Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-ktfbs Total loading time: 0.871 Render date: 2023-01-27T11:39:52.034Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

14 - Inference generation during online study and multimedia learning

Published online by Cambridge University Press:  05 May 2015

Edward J. O'Brien
Affiliation:
University of New Hampshire
Anne E. Cook
Affiliation:
University of Utah
Robert F. Lorch, Jr
Affiliation:
University of Kentucky
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. Journal of the Learning Sciences, 11(1), 2561.CrossRefGoogle Scholar
Ainsworth, S., & Loizou, A. T. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–81.Google Scholar
Albrecht, J. E., & Myers, J. L. (1995). Role of context in accessing distant information during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(6), 1459–68.Google ScholarPubMed
Albrecht, J. E., & O'Brien, E. J. (1993). Updating a mental model: maintaining both local and global coherence. Journal of Experimental Psychology. Learning, Memory, and Cognition, 19(5), 1061–70.CrossRefGoogle Scholar
Aleven, V., & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–79.CrossRefGoogle Scholar
Aleven, V., Koedinger, K. R., Sinclair, H. C., & Snyder, J. (1998). Combatting shallow learning in a tutor for geometry problem solving. In Goettl, B. P., Halff, H. M., Redfield, C. L., & Shute, V. J. (eds.), Intelligent Tutoring Systems, Fourth International Conference, ITS ‘98. Lecture Notes in Computer Science 1452 (pp. 364–73). Berlin: Springer Verlag.Google Scholar
Amadieu, F., Mariné, C., & Laimay, C. (2011). The attention-guiding effect and cognitive load in the comprehension of animations. Computers in Human Behavior, 27(1), 3640.CrossRefGoogle Scholar
Amadieu, F., Tricot, A., & Mariné, C. (2009). Prior knowledge in learning from a nonlinear electronic document: disorientation and coherence of the reading sequences. Computers in Human Behavior, 25, 381–8.Google Scholar
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: lessons learned. Journal of the Learning Sciences, 4(2), 167207.CrossRefGoogle Scholar
Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and pictures: what kind of support for whom? Journal of Educational Psychology, 101(2), 282–93.CrossRefGoogle Scholar
Bodemer, D., Ploetzner, R., Bruchmüller, K., & Hacker, S. (2005). Supporting learning with interactive multimedia through active integration of representations. Instructional Science, 33, 73–5.CrossRefGoogle Scholar
Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of information during learning with dynamic and interactive visualisations. Learning and Instruction, 14, 325–41.CrossRefGoogle Scholar
Bogacz, S., & Trafton, J. G. (2005). Understanding dynamic and static displays: using images to reason dynamically. Cognitive Systems Research, 6(4), 312–9.CrossRefGoogle Scholar
Bråten, I., Strømsø, H. I., & Salmerón, L. (2011). Trust and mistrust when students read multiple information sources about climate change. Learning & Instruction, 21(2), 180–92.CrossRefGoogle Scholar
Butcher, K. R. (2006). Learning from text with diagrams: promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182–97.CrossRefGoogle Scholar
Butcher, K. R. (2010). How diagram interaction supports learning: evidence from think alouds during intelligent tutoring. In Goel, A., Jamnik, M., & Narayanan, N. H. (eds.), Diagrammatic Representation and Inference: Lecture Notes in Computer Science, Volume 6170 (pp. 295–7). Berlin/Heidelberg: Springer.Google Scholar
Butcher, K. R. (in press). The multimedia principle. In Mayer, R. E. (ed.), Cambridge Handbook of Multimedia Learning (2nd ed.) Cambridge University Press.
Butcher, K. R., & Aleven, V. (2008). Diagram interaction during intelligent tutoring in geometry: support for knowledge retention and deep understanding. In Love, B. C., McRae, K., & Sloutsky, V. M. (eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1736–41). Austin, TX: Cognitive Science Society.Google Scholar
Butcher, K. R., & Aleven, V. (2010). Learning during intelligent tutoring: when do integrated visual-verbal representations improve student outcomes? In Ohlsson, S. & Catrambone, R. (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2888–93). Austin, TX: Cognitive Science Society.Google Scholar
Butcher, K. R., & Aleven, V. (2013). Using student interactions to foster rule-diagram mapping during problem solving in an intelligent tutoring system. Journal of Educational Psychology, 105(4), 9881009.CrossRefGoogle Scholar
Butcher, K. R., Bhushan, S., & Sumner, T. (2006). Multimedia displays for conceptual search processes: information seeking with strand maps. ACM Multimedia Systems Journal, 11(3), 236–48.CrossRefGoogle Scholar
Butcher, K. R., & Chi, M. T. H. (2006). How Can Diagrams Scaffold Text Comprehension? Paper presented at the EARLI SIG2 Conference, August 30–September 1, 2006, Nottingham, UK.Google Scholar
Butcher, K. R., & Davies, S. (in preparation). Cognitive processes during diagram interaction in an intelligent tutoring system.
