We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known the remarkable optical properties of both graphene and left handed materials, for which we study the optical properties of a multilayer system building by graphene-dielectric-left hand material. In this work, we show the transmission, reflection and absorption spectra for a different set of parameters of the left-handed material structure. It is important to highlight that the inclusion of graphene remarkably modifies the transmission and absorption spectra. The optical properties of the graphene-LHM can be modulated via the different parameters of system. We showed that the fill function do not change the line form of the spectra, however, modify their amplitudes. With respect to light polarization, it’s possible to observe that the spectra are widen for TM respect to TE polarization.
Nb-doped TiO2 thin-films were prepared on fluorine-doped tin oxide (FTO) coated glass directly with niobium ethoxide and TiCl4 in water under the acidic conditions with several concentrations of HCl at 70-90 °C for 45 minutes or 1 hour followed by rinsing with water and annealing at 100 °C for 1 hour. Thin films of 0-1% Nb-doped TiO2 with rutile phase on FTO were obtained, which were confirmed through X-ray diffraction analyses and measurements of energy dispersive X-ray spectroscopy (EDS). Scanning electron microscopy observations equipped with EDS revealed that higher growth temperature over 90 °C is required for doping of Nb. While higher concentration of HCl resulted in much amount of Nb-doping. Band gap of rutile TiO2 gradually reduced from 3.3 eV to 3.23 eV through Nb-doping from 0% to 1%, which were estimated from uv-vis absorption spectroscopic analyses. Hall effect measurements by taking van der Pauw method confirmed that 2.26 times increase of the carrier density and 1.78 times enhancement of the conductivity have been achieved in the case of 1% Nb-doping.
Selective Laser Melting (SLM) involves numerous fabrication parameters, the interaction between those parameters determine the final characteristics of the resulting part and because of the latter, it is considered a complex process. Low-density components is one of the main issues of the SLM process, due to the incorrect selection of process parameters. These defects are undesired in high specialized applications (i.e. aerospace, aeronautic and medical industries). Therefore, the characterization of the defects (pores) found in aluminum parts manufacture by SLM and the relationship with fabrication parameters was performed. A robust orthogonal design of experiments was implemented to determine process parameters, and then parts were manufactured in SLM. Relative density of the samples was then characterized using the Archimedes principle and microscopy; the data was then statistically analyzed in order to determine the optimal process parameters. The main purpose of the present research was to establish the best processing parameters of an in-house SLM system, as well as to characterize the pore geometry in order to fully eliminate pores in a future research.
It has been well studied that reliable multicast enables consistency protocols, including Byzantine Fault Tolerant protocols, for distributed systems. However, no transport-layer reliable multicast is used today due to limitations with existing switch fabrics and transport-layer protocols. In this paper, we introduce a layer-4 (L4) transport based on remote direct memory access (RDMA) datagram to achieve reliable multicast over a shared optical medium. By connecting a cluster of networking nodes using a passive optical cross-connect fabric enhanced with wavelength division multiplexing, all messages are broadcast to all nodes. This mechanism enables consistency in a distributed system to be maintained at a low latency cost. By further utilizing RDMA datagram as the L4 protocol, we have achieved a low-enough message loss-ratio (better than one in 68 billion) to make a simple Negative Acknowledge (NACK)-based L4 multicast practical to deploy. To our knowledge, it is the first multicast architecture able to demonstrate such low message loss-ratio. Furthermore, with this reliable multicast transport, end-to-end latencies of eight microseconds or less (< 8us) have been routinely achieved using an enhanced software RDMA implementation on a variety of commodity 10G Ethernet network adapters.
Cognitive impairment in multiple sclerosis (MS) has a complex relationship with disease progression and neurodegeneration. The aim of this study was to shed light on the importance of early detection of cognitive impairment in MS patients.
Methods:
The study comprised two groups of definite MS patients, relapsing remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), each with 25 patients. Physical disability was assessed using the Expanded Disability Status Scale (EDSS), while the risk of secondary progression was assessed using the Bayesian Risk Estimate for Multiple Sclerosis (BREMS). Cognitive functions were assessed using the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and Controlled Oral Word Association Test (COWAT). Assessment of neurodegeneration was done using optical coherence tomography (OCT) via quantification of retinal nerve fiber layer (RNFL).
Results:
MS patients with higher RNFL thickness demonstrated a larger learning effect size than patients who had lower values in RNFL thickness regardless of MS type. RRMS patients showed significant improvement in delayed recall after giving cues than SPMS. The symbol digit modalities test was the only neuropsychological test that showed a significant negative correlation with EDSS (P = 0.009). There was a statistically significant negative correlation between BREMS scores and performance in all neuropsychological tests.
