contradictory psychology. London: Palgrave.CrossRefGoogle Scholar
Corr, P. J. (2016b). Reinforcement sensitivity theory of personality questionnaires: Structural survey with recommendations. Personality and Individual Differences, 89, 6064.Google Scholar
Corr, P. J., & Cooper, A. J. (2016). The Reinforcement Sensitivity Theory of Personality Questionnaire (RST-PQ): Development and validation. Psychological Assessment, 28, 14271440.Google Scholar
Corr, P. J., & Krupić, D. (2017). Motivating personality: Approach, avoidance, and their conflict. In Advances in motivation science (Vol. 4, pp. 3990). San Diego, CA: Elsevier Academic Press.Google Scholar
Corr, P. J., & Mobbs, D. (2018). From epiphenomenon to biologically important phenomena. Personality Neuroscience, 1, 14.Google Scholar
Corr, P. J., & Morsella, E. (2015). The conscious control of behaviour: Revisiting Gray’s Comparator model. In Corr, P. J., Fajkowska, M., Eysenck, M. & Wytykowska, A. (Eds.), Personality and control (pp. 1542). New York: Eliot Werner Publications.Google Scholar
Corr, P. J., & McNaughton, N. (2008). Reinforcement sensitivity theory and personality. In Corr, P. J. (Ed.), The reinforcement sensitivity theory of personality (pp. 155187). Cambridge, UK: Cambridge University Press.Google Scholar
Corr, P. J., & McNaughton, N. (2012). Neuroscience and approach/avoidance personality traits: A two stage (valuation–motivation) approach. Neuroscience & Biobehavioral Reviews, 36, 23392354.Google Scholar
Corr, P. J., & McNaughton, N. (2015). Neural mechanisms of low trait anxiety and risk for externalizing behaviour. In Beauchaine, T. & Hinshaw, S. (Eds.), Oxford handbook of externalizing spectrum disorders: A developmental psychopathology perspective (pp. 220238). Oxford, UK: Oxford University Press.Google Scholar
Corr, P. J., McNaughton, N., Wilson, M. R., Hutchison, A., Burch, G., & Poropat, A. (2017). Putting the Reinforcement Sensitivity Theory (RST) to work. In Kim, S., Reeve, J. M. & Bong, M. (Eds.), Recent developments in neuroscience research on human motivation: Advances in motivation and achievement (pp. 6592). Bingley, UK: Emerald Group Publishing.Google Scholar
Corr, P., & Plagnol, A. (2018). Behavioral economics: The basics. London: Routledge.Google Scholar
Costa, V. D., Tran, V. L., Turchi, J., & Averbeck, B. B. (2014). Dopamine modulates novelty seeking behavior during decision making. Behavioral Neuroscience, 128, 556566.CrossRefGoogle ScholarPubMed
Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I. Journal of Personality and Social Psychology, 58, 330341.Google Scholar
Davidson, R. J., Shackman, A. J., & Maxwell, J. S. (2004). Asymmetries in face and brain related to emotion. Trends in Cognitive Sciences, 8, 389391.Google Scholar
Davis, K. L., Panksepp, J., & Normansell, L. (2003). The Affective Neuroscience Personality Scales: Normative data and implications. Neuropsychoanalysis, 5, 5769.CrossRefGoogle Scholar
Depue, R. A. (2006). Interpersonal behavior and the structure of personality: Neurobehavioral foundation of agentic extraversion and affiliation. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 6092). New York: Guilford Press.Google Scholar
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 20, 491517.Google Scholar
DeYoung, C. G., Cicchetti, D., Rogosch, F. A., Gray, J. R., Eastman, M., & Grigorenko, E. L. (2011). Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts Openness/Intellect. Journal of Research in Personality, 45, 364371.Google Scholar
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: 10 aspects of the Big Five. Journal of Personality and Social Psychology, 93, 880896.Google Scholar
Dissabandara, L. O., Loxton, N. J., Dias, S. R., Daglish, M., & Stadlin, A. (2012). Testing the fear and anxiety distinction in the BIS/BAS scales in community and heroin-dependent samples. Personality and Individual Differences, 52, 888892.Google Scholar
Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., … Belmaker, R. H. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nature Genetics, 12, 7880.CrossRefGoogle ScholarPubMed
Eisenberg, N., Fabes, R. A., Murphy, B., Karbon, M., Smith, M., & Maszk, P. (1996). The relations of children’s dispositional empathy-related responding to their emotionality, regulation, and social functioning. Developmental Psychology, 32, 195209.Google Scholar
Elliot, A. J. (2006). The hierarchical model of approach-avoidance motivation. Motivation and Emotion, 30, 111116.Google Scholar
Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance motivation in personality: Approach and avoidance temperaments and goals. Journal of Personality and Social Psychology, 82, 804818.Google Scholar
Eysenck, H. J. (1963). Personality and drug effects. In Eysenck, H. J. (Ed.), Experiments with drugs: Studies in the relation between personality, learning theory and drug action (pp. 124). Oxford, UK: Pergamon Press.Google Scholar
Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.Google Scholar
Eysenck, H. J., & Eysenck, S. B. G. (1975). Manual of the Eysenck Personality Questionnaire. Kent, UK: Hodder & Stoughton.Google Scholar
Fleeson, W. (2001). Towards a structure- and process-integrated view of personality: Traits as density distributions of states. Journal of Personality and Social Psychology, 80, 10111027.Google Scholar
Gooding, D. C., & Pflum, M. J. (2014). The assessment of interpersonal pleasure: Introduction of the Anticipatory and Consummatory Interpersonal Pleasure Scale (ACIPS) and preliminary findings. Psychiatry Research, 215, 237243.Google Scholar
Gray, J. A. (1967). Strength of the nervous system, introversion-extraversion, conditionality and arousal. Behavior Research and Therapy, 5, 151169.Google Scholar
Gray, J. A. (1970). The psychophysiological basis of introversion–extraversion. Behaviour Research and Therapy, 8, 249266.Google Scholar
Gray, J. A. (1972a). The psychophysiological nature of introversion–extraversion: A modification of Eysenck’s theory. In Nebylitsyn, V. D. & Gray, J. A. (Eds.), The biological bases of individual behaviour (pp. 182205). New York: Academic Press.Google Scholar
Gray, J. A. (1972b). Learning theory, the conceptual nervous system and personality. In Nebylitsyn, V. D. & Gray, J. A. (Eds.), The biological bases of individual behaviour (pp. 372399). New York: Academic Press.Google Scholar
Gray, J. A. (1975). Elements of a two-process theory of learning. London: Academic Press.Google Scholar
Gray, J. A. (1976). The behavioral inhibition system: A possible substrate for anxiety. In Feldman, M. P. & Broadhurst, A. M. (Eds.), Theoretical and experimental bases of behavior modification (pp. 341). London: Wiley.Google Scholar
Gray, J. A. (1977). Drug effects on fear and frustration: Possible limbic site of action of minor tranquillizers. In Iversen, L. L., Iversen, S. D. & Snyder, S. H. (Eds.), Handbook of psychopharmacology: Drugs, Neurotransmitters, and Behavior (Vol. 8, pp. 433529). New York: Plenum Press.Google Scholar
Gray, J. A. (1981). A critique of Eysenck’s theory of personality. In Eysenck, H. J. (Ed.), A model for personality (pp. 246276). Berlin: Springer.Google Scholar
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford, UK: Oxford University Press.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford, UK: Oxford University Press.Google Scholar
Gray, J. A., & Smith, P. T. (1969). An arousal decision model for partial reinforcement and discrimination learning. In Gilbert, R. M. & Sutherland, N. S. (Eds.), Animal discrimination learning (pp. 243272). London: Academic Press.Google Scholar
Green, L., Fry, A. F., & Myerson, J. (1994). Discounting of delayed rewards: A life-span comparison. Psychological Science, 5, 3336.Google Scholar
Griffith, J. W., Zinbarg, R. E., Craske, M. G., Mineka, S., Rose, R. D., Waters, A. M., & Sutton, J. M. (2010). Neuroticism as a common dimension in the internalizing disorders. Psychological medicine, 40, 11251136.Google Scholar
Hansenne, M., Pinto, E., Pitchot, W., Reggers, J., Scantamburlo, G., Moor, M., & Ansseau, M. (2002). Further evidence on the relationship between dopamine and novelty seeking: A neuroendocrine study. Personality and Individual Differences, 33, 967977.Google Scholar
Hebb, D. O. (1955). Drives and the CNS (Conceptual Nervous System). Psychological Review, 62, 243254.Google Scholar