Butcher, K. R., & Kintsch, W. (2012). Text comprehension and discourse processing. In Healy, A. F. & Proctor, R. W. (eds.), Handbook of Psychology, Vol. IV: Experimental Psychology (2nd. ed.). Hoboken, NJ: Wiley.Google Scholar
Butcher, K. R., & Sumner, T. (2011). Self-directed learning and the sensemaking paradox. Human Computer Interaction, 26(1), 123–59.CrossRefGoogle Scholar
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: how students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–82.CrossRefGoogle Scholar
Cook, A. E., Limber, J. E., & O'Brien, E. J. (2001). Situation-based context and the availability of predictive inferences. Journal of Memory and Language, 44(2), 220–34.CrossRefGoogle Scholar
Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems. In Helander, M., Landauer, T. K., & Prabhu, P. (eds.), Handbook of Human-Computer Interaction (2nd ed.) (pp. 849–74). Amsterdam: Elsevier Science.Google Scholar
Corbett, A. T., McLaughlin, M., & Scarpinatto, K. C. (2000). Modeling student knowledge: cognitive tutors in high school and college. User Modeling and User-Adapted Interaction, 10(2/3), 81108.CrossRefGoogle Scholar
Craig, S. D., Gholson, B., & Driscoll, D. M. (2002). Animated pedagogical agents in multimedia educational environments: effects of agent properties, picture features, and redundancy. Journal of Educational Psychology, 94(2), 428–34.CrossRefGoogle Scholar
Cromley, J. G., Bergey, B. W., Fitzhugh, S., Newcombe, N., Wills, T. W., Shipley, T. F., & Tanaka, J. C. (2013). Effects of three diagram instruction methods on transfer of diagram comprehension skills: the critical role of inference while learning. Learning and Instruction, 26(0), 4558.CrossRefGoogle Scholar
Cromley, J. G., Snyder-Hogan, L. E., & Luciw-Dubas, U. A. (2010). Cognitive activities in complex science text and diagrams. Contemporary Educational Psychology, 35, 5974.CrossRefGoogle Scholar
Davies, S., Butcher, K. R., & Stevens, C. (2013). Self-regulated learning with graphical overviews: when spatial information detracts from learning. In Knauff, M., Pauen, M., Sebanz, N., & Wachsmuth, I. (eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 2136–41). Austin, TX: Cognitive Science Society.Google Scholar
De Jong, T., & van der Hulst, A. (2002). The effects of graphical overviews on knowledge acquisition in hypertext. Journal of Computer Assisted Learning, 18(2), 219–31.CrossRefGoogle Scholar
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2007). Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology, 21(6), 731746.CrossRefGoogle Scholar
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: guidelines for research and design. Educational Psychology Review, 21(2), 113–40.CrossRefGoogle Scholar
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010a). Attention guidance in learning from a complex animation: seeing is understanding? Learning and Instruction, 20(2), 111–22.Google Scholar
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010b). Learning by generating vs. receiving instructional explanations: two approaches to enhance attention cueing in animations. Computers & Education, 55(2), 681–91.CrossRefGoogle Scholar
Evans, C., & Gibbons, N. J. (2007). The interactivity effect in multimedia learning. Computers & Education, 49(4), 1147–60.CrossRefGoogle Scholar
Ferrara, L., & Butcher, K. (2011). Visualizing feedback: using graphical cues to promote self-regulated learning. In Carlson, L., Hölscher, C., & Shipley, T. (eds.), Proceedings of the Thirty-third Annual Conference of the Cognitive Science Society. Boston: Cognitive Science Society.Google Scholar
Florax, M., & Ploetzner, R. (2010). What contributes to the split-attention effect? The role of text segmentation, picture labelling, and spatial proximity. Learning and Instruction, 20(3), 216–24.CrossRefGoogle Scholar
Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15(4), 313–31.CrossRefGoogle Scholar
Graham, L., & Metaxas, P. T. (2003). Of course it's true; I saw it on the Internet! Communications of the ACM, 46(5), 71–5.CrossRefGoogle Scholar
Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21(4), 325–60.CrossRefGoogle Scholar
Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive Science, 30(3), 581–92.CrossRefGoogle ScholarPubMed
Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computers in Human Behavior, 32(0), 4753.CrossRefGoogle Scholar
Jamet, E., Gavota, M., & Quaireau, C. (2008). Attention guiding in multimedia learning. Learning and Instruction, 18(2), 135–45.CrossRefGoogle Scholar
Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology: Applied, 18(2), 178–91.Google ScholarPubMed
Kalyuga, S., Chandler, P., & Sweller, J. (1998). Levels of expertise and instructional design. Human Factors, 40, 117.CrossRefGoogle Scholar
Kintsch, W. (1986). Learning from text. Cognition and Instruction, 3(2), 87108.CrossRefGoogle Scholar
Kintsch, W. (1988). The role of knowledge in discourse comprehension: a construction-integration model. Psychological Review, 95(2), 163–82.CrossRefGoogle ScholarPubMed
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. Cambridge University Press.Google Scholar
Klin, C. M., Guzmán, A. E., & Levine, W. H. (1999). Prevalence and persistence of predictive inferences. Journal of Memory and Language, 40(4), 593604.CrossRefGoogle Scholar
Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 3043.Google Scholar
Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65(11),CrossRefGoogle Scholar
Lea, R. B. (1995). Online evidence for elaborative logical inferences in text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(6), 1469–82.Google Scholar
Levin, J. R., & Mayer, R. E. (1993). Understanding illustrations in text. In Britton, B. K., Woodward, A., & Binkley, M. (eds.), Learning from Textbooks: Theory and Practice (pp. 95114). Mahwah, NJ: Erlbaum.Google Scholar
Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning & Instruction, 13, 177–89.CrossRefGoogle Scholar
Lowe, R. K. (1999). Extracting information from an animation during complex visual learning. European Journal of Psychology of Education, 14(2), 225–44.CrossRefGoogle Scholar
Lowe, R. K. (2003). Animation and learning: selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–76.CrossRefGoogle Scholar
Lynch, C. (2008). Digital libraries, learning communities, and open education. In Iiyoshi, T. & Kumar, M. S. V. (eds.), Opening Up Education (pp. 105–18). Cambridge, MA: MIT Press.Google Scholar
Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60(1), 95109.CrossRefGoogle Scholar
Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational Psychology, 81(2), 240–46.CrossRefGoogle Scholar
Mayer, R. E. (1993). Illustrations that instruct. In Glaser, R. (ed.), Advances in Instructional Psychology (Vol. V, pp. 253–84). Mahwah, NJ: Erlbaum.Google Scholar
Mayer, R. E. (1997). Multimedia learning: are we asking the right questions? Educational Psychologist, 32(1), 119.CrossRefGoogle Scholar
Mayer, R. E. (2001). Multimedia Learning. New York: Cambridge University Press.CrossRefGoogle Scholar
Mayer, R. E. (2005). Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press.CrossRefGoogle Scholar
Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, 444–52.CrossRefGoogle Scholar
Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 6473.CrossRefGoogle Scholar
Mayer, R. E., & Gallini, J. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82, 715–26.CrossRefGoogle Scholar
Mayer, R. E., Steinhoff, K., Bowers, G., & Mars, R. (1995). A generative theory of textbook design: using annotated illustrations to foster meaningful learning of science text. Educational Technology Research and Development, 43(1), 3143.CrossRefGoogle Scholar
McCrudden, M. T., Schraw, G., & Lehman, S. (2009). The use of adjunct displays to facilitate comprehension of causal relationships in expository text. Instructional Science, 37(1), 6586.CrossRefGoogle Scholar
McKoon, G., & Ratcliff, R. (1992). Inference during reading. Psychological Review, 99(3), 440–66.CrossRefGoogle ScholarPubMed
Myers, J. L., Cook, A. E., Kambe, G., Mason, R. A., & O'Brien, E. J. (2000). Semantic and episodic effects on bridging inferences. Discourse Processes, 29(3), 179–99.CrossRefGoogle Scholar
Narvaez, D., van den Broek, P., & Ruiz, A. B. (1999). The influence of reading purpose on inference generation and comprehension in reading. Journal of Educational Psychology, 91(3), 488–96.CrossRefGoogle Scholar