Higgins, E. T. (1998). Promotion and prevention: Regulatory focus as a motivational principle. Advances in Experimental Social Psychology, 30, 146.Google Scholar
Higgins, E. T. (1999). Promotion and prevention as a motivational duality: Implications for evaluative processes. In Chaiken, S. & Trope, Y. (Eds.), Dual-process theories in social psychology (pp. 503525). New York: Guilford Press.Google Scholar
Hull, C. L. (1952). A behavior system. New Haven, CT: Yale University Press.Google Scholar
Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 641.Google Scholar
Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus & Giroux.Google Scholar
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.Google Scholar
Kennis, M., Rademaker, A. R., & Geuze, E. (2013). Neural correlates of personality: An integrative review. Neuroscience & Biobehavioral Reviews, 37, 7395.Google Scholar
Konorski, J. (1967). Integrative activity of the brain. Chicago, IL: Chicago University Press.Google Scholar
Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56, 921926.Google Scholar
Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psycholology, 2, 111133.Google Scholar
Krupić, D., Banai, B., & Corr, P. J. (2018). Relations between the Behavioral Approach System (BAS) and self-reported life history traits. Journal of Individual Differences, 39, 115122.Google Scholar
Krupić, D., & Corr, P. J. (2017). Moving forward with the BAS: Towards a neurobiology of multidimensional model of approach motivation. Psychological Topics, 26, 2545.Google Scholar
Krupić, D., Corr, P. J., Ručević, S., Križanić, V., & Gračanin, A. (2016a). Five reinforcement sensitivity theory (RST) of personality questionnaires: Comparison, validity and generalization. Personality and Individual Differences, 97, 1924.Google Scholar
Krupić, D., Gračanin, A., & Corr, P. J. (2016b). The evolution of the Behavioural Approach System (BAS): Cooperative and competitive resource acquisition strategies. Personality and Individual Differences, 94, 223227.CrossRefGoogle Scholar
Krupić, D., Križanić, V., & Corr, P. J. (2016). Personality and defensive behaviour: A factor analytic approach to threat scenario choices. Personality and Individual Differences, 94, 303308.Google Scholar
Leyton, M., Boileau, I., Benkelfat, C., Diksic, M., Baker, G., & Dagher, A. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: A PET/[11C]raclopride study in healthy men. Neuropsychopharmacology, 27, 10271035.Google Scholar
Li, Y., Guan, Y., Wang, F., Zhou, X., Guo, K., Jiang, P., … Fang, Z. (2015). Big-five personality and BIS/BAS traits as predictors of career exploration: The mediation role of career adaptability. Journal of Vocational Behavior, 89, 3945.Google Scholar
Lykken, D. T. (1971). Multiple factor analysis and personality research. Journal of Research in Personality, 5, 161170.Google Scholar
MacDonald, K. (1995). Evolution, the Five-Factor Model, and levels of personality. Journal of Personality, 63, 525567.Google Scholar
MacHin, A. J., & Dunbar, R. I. M. (2011). The brain opioid theory of social attachment: A review of the evidence. Behaviour, 140, 9851025.Google Scholar
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews, 28, 285305.Google Scholar
McNaughton, N., & Corr, P. J. (2008). The neuropsychology of fear and anxiety: A foundation for reinforcement sensitivity theory. In Corr, P. J. (Ed.), The reinforcement sensitivity theory of personality (pp. 4494). Cambridge, UK: Cambridge University Press.Google Scholar
McNaughton, N., & Corr, P. J. (2014). Approach, avoidance, and their conflict: The problem of anchoring. Frontiers in Systems Neuroscience, 8, 14.Google Scholar
McNaughton, N., & Corr, P. J. (2016). Mechanisms of comorbidity, continuity, and discontinuity in anxiety-related disorders. Development and Psychopathology, 28, 10531069.Google Scholar
McNaughton, N., & Corr, P. J. (2018a). Sensitivity to punishment and reward: Revisiting Gray (1970). In Corr, P. J. (Ed.), Classic studies in personality psychology (pp. 115136). London: Sage.Google Scholar
McNaughton, N., & Corr, P. J. (2018b). Survival circuits and risk assessment. Current Opinion in Behavioral Sciences, 24, 1420.Google Scholar
McNaughton, N., DeYoung, C., & Corr, P. J. (2016). Approach and avoidance. In Absher, J. R. & Cloutier, J. (Eds.), Neuroimaging personality and character: Traits and mental states in the brain (pp. 2549). London: Elsevier Academic Press.Google Scholar
Miller, N. E. (1944). Experimental studies of conflict. In Hunt, J. M. (Ed.), Personality and the behavioral disorders (pp. 431465). New York: Ronald Press.Google Scholar
Miyazaki, K., Miyazaki, K. W., & Doya, K. (2011). Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. Journal of Neuroscience, 31, 469479.Google Scholar
Miller, J. D., Zeichner, A., & Wilson, L. F. (2012). Personality correlates of aggression: Evidence from measures of the Five-Factor Model, UPPS model of impulsivity, and BIS/BAS. Journal of Interpersonal Violence, 27, 29032919.Google Scholar
Mowrer, O. H. (1960). Learning theory and behavior. New York: Wiley.Google Scholar
Nicholson, J. N., & Gray, J. A. (1971). Peak shift, behavioral contrast and stimulus generalization as related to personality and development in children. British Journal of Psychology, 63, 4762.Google Scholar
OConnor, K., & Corr, P. J. (2018). The dimensional model of personality and psychopathology: Revisiting Eysenck (1944). In Corr, P. J. (Ed.), Classic studies in personality psychology (pp. 6986) London: Sage.Google Scholar
Ode, S., & Robinson, M. D. (2007). Agreeableness and the self-regulation of negative affect: Findings involving the neuroticism/somatic distress relationship. Personality and Individual Differences, 43, 21372148.Google Scholar
Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419427.Google Scholar
Olson, K. R. (2004). Relations between Big Five traits and fundamental motives. Psychological Reports, 95, 795802.Google Scholar
Pearson, R., McGeary, J. E., & Beevers, C. G. (2014). Association between serotonin Cumulative Genetic Score and the Behavioral Approach System (BAS): Moderation by early life environment. Personality and Individual Differences, 70, 140144.Google Scholar
Peciña, M., Azhar, H., Love, T. M., Lu, T., Fredrickson, B. L., Stohler, C. S., & Zubieta, J. K. (2013a). Personality trait predictors of placebo analgesia and neurobiological correlates. Neuropsychopharmacology, 38, 639646.Google Scholar
Peciña, M., Mickey, B. J., Love, T., Wang, H., Langenecker, S. A., Hodgkinson, C., … Zubieta, J. K. (2013b). DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex, 49, 877890.Google Scholar
Penke, L., Denissen, J. J., & Miller, G. F. (2007). The evolutionary genetics of personality. European Journal of Personality, 21, 549587.Google Scholar
Perkins, A. M., Ettinger, U., Weaver, K., Schmechtig, A., Schrantee, A., Morrison, P. D., … Corr, P. J. (2013). Advancing the defensive explanation for anxiety disorders: Lorazepam effects on human defense are systematically modulated by personality and threat-type. Translational Psychiatry, 3, e246.Google Scholar
Perkins, A. M., Inchley-Mort, S. L., Pickering, A. D., Corr, P. J., & Burgess, A. P. (2012). A facial expression for anxiety. Journal of Personality and Social Psychology, 102, 910924.Google Scholar
Perkins, A., Kemp, S. E., & Corr, P. J. (2007). Fear and anxiety as separable emotions: An investigation of the revised reinforcement sensitivity theory of personality. Emotion, 7, 252261.Google Scholar
Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442, 10421045.Google Scholar
Pickering, A. D. (2008). Formal and computational models of Reinforcement Sensitivity Theory. In Corr, P. J. (Ed.), The reinforcement sensitivity theory of personality (pp. 453481). Cambridge, UK: Cambridge University Press.Google Scholar
Pickering, A. D., Diaz, A., & Gray, J. A. (1995). Personality and reinforcement: An exploration using a maze-learning task. Personality and Individual Differences, 18, 541558.Google Scholar
Piotti, P., Satchell, L. P., & Lockhart, T. S. (2018). Impulsivity and behaviour problems in dogs: A Reinforcement Sensitivity Theory perspective. Behavioural Processes, 151, 104110.Google Scholar