Ozcelik, E., & Acarturk, C. (2011). Reducing the spatial distance between printed and online information sources by means of mobile technology enhances learning: using 2D barcodes. Computers & Education, 57(3), 2077–85.Google Scholar
Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human Behavior, 26(1), 110–17.CrossRefGoogle Scholar
Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445–53.CrossRefGoogle Scholar
Perfetti, C. A., Rouet, J.-F., & Britt, M. A. (1999). Toward a theory of documents representation. In van Oostendorp, H. & Goldman, S. (eds.), The Construction of Mental Representations during Reading (pp. 99122). Mahwah, NJ: Erlbaum.Google Scholar
Renkl, A. (1997). Learning from worked-out examples: a study on individual differences. Cognitive Science, 21, 129.CrossRefGoogle Scholar
Rouet, J.-F. (2006). The Skills of Document Use: From Text Comprehension to Web-based Learning. Mahwah, NJ: Erlbaum.Google Scholar
Salmerón, L., Baccino, T., Cañas, J. J., Madrid, R. I., & Fajardo, I. (2009). Do graphical overviews facilitate or hinder comprehension in hypertext? Computers & Education, 53(4), 1308–19.CrossRefGoogle Scholar
Salmerón, L., Cañas, J. J., Kintsch, W., & Fajardo, I. (2005). Reading strategies and hypertext comprehension. Discourse Processes, 40(3), 171–91.CrossRefGoogle Scholar
Salmerón, L., Gil, L., Bråten, I., & Strømsø, H. I. (2010). Comprehension effects of signalling relationships between documents in search engines. Computers in Human Behavior, 26(2), 419–26.CrossRefGoogle Scholar
Salmerón, L., Kintsch, W., & Cañas, J. J. (2006). Coherence or interest as basis for improving hypertext comprehension. Information Design Journal, 14(1), 4555.Google Scholar
Scheiter, K., Schüler, A., Gerjets, P., Huk, T., & Hesse, F. W. (2014). Extending multimedia research: how do prerequisite knowledge and reading comprehension affect learning from text and pictures. Computers in Human Behavior, 31(0), 7384.CrossRefGoogle Scholar
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20(2), 100–10.CrossRefGoogle Scholar
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning & Instruction, 13(2), 141–56.CrossRefGoogle Scholar
Schnotz, W., & Heiß, A. (2009). Semantic scaffolds in hypermedia learning environments. Computers in Human Behavior, 25(2), 371–80.CrossRefGoogle Scholar
Schüler, A., Scheiter, K., & Gerjets, P. (2013). Is spoken text always better? Investigating the modality and redundancy effect with longer text presentation. Computers in Human Behavior, 29(4), 15901601.CrossRefGoogle Scholar
Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are used and how they can be made more useful. Applied Cognitive Psychology, 23(9), 1227–43.CrossRefGoogle Scholar
Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning & Instruction, 13, 227–37.Google Scholar
Singer, M., Andrusiak, P., Reisdorf, P., & Black, N. L. (1992). Individual differences in bridging inference processes. Memory & Cognition, 20(5), 539–48.CrossRefGoogle ScholarPubMed
Singer, M., & Ritchot, K. F. (1996). The role of working memory capacity and knowledge access in text inference processing. Memory & Cognition, 24, 733–43.CrossRefGoogle Scholar
Tibus, M., Heier, A., & Schwan, S. (2013). Do films make you learn? Inference processes in expository film comprehension. Journal of Educational Psychology, 105(2), 329–40.CrossRefGoogle Scholar
van Dijk, T. A., & Kintsch, W. (1983). Strategies of Discourse Comprehension. New York: Academic Press.Google Scholar
Vidal-Abarca, E., Martínez, G., & Gilabert, R. (2000). Two procedures to improve instructional text: Effects on memory and learning. Journal of Educational Psychology, 92(1), 107–16.CrossRefGoogle Scholar
Wiley, J., & Myers, J. L. (2003). Availability and accessibility of information and causal inferences from scientific text. Discourse Processes, 36(2), 109–29.CrossRefGoogle Scholar
Wolfe, M. B., & Goldman, S. R. (2005). Relations between adolescents’ text processing and reasoning. Cognition and Instruction, 23(4), 467502.CrossRefGoogle Scholar
5
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×