Raine, A., Dodge, K., Loeber, R., Gatzke-Kopp, L., Lynam, D., Reynolds, C., … Liu, J. (2006). The reactive-proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggressive Behavior, 32, 159171.Google Scholar
Ranade, S., Pi, H. J., & Kepecs, A. (2014). Neuroscience: Waiting for serotonin. Current Biology, 24, R803R805.Google Scholar
Randles, D., Flett, G. L., Nash, K. A., McGregor, I. D., & Hewitt, P. L. (2010). Dimensions of perfectionism, behavioral inhibition, and rumination. Personality and Individual Differences, 49, 8387.Google Scholar
Sherman, G. D., Lerner, J. S., Josephs, R. A., Renshon, J., & Gross, J. J. (2016). The interaction of testosterone and cortisol is associated with attained status in male executives. Journal of Personality and Social Psychology, 110, 921929.Google Scholar
Simms, L. J., & Clark, L. A. (2006). The Schedule for Nonadaptive and Adaptive Personality (SNAP): A dimensional measure of traits relevant to personality and personality athology. In Strack, S. (Ed.), Differentiating normal and abnormal personality (pp. 431450). New York: Springer.Google Scholar
Skinner, B. F. (1953). Science and human behaviour. New York: Macmillan.Google Scholar
Smits, D. J. M., & Boeck, P. D. (2006). From BIS/BAS to the Big Five. European Journal of Personality, 270, 255270.Google Scholar
Sutton, S. K., & Davidson, R. J. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8, 204210.Google Scholar
Svrakic, D. M., Przybeck, T. R., & Cloninger, C. R. (1991). Further contribution to the conceptual validity of the unified biosocial model of personality: US and Yugoslav data. Comprehensive Psychiatry, 32, 195209.Google Scholar
Sylvers, P., Lilienfeld, S. O., & LaPrairie, J. L. (2011). Differences between trait fear and trait anxiety: Implications for psychopathology. Clinical Psychology Review, 31, 122137.Google Scholar
Tajima-Pozo, K., Bayón, C., Díaz-Marsá, M., & Carrasco, J. L. (2015). Correlation between personality traits and testosterone concentrations in healthy population. Indian Journal of Psychological Medicine, 37, 317321.Google Scholar
Tellegen, A. (1982). Brief manual for the Multidimensional Personality Questionnaire. Unpublished manuscript, Minneapolis, MN: University of Minnesota.Google Scholar
Thornton, J. C., Dawe, S., Lee, C., Capstick, C., Corr, P. J., Cotter, P., … Gray, J. A. (1996). Effects of nicotine and amphetamine on latent inhibition in normal human subjects. Psychopharmacology, 127, 164173.Google Scholar
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of Personality and Social Psychology, 62, 676687.Google Scholar
Torrubia, R., Avila, C., Moltó, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personality and Individual Differences, 31, 837862.Google Scholar
Tuominen, L., Salo, J., Hirvonen, J., Nagren, K., Laine, P., Melartin, T., … Keltikangas-Jarvinen, L. (2012). Temperament, character and serotonin activity in the human brain: A positron emission tomography study based on a general population cohort. Psychological Medicine, 43, 881894.Google Scholar
Turakulov, R., Jorm, A. F., Jacomb, P. A., Tan, X., & Easteal, S. (2004). Association of dopamine-β-hydroxylase and androgen receptor gene polymorphisms with Eysenck’s P and other personality traits. Personality and Individual Differences, 37, 191202.Google Scholar
Wanigasekera, V., Lee, M. C., Rogers, R., Kong, Y., Leknes, S., Andersson, J., & Tracey, I. (2012). Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects. Proceedings of the National Academy of Sciences, 109, 1770517710.Google Scholar

References

Abram, S. V., & DeYoung, C. G. (2017). Using personality neuroscience to study personality disorder. Personality Disorders: Theory, Research, and Treatment, 8, 213.Google Scholar
Alcaro, A., Huber, R., & Panksepp, J. (2007). Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Research Reviews, 56, 283321.Google Scholar
Allen, T. A., & DeYoung, C. G. (2017). Personality neuroscience and the Five-Factor Model. In Widiger, T. A. (Ed.), Oxford handbook of the Five-Factor Model (pp. 319349) New York: Oxford University Press.Google Scholar
Allen, T. A., Rueter, A. R., Abram, S. V., Brown, J. S., & DeYoung, C. G. (2017). Personality and neural correlates of mentalizing ability. European Journal of Personality, 31, 599613.Google Scholar
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4, 267278.Google Scholar
Aluja, A., Garcia, O., & Garcia, L. F. (2002). A comparative study of Zuckerman’s three structural models for personality through the NEO-PI-R, ZKPQ-III-R, EPQ-RS and Goldberg’s 50-bipolar adjectives. Personality and Individual Differences, 33, 713725.Google Scholar
Aluja, A., Garcia, O., & Garcia, L. F. (2004). Replicability of the three, four and five Zuckerman’s personality super-factors: Exploratory and confirmatory factor analysis of the EPQ-RS, ZKPQ and NEO-PI-R. Personality and Individual Differences, 36, 10931108.CrossRefGoogle Scholar
Ando, J., Suzuki, A., Yamagata, S., Kijima, N., Maekawa, H., Ono, Y., & Jang, K. L. (2004). Genetic and environmental structure of Cloninger’s temperament and character dimensions. Journal of Personality Disorders, 18, 379393.Google Scholar
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952.Google Scholar
Angleitner, A., Riemann, R., & Spinath, F. M. (2004). Investigating the ZKPQ-III-R: Psychometric properties, relations to the Five-Factor Model and genetic and environmental influences on its scales and facets. In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 89105). New York: Elsevier.Google Scholar
Ball, S. A., Tennen, H., & Kranzler, H. R. (1999). Factor replicability and validity of the Temperament and Character Inventory in substance-dependent patients. Psychological Assessment, 11, 514524.Google Scholar
Barrós‐Loscertales, A., Meseguer, V., Sanjuán, A., Belloch, V., Parcet, M. A., Torrubia, R., & Avila, C. (2006). Striatum gray matter reduction in males with an overactive behavioral activation system. European Journal of Neuroscience, 24, 20712074.Google Scholar
Beaty, R. E., Chen, Q., Christensen, A. P., Qiu, J., Silvia, P. J., & Schachter, D. L. (2017). Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience. Human Brain Mapping, 39, 811821.Google Scholar
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., … Silvia, P. J. (2016). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773779.Google Scholar
Beldarrain, M. G., Garcia-Monco, J. C., Astigarraga, E., Gonzalez, A., & Grafman, J. (2005). Only spontaneous counterfactual thinking is impaired in patients with prefrontal cortex lesions. Cognitive Brain Research, 24, 723726.Google Scholar
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genetics, 12, 8184.Google Scholar
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “Liking,” “wanting,” and learning. Current Opinion in Pharmacology, 9, 6573.Google Scholar
Birn, R., Shackman, A., Oler, J., Williams, L., Mcfarlin, D., Rogers, G., … Alexander, A. (2014). Evolutionarily conserved prefrontal-amygdalar dysfunction in early-life anxiety. Molecular Psychiatry, 19, 915922.Google Scholar
Bjørnebekk, A., Fjell, A. M., Walhovd, K. B., Grydeland, H., Torgersen, S., & Westlye, L. T. (2013). Neuronal correlates of the Five-Factor Model (FFM) of human personality: Multimodal imaging in a large healthy sample. NeuroImage, 65, 194208.Google Scholar
Bouchard, T. J. (1994). Genes, environment, and personality, Science, 264, 17001701.Google Scholar
Bress, J. N., & Hajcak, G. (2013). Self‐report and behavioral measures of reward sensitivity predict the feedback negativity. Psychophysiology, 50, 610616.Google Scholar
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815834.Google Scholar
Brown, S. M., Manuck, S. B., Flory, J. D., & Hariri, A. R. (2006). Neural basis of individual differences in impulsivity: Contributions of corticolimbic circuits for behavioral arousal and control. Emotion, 6, 239245.Google Scholar
Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15, 118121.Google Scholar
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews. Neuroscience, 14, 365–76.Google Scholar
Canli, T., & Lesch, K.-P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.Google Scholar
Canu, E., Agosta, F., & Filippi, M. (2015). A selective review of structural connectivity abnormalities of schizophrenic patients at different stages of the disease. Schizophrenia Research, 161, 1928.Google Scholar
Carp, J. (2012). The secret lives of experiments: Methods reporting in the fMRI literature. NeuroImage, 63, 289300.Google Scholar
Chang, L., Connelly, B. S., & Geeza, A. A. (2012). Separating method factors and higher order traits of the Big Five: A meta-analytic multitrait–multimethod approach. Journal of Personality and Social Psychology, 102, 408426.Google Scholar
Chavanon, M. L., Wacker, J., & Stemmler, G. (2013). Paradoxical dopaminergic drug effects in extraversion: Dose- and time-dependent effects of sulpiride on EEG theta activity. Frontiers in Human Neuroscience, 7, 117.Google Scholar
Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., … Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. The Journal of Neuroscience, 29, 22122224.Google Scholar
Chmielewski, M., Bagby, R. M., Markon, K., Ring, A. J., & Ryder, A. G. (2014). Openness to experience, intellect, schizotypal personality disorder, and psychoticism: Resolving the controversy. Journal of Personality Disorders, 28, 483499.Google Scholar
Choi, E. Y., Yeo, B. T. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108, 22422263.Google Scholar
Churchwell, J. C., & Yurgelun-Todd, D. A. (2013). Age-related changes in insula cortical thickness and impulsivity: Significance for emotional development and decision-making. Developmental Cognitive Neuroscience, 6, 8086.Google Scholar
Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and individual differences, 102, 7478.Google Scholar
Civai, C., Hawes, D. R., DeYoung, C. G., & Rustichini, A. (2016). Intelligence and Extraversion in the neural evaluation of delayed rewards. Journal of Research in Personality, 61, 99108.Google Scholar
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. Archives of General Psychiatry, 44, 573588.Google Scholar
Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975990.Google Scholar
Connelly, B. S., & Ones, D. S. (2010). An other perspective on personality: Meta-analytic integration of observers’ accuracy and predictive validity. Psychological Bulletin, 136, 10921122.Google Scholar
Cooper, A. J., Duke, E., Pickering, A. D., & Smillie, L. D. (2014). Individual differences in reward prediction error: Contrasting relations between feedback-related negativity and trait measures of reward sensitivity, impulsivity and extraversion. Frontiers in Human Neuroscience, 8, 248.Google Scholar
Costa, P. T. Jr., & McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Cremers, H. R., Demenescu, L. R., Aleman, A., Renken, R., van Tol, M. J., van der Wee, N. J., … Roelofs, K. (2010). Neuroticism modulates amygdala—prefrontal connectivity in response to negative emotional facial expressions. Neuroimage, 49, 963970.Google Scholar
Cremers, H., van Tol, M. J., Roelofs, K., Aleman, A., Zitman, F. G., van Buchem, M. A., … van der Wee, N. J. (2011). Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PloS one, 6, e28421.Google Scholar
Davey, C. G., Whittle, S., Harrison, B. J., Simmons, J. G., Byrne, M. L., Schwartz, O. S., & Allen, N. B. (2015). Functional brain-imaging correlates of negative affectivity and the onset of first-episode depression. Psychological Medicine, 45, 10011009.Google Scholar
Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry, 51, 6880.Google Scholar
Davis, K. L., Panksepp, J., & Normansell, L. (2003). The Affective Neuroscience Personality Scales: Normative data and implications. Neuro-Psychoanalysis, 5, 5769.Google Scholar
de Moor, M. H., Costa, P. T., Terracciano, A., Krueger, R. F., De Geus, E. J., Toshiko, T., … Metspalu, A. (2010). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337349.Google Scholar
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491569.Google Scholar
Depue, R. A., & Fu, Y. (2013). On the nature of extraversion: Variation in conditioned contextual activation of dopamine-facilitated affective, cognitive, and motor processes. Frontiers in Human Neuroscience, 7, 288.Google Scholar
Depue, R. A., & Lenzenweger, M. F. (2005). A neurobehavioral dimensional model of personality disturbance. In Lenzenweger, M. & Clarkin, J. (Eds.), Theories of personality disorders (2nd ed. pp. 391454). New York: Guilford Press.Google Scholar
Depue, R. A., Luciana, M., Arbisi, P., Collins, P., & Leon, A. (1994). Dopamine and the structure of personality: Relation of agonist-induced dopamine activity to positive emotionality. Journal of Personality and Social Psychology, 67, 485498.Google Scholar
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313350.Google Scholar
DeYoung, C. G. (2006). Higher-order factors of the Big Five in a multi-informant sample. Journal of Personality and Social Psychology, 91, 11381151.Google Scholar
DeYoung, C. G. (2010). Personality neuroscience and the biology of traits. Social and Personality Psychology Compass, 4, 11651180.Google Scholar
DeYoung, C. G. (2013). The neuromodulator of exploration: A unifying theory of the role of dopamine in personality. Frontiers in Human Neuroscience, 7, 762.Google Scholar
DeYoung, C. G. (2015). Cybernetic Big Five Theory. Journal of Research in Personality, 56, 3358.Google Scholar
DeYoung, C. G. (2020). Intelligence and personality. In Sternberg, R. J. & Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence (2nd ed., pp. 10111047) New York: Cambridge University Press.Google Scholar
DeYoung, C. G., Carey, B. E., Krueger, R. F., & Ross, S. R. (2016). Ten aspects of the Big Five in the Personality Inventory for DSM–5. Personality Disorders: Theory, Research, and Treatment, 7, 113123.Google Scholar
DeYoung, C. G., & Krueger, R. F. (2018). A cybernetic theory of psychopathology. Psychological Inquiry, 29, 117138.Google Scholar
DeYoung, C. G., Grazioplene, R. G., & Peterson, J. B. (2012). From madness to genius: The Openness/Intellect trait domain as a paradoxical simplex. Journal of Research in Personality, 46, 6378.Google Scholar
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21, 820828.Google Scholar
DeYoung, C. G., & Rueter, A. R. (2016). Impulsivity as a personality trait. In Vohs, K. D. & Baumeister, R. F. (Eds.), Handbook of self-regulation: Research, theory, and applications (2nd ed., pp. 345363). New York: Guilford Press.Google Scholar
DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., & Gray, J. R. (2009). Intellect as distinct from Openness: Differences revealed by fMRI of working memory. Journal of Personality and Social Psychology, 97, 883892.Google Scholar
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: Ten aspects of the Big Five. Journal of Personality and Social Psychology, 93, 880896.Google Scholar
DeYoung, C. G., Quilty, L. C., Peterson, J. B., Gray, J. R. (2014). Openness to experience, intellect, and cognitive ability. Journal of Personality Assessment, 96, 4652.Google Scholar
DeYoung, C. G., Weisberg, Y. J., Quilty, L. C., & Peterson, J. B. (2013). Unifying the aspects of the Big Five, the interpersonal circumplex, and trait affiliation. Journal of Personality, 81, 465475.Google Scholar
Digman, J. M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 12461256.Google Scholar
Du, L., Bakish, D., Ravindran, A. V., & Hrdina, P. D. (2002). Does fluoxetine influence major depression by modifying five-factor personality traits? Journal of Affective Disorders, 71, 235241.Google Scholar
Eichhammer, P., Sand, P. G., Stoertebecker, P., Langguth, B., Zowe, M., & Hajak, G. (2005). Variation at the DRD4 promoter modulates extraversion in Caucasians. Molecular Psychiatry, 10, 520522.Google Scholar
Elliot, A. J., & Thrash, T. M. (2002). Approach–avoidance motivation in personality: Approach and avoidance temperaments and goals. Journal of Personality and Social Psychology, 82, 804818.Google Scholar
Everaerd, D., Klumpers, F., van Wingen, G., Tendolkar, I., & Fernández, G. (2015). Association between neuroticism and amygdala responsivity emerges under stressful conditions. NeuroImage, 112, 218224.Google Scholar
Everhart, D. E., Demaree, H. A., & Harrison, D. W. (2008). The influence of hostility on electroencephalographic activity and memory functioning during an affective memory task. Clinical Neurophysiology, 119, 134143.Google Scholar
Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.Google Scholar
Eysenck, H. J. (1992). The definition and measurement of Psychoticism. Personality and Individual Differences, 13, 757785.Google Scholar
Eysenck, H. J. (1997). Personality and experimental psychology: The unification of psychology and the possibility of a paradigm. Journal of Personality and Social Psychology, 73, 12241237.Google Scholar
Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences: A natural science approach. New York: Plenum.Google Scholar
Farr, O. M., Hu, S., Zhang, S., & Chiang-shan, R. L. (2012). Decreased saliency processing as a neural measure of Barratt impulsivity in healthy adults. Neuroimage, 63, 10701077.Google Scholar
Fleeson, W. (2001). Towards a structure- and process-integrated view of personality: Traits as density distributions of states. Journal of Personality and Social Psychology, 80, 10111027.Google Scholar
Fleeson, W. (2007). Situation-based contingencies underlying trait-content manifestation in behavior. Journal of Personality, 75, 825862.Google Scholar
Fleeson, W., & Gallagher, P. (2009). The implications of Big Five standing for the distribution of trait manifestation in behavior: Fifteen experience-sampling studies and a meta-analysis. Journal of Personality and Social Psychology, 97, 10971114.Google Scholar
Forbes, E. E., Brown, S. M., Kimak, M., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2009). Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Molecular Psychiatry, 14, 6070.Google Scholar
Forbes, C. E., Poore, J. C., Krueger, F., Barbey, A. K., Solomon, J., & Grafman, J. (2014). The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Social Neuroscience, 9, 139151.Google Scholar
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103, 1004610051.Google Scholar
Freeman, H. D., & Gosling, S. D. (2010). Personality in nonhuman primates: A review and evaluation of past research. American Journal of Primatology, 72, 653671.Google Scholar
Frokjaer, V. G., Mortensen, E. L., Nielsen, F. A., Haugbol, S., Pinborg, L. H., Adams, K. H., … Knudsen, G. M. (2008). Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biological Psychiatry, 63, 569576.Google Scholar
Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., Brewer, L. E., & Schmeichel, B. J. (2007). Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92, 325336.Google Scholar
Gailliot, M. T., Baumeister, R. F. (2007). The physiology of willpower: Linking blood glucose to self-control. Personality and Social Psychology Review, 11, 303327.Google Scholar
Gailliot, M. T., Schmeichel, B. J., & Baumeister, R. F. (2006). Self-regulatory processes defend against the threat of death: Effects of self-control depletion and trait self-control on thoughts and fears of dying. Journal of Personality and Social Psychology, 91, 4962.Google Scholar
Garcia-Banda, G., Chellew, K., Fornes, J., Perez, G., Servera, M., & Evans, P. (2014). Neuroticism and cortisol: Pinning down an expected effect. International Journal of Psychophysiology, 91, 132138.Google Scholar
Gerritsen, L., Geerlings, M., Bremmer, M., Beekman, A., Deeg, D., Penninx, B. W. J. H., & Comijs, H. (2009). Personality characteristics and hypothalamic-pituitary-adrenal axis regulation in older persons. The American Journal of Geriatric Psychiatry, 17, 10771084.Google Scholar
Gillespie, N. A., Cloninger, C. R., Heath, A. C., Martin, N. G. (2003). The genetic and environmental relationship between Cloninger’s dimensions of temperament and character. Personality and Individual Differences, 35, 19311946.Google Scholar
Goldberg, L. R., & Rosolack, T. K. (1994) The Big Five factor structure as an integrative framework: An empirical comparison with Eysenck’s P-E-N model. In Halverson, C. F. Jr., Kohnstamm, G. A. & Martin, R. P. (Eds.), The developing structure of temperament and personality from infancy to adulthood (pp. 735). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Gosling, S. D., & John, O. P. (1999). Personality dimensions in nonhuman animals: A cross-species review. Current Directions in Psychological Science, 8, 6975.Google Scholar
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo‑hippocampal system. New York: Oxford University Press.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). New York: Oxford University Press.Google Scholar
Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5, 471482.Google Scholar
Grazioplene, R. G., Chavez, R. S., Rustichini, A., & DeYoung, C. G. (2016). Personality, psychosis, and connectivity: White matter correlates of psychosis-linked traits support continuity between personality and psychopathology. Journal of Abnormal Psychology, 125, 11351145.Google Scholar
Grodin, E. N., & White, T. L. (2015). The neuroanatomical delineation of agentic and affiliative extraversion. Cognitive, Affective, & Behavioral Neuroscience, 15, 114.Google Scholar
Halperin, J. M., Kalmar, J. H., Schulz, K. P., Marks, D. J., Sharma, V., & Newcorn, J. H. (2006). Elevated childhood serotonergic function protects against adolescent aggression in disruptive boys. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 833840.Google Scholar
Hanna, G. L., Yuwiler, A., & Coates, J. K. (1995). Whole blood serotonin and disruptive behaviors in juvenile obsessive-compulsive disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 2835.Google Scholar
Harmon-Jones, E. (2004). Contributions from research on anger and cognitive dissonance to understanding the motivational functions of asymmetrical frontal brain activity. Biological Psychology, 67, 5176.Google Scholar
Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159168.Google Scholar
Hennig, J. (2004). Personality, serotonin, and noradrenaline. In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 379395). New York: Elsevier.Google Scholar
Herbst, J. H., Zonderman, A. B., McCrae, R. R., & Costa, P. T. (2000). Do the dimensions of the Temperament and Character Inventory map a simple genetic architecture? Evidence from molecular genetics and factor analysis. American Journal of Psychiatry, 157, 12851290.Google Scholar
Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., & Van Essen, D. (2010). Similar patterns of cortical expansion during human development and evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 1313513140.Google Scholar
Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. The Journal of Neuroscience, 32, 1808718100.Google Scholar
Hou, X., Allen, T. A., Wei, D., Huang, H., Wang, K., DeYoung, C. G., & Qiu, J. (2017). Trait compassion is associated with the neural substrate of empathy. Cognitive, Affective, & Behavioral Neuroscience, 17, 10181027.Google Scholar
Hu, X., Erb, M., Ackermann, H., Martin, J. A., Grodd, W., & Reiterer, S. M. (2011). Voxel-based morphometry studies of personality: Issue of statistical model specification-effect of nuisance covariates. NeuroImage, 54, 19942005.Google Scholar
Hubbard, J., Harbaugh, W. T., Srivastava, S., Degras, D., & Mayr, U. (2016). A general benevolence dimension that links neural, psychological, economic, and life-span data on altruistic tendencies. Journal of Experimental Psychology: General, 145, 13511358.Google Scholar
Hyde, L. W., Gorka, A., Manuck, S. B., & Hariri, A. R. (2011). Perceived social support moderates the link between threat-related amygdala reactivity and trait anxiety. Neuropsychologia, 49, 651656.Google Scholar
Iacoboni, M. (2007). Face to face: The neural basis of social mirroring and empathy. Psychiatric Annals, 37, 236241.Google Scholar
Ioannidis, J. P. A. (2011). Excess significance bias in the literature on brain volume abnormalities. Archives of General Psychiatry, 68, 773780.Google Scholar
Jackson, J., Balota, D. A., & Head, D. (2011). Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiology of Aging, 32, 21622171.Google Scholar
Jalbrzikowski, M., Larsen, B., Hallquist, M. N., Foran, W., Calabro, F., & Luna, B. (2017). Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: Associations with anxiety and depression. Biological Psychiatry, 82, 511521.Google Scholar
Jang, K. L., Hu, S., Livesley, W. J., Angleitner, A., Riemann, R., & Vernon, P. A. (2002). Genetic and environmental influences on the covariance of facets defining the domains of the five-factor model of personality. Personality and Individual Differences, 33, 83101.Google Scholar
Jang, K. L., Livesley, W. J., Ando, J., Yamagata, S., Suzuki, A., Angleitner, A., … Spinath, F. (2006). Behavioral genetics of the higher-order factors of the Big Five. Personality and Individual Differences, 41, 261272.Google Scholar
Jang, K. L., McCrae, R. R., Angleitner, A., Riemann, R., & Livesley, W. J. (1998). Heritability of facet-level traits in a cross-cultural twin sample: Support for a hierarchical model of personality. Journal of Personality and Social Psychology, 74, 15561565.Google Scholar
John, O. P., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 102138). New York: Guilford Press.Google Scholar
John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big Five trait taxonomy. Handbook of Personality: Theory and Research, 3, 114158.Google Scholar
Johnson, W., & Krueger, R. F. (2004). Genetic and environmental structure of adjectives describing the domains of the Big Five Model of personality: A nationwide US twin study. Journal of Research in Personality, 38, 448472.Google Scholar
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PlOS One, 5, e9818.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154.Google Scholar
Kaczkurkin, A. N., Moore, T. M., Ruparel, K., Ciric, R., Calkins, M. E., Shinohara, R. T., … Gennatas, E. D. (2016). Elevated amygdala perfusion mediates developmental sex differences in trait anxiety. Biological Psychiatry, 80, 775785.Google Scholar
Kalbitzer, J., Frokjaer, V. G., Erritzoe, D., Svarer, C., Cumming, P., Nielsen, F. Å., … Kringelbach, M. L. (2009). The personality trait openness is related to cerebral 5-HTT levels. Neuroimage, 45, 280285.Google Scholar
Kanske, P., Böckler, A., Trautwein, F. M., & Singer, T. (2015). Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain–behavior relations for empathy and Theory of Mind. NeuroImage, 122, 619.Google Scholar
Kaplan, J. T., & Iacoboni, M. (2006). Getting a grip on other minds: Mirror neurons, intention understanding and cognitive empathy. Social Neuroscience, 1, 175183.Google Scholar
Kapogiannis, D., Sutin, A., Davatzikos, C., Costa, P., & Resnick, S. (2013). The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Human Brain Mapping, 34, 28292840.Google Scholar
Karjalainen, T., Tuominen, L., Manninen, S., Kalliokoski, K. K., Nuutila, P., Jääskeläinen, I. P., … Nummenmaa, L. (2016). Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability. Social Cognitive and Affective Neuroscience, 11, 13101316.Google Scholar
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. J. (2010). Implicit learning as an ability. Cognition, 116, 321340.Google Scholar
Keightley, M. L., Seminowicz, D. A., Bagby, R. M., Costa, P. T., Fossati, P., & Mayberg, H. S. (2003). Personality influences limbic-cortical interactions during sad mood. NeuroImage, 20, 20312039.Google Scholar
Knutson, B., Momenan, R., Rawlings, R. R., Fong, G. W., & Hommer, D. (2001). Negative association of neuroticism with brain volume ratio in healthy humans. Biological Psychiatry, 50, 685690.Google Scholar
Koelsch, S., Skouras, S., & Jentschke, S. (2013). Neural correlates of emotional personality: A structural and functional magnetic resonance imaging study. PlOS One, 8, e77196.Google Scholar
Krueger, R. F., & Markon, K. E. (2014). The role of the DSM-5 personality trait model in moving toward a quantitative and empirically based approach to classifying personality and psychopathology. Annual Review of Clinical Psychology, 10, 477501.Google Scholar
Kujawa, A., Proudfit, G. H., Kessel, E. M., Dyson, M., Olino, T., & Klein, D. N. (2015). Neural reactivity to monetary rewards and losses in childhood: Longitudinal and concurrent associations with observed and self-reported positive emotionality. Biological Psychology, 104, 4147.Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256.Google Scholar
Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., … Fox, P. T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23, 40224037.Google Scholar
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 24922502.Google Scholar
Lange, S., Leue, A., & Beauducel, A. (2012). Behavioral approach and reward processing: Results on feedback-related negativity and P3 component. Biological Psychology, 89, 416425.Google Scholar
Lebedev, A. V., Kaelen, M., Lövdén, M., Nilsson, J., Feilding, A., Nutt, D. J., & Carhart‐Harris, R. L. (2016). LSD‐induced entropic brain activity predicts subsequent personality change. Human brain mapping, 37, 32033213.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Lewis, G. J., Panizzon, M. S., Eyler, L., Fennema-Notestine, C., Chen, C. H., Neale, M. C., … Franz, C. E. (2014). Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality. NeuroImage, 103, 309315.Google Scholar
Li, Y., Qiao, L., Sun, J., Wei, D., Li, W., Qiu, J., … Shi, H. (2014). Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: A voxel-based morphometric investigation. Behavioral Brain Research, 274, 400408.Google Scholar
Liu, W.-Y., Weber, B., Reuter, M., Markett, S., Chu, W.-C., & Montag, C. (2013). The Big Five of personality and structural imaging revisited: A VBM-DARTEL study. Neuroreport, 24, 375380.Google Scholar
Lo, M. T., Hinds, D. A., Tung, J. Y., Franz, C., Fan, C. C., Wang, Y., … Sanyal, N. (2017). Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 49, 152156.Google Scholar
MacLean, K. A., Johnson, M. W., & Griffiths, R. R. (2011). Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. Journal of Psychopharmacology, 25, 14531461.Google Scholar
Manuck, S. B., Flory, J. D., McCaffery, J. M., Matthews, K. A., Mann, J. J., & Muldoon, M. F. (1998). Aggression, impulsivity, and central nervous system serotonergic responsivity in a nonpatient sample. Neuropsychopharmacology, 19, 287299.Google Scholar
Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality and Social Psychology, 88, 139157.Google Scholar
Marsh, A. A., Henry, H. Y., Pine, D. S., & Blair, R. J. R. (2010). Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology, 209, 225232.Google Scholar
Matthews, G., & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: A comparative review. Personality and Individual Differences, 26, 583626.Google Scholar
McAdams, D. P., & Pals, J. L. (2006). A new Big Five: Fundamental principles for an integrative science of personality. American Psychologist, 61, 204217.Google Scholar
McCrae, R. R., & Costa, P. T. Jr. (2008). The five factor theory of personality. In John, O. P., Robins, R. W. & Pervin, L. A. (Eds.), Handbook of personality: Theory and research (pp. 159181). New York: Guilford Press.Google Scholar
McCrae, R. R., Yamagata, S., Jang, K. L., Riemann, R., Ando, J., Ono, Y., … Spinath, F. M. (2008). Substance and artifact in the higher-order factors of the Big Five. Journal of Personality and Social Psychology, 95, 442455.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Science, 840, 3344.Google Scholar
Miller, G. E., Cohen, S., Rabin, B. S., Skoner, D. P., & Doyle, W. J. (1999). Personality and tonic cardiovascular, neuroendocrine, and immune parameters. Brain, Behavior, and Immunity, 13, 109123.Google Scholar
Mischel, W., & Shoda, Y. (1998). Reconciling processing dynamics and personality dispositions. Annual Review of Psychology, 49, 229258.Google Scholar
Montoya, E. R., Terburg, D., Bos, P. A., & Van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36, 6573.Google Scholar
Morawetz, C., Alexandrowicz, R. W., & Heekeren, H. R. (2017). Successful emotion regulation is predicted by amygdala activity and aspects of personality: A latent variable approach. Emotion, 17, 421.Google Scholar
Moul, C., Dobson-Stone, C., Brennan, J., Hawes, D., & Dadds, M. (2013). An exploration of the serotonin system in antisocial boys with high levels of callous-unemotional traits. PlOS one, 8, e56619.Google Scholar
Mueller, E. M., Burgdorf, C., Chavanon, M. L., Schweiger, D., Wacker, J., & Stemmler, G. (2014). Dopamine modulates frontomedial failure processing of agentic introverts versus extraverts in incentive contexts. Cognitive, Affective, & Behavioral Neuroscience, 14, 756768.Google Scholar
Muhlert, N., & Lawrence, A. D. (2015). Brain structure correlates of emotion-based rash impulsivity. NeuroImage, 115, 138146.Google Scholar
Munafò, M. R., & Flint, J. (2011). Dissecting the genetic architecture of human personality. Trends in Cognitive Sciences, 15, 395400.Google Scholar
Mutschler, I., Reinbold, C., Wankerl, J., Seifritz, E., & Ball, T. (2013). Structural basis of empathy and the domain general region in the anterior insular cortex. Frontiers in Human Neuroscience, 7, 177.Google Scholar
Nagel, M., Jansen, P. R., Stringer, S., Watanabe, K., de Leeuw, C. A., Bryois, J., … Linnasrsson, S. (2017). GWAS meta-analysis of Neuroticism (N = 449,484) identifies novel genetic loci and pathways. bioRxiv, 184820.Google Scholar
Nater, U. M., Hoppmann, C., & Klumb, P. L. (2010). Neuroticism and conscientiousness are associated with cortisol diurnal profiles in adults: Role of positive and negative affect. Psychoneuroendocrinology, 35, 15731577.Google Scholar
Navas-Sánchez, F. J., Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, J. A., Franco, C., Robles, O., … Desco, M. (2014). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35, 26192631.Google Scholar
Netter, P. (2004). Personality and hormones. In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 353377). New York: Elsevier.Google Scholar
Nettle, D. (2006). The evolution of personality variation in humans and other animals. American Psychologist, 61, 622631.Google Scholar
Nettle, D., & Liddle, B. (2008). Agreeableness is related to social-cognitive, but not social-perceptual, theory of mind. European Journal of Personality, 22, 323335.Google Scholar
Nguyen, T. V., McCracken, J. T., Albaugh, M. D., Botteron, K. N., Hudziak, J. J., & Ducharme, S. (2016). A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood. Psychoneuroendocrinology, 63, 109118.Google Scholar
Nour, M. M., Evans, L., & Carhart-Harris, R. L. (2017). Psychedelics, Personality and Political Perspectives. Journal of Psychoactive Drugs, 49, 110.Google Scholar
Nummenmaa, L., Manninen, S., Tuominen, L., Hirvonen, J., Kalliokoski, K. K., Nuutila, P., … Sams, M. (2015). Adult attachment style is associated with cerebral μ‐opioid receptor availability in humans. Human brain mapping, 36, 36213628.Google Scholar
Ohmura, Y., Takahashi, T., Kitamura, N., & Wehr, P. (2006). Three-month stability of delay and probability discounting measures. Experimental and Clinical Psychopharmacology, 14, 318328.Google Scholar
Omura, K., Constable, R. T., & Canli, T. (2005). Amygdala gray matter concentration is associated with extraversion and neuroticism. Neuroreport, 16, 19051908.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotion. New York: Oxford University Press.Google Scholar
Paris, J. (2005). Neurobiological dimensional models of personality: A review of the models of Cloninger, Depue, and Siever. Journal of Personality Disorders, 19, 156170.Google Scholar
Passamonti, L., Terracciano, A., Riccelli, R., Donzuso, G., Cerasa, A., Vaccaro, M. G., … Quattrone, A. (2015). Increased functional connectivity within mesocortical networks in open people. Neuroimage, 104, 301309.Google Scholar
Patil, I., Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2018). Neuroanatomical basis of concern-based altruism in virtual environment. Neuropsychologia, 116, 3443.Google Scholar
Penke, L., Maniega, S. M., Bastin, M. E., Valdés Hernández, M. C., Murray, C., Royle, N. A., … Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17, 10261030.Google Scholar
Perry, A., Mankuta, D., & Shamay-Tsoory, S. G. (2015). OT promotes closer interpersonal distance among highly empathic individuals. Social Cognitive and Affective Neuroscience, 10, 39.Google Scholar
Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35, 11101124.Google Scholar
Pickering, A. D. (2004). The neuropsychology of impulsive antisocial sensation seeking personality traits: From dopamine to hippocampal function? In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 453477). New York: Elsevier.Google Scholar
Pickering, A. D., & Gray, J. A. (1999). The neuroscience of personality. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 277299). New York: Guilford Press.Google Scholar
Privado, J., Román, F. J., Saénz-Urturi, C., Burgaleta, M., & Colom, R. (2017). Gray and white matter correlates of the Big Five personality traits. Neuroscience, 349, 174184.Google Scholar
Pytlik Zillig, L. M., Hemenover, S. H., & Dienstbier, R. A. (2002). What do we assess when we assess a Big 5 trait? A content analysis of the affective, behavioral and cognitive processes represented in the Big 5 personality inventories. Personality & Social Psychology Bulletin, 28, 847858.Google Scholar
Quilty, L. C., DeYoung, C. G., Oakman, J. M., & Bagby, R. M. (2014). Extraversion and behavioral activation: Integrating the components of approach. Journal of Personality Assessment, 96, 8794.Google Scholar
Quilty, L. C., Meusel, L.-A. C., & Bagby, R. M. (2008). Neuroticism as a mediator of treatment response to SSRIs in major depressive disorder. Journal of Affective Disorders, 111, 6773.Google Scholar
Ramanaiah, N. V., Rielage, J. K., & Cheng, Y. (2002). Cloninger’s temperament and character inventory and the NEO Five–Factor Inventory. Psychological Reports, 90, 5963.Google Scholar
Riccelli, R., Toschi, N., Nigro, S., Terracciano, A., & Passamonti, L. (2017). Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Social Cognitive and Affective Neuroscience, 12, 671684.Google Scholar
Richard, F. D., Bond, C. F. Jr., & Stokes-Zoota, J. J. (2003). One hundred years of social psychology quantitatively described. Review of General Psychology, 7, 331363.Google Scholar
Riemann, R., Angleitner, A., & Strelau, J. (1997). Genetic and environmental influences on personality: A study of twins reared together using the self- and peer report NEO-FFI scales. Journal of Personality, 65, 449476.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.Google Scholar
Roberts, B. W. (2007). Contextualizing personality psychology. Journal of Personality, 75, 10711081.Google Scholar
Roberts, B. W., Luo, J., Briley, D. A., Chow, P. I., Su, R., & Hill, P. L. (2017). A systematic review of personality trait change through intervention. Psychological Bulletin, 143, 117141.Google Scholar
Rueter, A. R., Abram, S. V., MacDonald, A. W., Rustichini, A., & DeYoung, C. G. (2018). The goal priority network as a neural substrate of Conscientiousness. Human Brain Mapping, 39, 35743585.Google Scholar
Sassa, Y., Taki, Y., Takeuchi, H., Hashizume, H., Asano, M., Asano, K., … Kawashima, R. (2012). The correlation between brain gray matter volume and empathizing and systemizing quotients in healthy children. NeuroImage, 60, 20352041.Google Scholar
Saucier, G. (1992). Openness versus intellect: Much ado about nothing? European Journal of Personality, 6, 381386.Google Scholar
Saucier, G. (2009). Recurrent personality dimensions in inclusive lexical studies: Indications for a Big Six structure. Journal of Personality, 77, 15771614.Google Scholar
Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological science, 17, 692699.Google Scholar
Schmidt, L. A., Fox, N. A., Rubin, K. H., Sternberg, E. M., Gold, P. W., Smith, C. C., & Schulkin, J. (1997). Behavioral and neuroendocrine responses in shy children. Developmental Psychobiology, 30, 127140.Google Scholar
Shackman, A. J., McMenamin, B. W., Maxwell, J. S., Greischar, L. L., & Davidson, R. J. (2009). Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychological Science, 20, 15001506.Google Scholar
Shackman, A. J., Tromp, D. P., Stockbridge, M. D., Kaplan, C. M., Tillman, R. M., & Fox, A. S. (2016). Dispositional negativity: An integrative psychological and neurobiological perspective. Psychological Bulletin, 142, 12751314.Google Scholar
Schinka, J. A., Busch, R. M., & Robichaux-Keene, N. (2004). A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Molecular Psychiatry, 9, 197202.Google Scholar
Schuyler, B. S., Kral, T. R. A., Jacquart, J., Burghy, C. A., Weng, H. Y., Perlman, D. M., … Davidson, R. J. (2014). Temporal dynamics of emotional responding: Amygdala recovery predicts emotional traits. Social Cognitive and Affective Neuroscience, 9, 176181.Google Scholar
Seitz, R. J., Nickel, J., & Azari, N. P. (2006). Functional modularity of the medial prefrontal cortex: Involvement in human empathy. Neuropsychology, 20, 743751.Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 127B, 8589.Google Scholar
Servaas, M. N., van der Velde, J., Costafreda, S. G., Horton, P., Ormel, J., Riese, H., & Aleman, A. (2013). Neuroticism and the brain: A quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neuroscience and Biobehavioral Reviews, 37, 15181529.Google Scholar
Smeets-Janssen, M. M., Roelofs, K., Van Pelt, J., Spinhoven, P., Zitman, F. G., Penninx, B. W., & Giltay, E. J. (2015). Salivary testosterone is consistently and positively associated with extraversion: results from the Netherlands study of depression and anxiety. Neuropsychobiology, 71, 7684.Google Scholar
Smeland, O. B., Wang, Y., Lo, M. T., Li, W., Frei, O., Witoelar, A., … Chen, C. H. (2017). Identification of genetic loci shared between schizophrenia and the Big Five personality traits. Scientific Reports, 7, 2222.Google Scholar
Smillie, L. D., Cooper, A. J., & Pickering, A. D. (2011). Individual differences in reward–prediction–error: Extraversion and feedback-related negativity. Social Cognitive and Affective Neuroscience, 6, 646652.Google Scholar
Smillie, L. D., Pickering, A. D., & Jackson, C. J. (2006). The new Reinforcement Sensitivity Theory: Implications for personality measurement. Personality & Social Psychology Review, 10, 320335.Google Scholar
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106, 1304013045.Google Scholar
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R., Krapohl, E., … Amin, N. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49, 11071112Google Scholar
Somerville, L. H., Whalen, P. J., & Kelley, W. M. (2010). Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biological Psychiatry, 68, 416424.Google Scholar
Sutin, A. R., Beason-Held, L. L., Dotson, V. M., Resnick, S. M., & Costa, P. T. (2010). The neural correlates of neuroticism differ by sex and prospectively mediate depressive symptoms among older women. Journal of Affective Disorders, 127, 241247.Google Scholar
Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Hashizume, H., Sassa, Y., … Nakagawa, S. (2014a). Association between resting-state functional connectivity and empathizing/systemizing. Neuroimage, 99, 312322.Google Scholar
Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Kotozaki, Y., Miyauchi, C. M., … Kunitoki, K. (2014b). Regional gray matter density is associated with achievement motivation: Evidence from voxel-based morphometry. Brain Structure and Function, 219, 7183.Google Scholar
Tang, T. Z., Derubeis, R. J., Hollon, S. D., Amsterdam, J., Shelton, R., & Schalet, B. (2009). Personality change during depression treatment. Archives of General Psychiatry, 66, 13221330.Google Scholar
Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271322.Google Scholar
Tellegen, A. (1982). Brief manual for the Multidimensional Personality Questionnaire. Unpublished manuscript, University of Minnesota, Minneapolis.Google Scholar
Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., … Costa, P. T. (2008). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647656.Google Scholar
Tochigi, M., Otowa, T., Hibino, H., Kato, C., Otani, T., Umekage, T., Utsumi, T., Kato, N., & Sasaki, T. (2006). Combined analysis of association between personality traits and three functional polymorphisms in the tyrosine hydroxylase, monoamine oxidase A, and catechol-O-methyltransferase genes. Neuroscience Research, 54, 180185.Google Scholar
Turan, B., Guo, J., Boggiano, M. M., & Bedgood, D. (2014). Dominant, cold, avoidant, and lonely: Basal testosterone as a biological marker for an interpersonal style. Journal of Research in Personality, 50, 8489.Google Scholar
Tyrka, A. R., Kelly, M. M., Graber, J. A., DeRose, L., Lee, J. K., Warren, M. P., & Brooks-Gunn, J. (2010). Behavioral adjustment in a community sample of boys: Links with basal and stress-induced salivary cortisol concentrations. Psychoneuroendocrinology, 35, 11671177.Google Scholar
Urošević, S., Collins, P., Muetzel, R., Lim, K., & Luciana, M. (2012). Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. Developmental Psychology, 48, 1488–500.Google Scholar
Valk, S., Bernhardt, B., Böckler, A., Trautwein, F. M., Kanske, P., & Singer, T. (2016). Socio-cognitive phenotypes differentially modulate large-scale structural covariance networks. Cerebral Cortex, 1358–1368.Google Scholar
Vazire, S. (2010). Who knows what about a person? The self–other knowledge asymmetry (SOKA) model. Journal of Personality and Social Psychology, 98, 281300.Google Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342.Google Scholar
Volkow, N. D., Tomasi, D., Wang, G.-J., Fowler, J. S., Telang, F., Goldstein, R. Z., … Alexoff, D. (2011). Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Molecular Psychiatry, 16, 818825.Google Scholar
Wacker, J., Chavanon, M.-L., & Stemmler, G. (2006). Investigating the dopaminergic basis of Extraversion in humans: A multilevel approach. Journal of Personality and Social Psychology, 91, 171187.Google Scholar
Wacker, J., Mueller, E., Pizzagalli, D. A., Hennig, J., & Stemmler, G. (2013). Dopamine-D2-receptor blockade reverses the association between trait approach motivation and frontal asymmetry in an approach-motivation context. Psychological Science, 24, 489497.Google Scholar
Wacker, J., & Smillie, L. D. (2015). Trait extraversion and dopamine function. Social and Personality Psychology Compass, 9, 225238.Google Scholar
Wacker, J., & Stemmler, G. (2006). Agentic extraversion modulates the cardiovascular effects of the dopamine D2 agonist bromocriptine. Psychophysiology, 43, 372381.Google Scholar
Wagner, M. T., Mithoefer, M. C., Mithoefer, A. T., MacAulay, R. K., Jerome, L., Yazar-Klosinski, B., & Doblin, R. (2017). Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy. Journal of Psychopharmacology, 31, 967974.Google Scholar
Wainwright, M. A., Wright, M. J., Luciano, M., Geffen, G. M., & Martin, N. G. (2008). Genetic covariation among facets of Openness to Experience and general cognitive ability. Twin Research and Human Genetics, 11, 275286.Google Scholar
Waller, N. G., DeYoung, C. G., & Bouchard, T. J. (2016). The recaptured scale technique: A method for testing the structural robustness of personality scales. Multivariate Behavioral Research, 51, 433445.Google Scholar
Weiss, A., Staes, N., Pereboom, J. J. M., Inoue-Murayama, M., Stevens, J. M. G., & Eens, M. (2015). Personality in Bonobos. Psychological Science, 26, 14301439.Google Scholar
White, T. L., & Depue, R. A. (1999). Differential association of traits of fear and anxiety with norepinephrine and dark-induced pupil reactivity. Journal of Personality and Social Psychology, 77, 863877.Google Scholar
Whiteside, S. P., & Lynam, R. W. (2001). The Five-Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669689.Google Scholar
Wood, D., & Roberts, B. W. (2006). Cross-sectional and longitudinal tests of the personality and role identity structural model (PRISM). Journal of Personality, 74, 779809.Google Scholar
Wright, A. G., Creswell, K. G., Flory, J., Muldoon, M., & Manuck, S. N. (2019). Neurobiological functioning and the personality trait hierarchy: Central serotonergic responsivity and the stability metatrait. Psychological Science, 30, 14131423.Google Scholar
Wu, C. C., Samanez-Larkin, G. R., Katovich, K., & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. NeuroImage, 84, 279289.Google Scholar
Xu, J., & Potenza, M. N. (2012). White matter integrity and five-factor personality measures in healthy adults. Neuroimage, 59, 800807.Google Scholar
Yamagata, S., Suzuki, A., Ando, J., Ono, Y., Kijima, N., Yoshimura, K., … Jang, K. L. (2006). Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. Journal of Personality and Social Psychology, 90, 987998.Google Scholar
Yarkoni, T. (2015). Neurobiological substrates of personality: A critical overview. In Mikulincer, M. & Shaver, P. R. (Eds.), APA handbook of personality and social psychology: Personality processes and individual differences (Vol. 4, pp. 6184). Washington, DC: American Psychological Association.Google Scholar
Yeo, B., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 11251165.Google Scholar
Zelenski, J. M., & Larsen, R. J. (1999). Susceptibility to affect: A comparison of three personality taxonomies. Journal of Personality, 67, 761791.Google Scholar
Zuckerman, M. (2005). Psychobiology of personality (2nd ed.). New York: Cambridge University Press.Google Scholar
Zuckerman, M., Kuhlman, D. M., Joireman, J., Teta, P., & Kraft, M. (1993). A comparison of three structural models of personality: The Big Three, the Big Five, and the Alternative Five. Journal of Personality and Social Psychology, 65, 757768.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×