Conclusion:
Inclusion of neurocognitive evaluation in the periodic assessment of MS patients is mandatory to detect patients at increased risk of secondary progression. The thickness of RNFL is suggested as a method to estimate the expected benefit of cognitive rehabilitation, regardless of MS type.
High-index materials such as silicon and III-V compounds have recently gained a lot of interest as a promising material platform for efficient photonic nanostructures. Because of the high refractive index, nanoparticles of such materials support Mie resonances and enable efficient light control and its confinement at the nanoscale. Here we propose a design of nanostructure with multipole resonances where optical nanoantennas are made out of transition metal dichalcogenide, in particular, tungsten disulfide WS2. Transition metal dichalcogenide (TMDCs) possess a high refractive index and strong optical anisotropy because of their layered structure and are promising building blocks for next-generation photonic devices. Strong anisotropic response results in different components of TMDC permittivity and the possibility of tailoring nanostructure optical properties by choosing different axes and adjusting dimensions in design. The proposed periodic array of TMDC nanoantennas can be used for controlling optical resonances in the visible and near-infrared spectral ranges and engineering efficient ultra-thin optical components with nanoscale light confinement.
[K0.5Na0.5NbO3]1−x[BaNi0.5Nb0.5O3−δ]x (KNBNNO, 0 ≤ x ≤ 0.3) films have been fabricated on different substrates for the first time, using a modified chemical solution deposition method. The microstructure, optical properties, ferromagnetism, and substrate effects of KNBNNO films were assessed, and we found that BaNi0.5Nb0.5O3−δ (BNNO) content was a key factor in determining the properties of the final products. The lower band gap of KNBNNO is due to the band-to-band transition from hybridized Ni 3d and O 2p to Nb 4d states. Moreover, with increasing x from 0 to 0.3, the magnetism transition process of the samples from diamagnetism to ferromagnetism may originate from the competition between ferromagnetic exchange interactions in Ni2+–VO2−–Ni2+ and superexchange interactions in Ni2+–Ni2+. Notably, absorption behaviors in the visible light wave band for KNBNNO films have been realized, which makes it possible to use KNBNNO films for perovskite solar cell applications.
LED illumination systems for fluorescence microscopy offer a wealth of benefits in comparison to traditional mercury and metal halide lamps, including ease of use, improved stability, and enhanced control. To fully realize these benefits, it is important to ensure that optical filters are configured correctly, which often can be confusing. However, without the correct filter configuration, experimental conditions can be suboptimal, and results may therefore be inaccurate. This article looks at optical filter setup in more depth, explaining the purpose and benefits of optimal LED filtering.
Morphological characterization and quantification of gold particles by optical image analysis (OIA) and by compositional analysis of microprobes using scanning electron microscope and electron microprobe analysis techniques were carried out on gold grains from the Minvoul area (Archean greenstone belt in Gabon). Large grains of almost pure gold were found throughout a weathering profile, which consisted of saprolite, mottled clay zone, iron duricrust, pisolitic gravels and yellow latosol. In the deeper horizons, gold was dissolved as shown by corrosion features on the surface of particles with average sizes of 2.6Φ and 2.35Φ in the saprolite and mottled clay zones, respectively. The occurrence of secondary gold in the duricrust was indicated by the larger size of the nuggets (average, 1.8Φ), the high fineness (> 995 in average) and the close textural relationship between gold and neoformed iron oxyhydroxides. The uppermost horizons composed of yellow latosol and pisolitic gravels were interpreted as transported materials based on their size distribution (average 0.85Φ and 1.34Φ), sorting and shape parameters. The best morphological parameter to describe the whole weathering profile was found to be the perimeter/area ratio. The highest ratios were recorded in the saprolite (average 0.192 μm−1), and decreased towards the surface (average 0.057 μm−1). The combination of the OIA technique and the microchemical analysis of gold grains allowed us to define specific morphological and compositional characteristics of the gold particles for each horizon. Both methods proved to be of great utility to understand gold concentration, dissolution and dispersion processes in supergene environments.
Aqueous auto-dispersing polyurethane dispersions (PUDs) have recently been reported to form nanoparticulate dispersions at up to 25% by weight. Their incorporation of an ionic-liquid (IL) monomer, 1-hydroxyundecyl-3-methyl imidazolium bromide (HOC11C1ImBr) as a chain-terminating group appears to account for their auto-dispersing ability, and these PUD nanoparticles bear similarity to IL-based nanolatexes that have provided thermodynamically stable aqueous dispersions of nanocarbons. We demonstrate that these HOC11C1ImBr-based PUDs stabilize aqueous graphene dispersions at 1% by weight graphene in ultrasonicated top-down liquid phase exfoliation. Their formation quantitatively follows an analytical model of exfoliation kinetics of layered materials and a stretched exponential kinetic model. Such dispersions are ideally formulated for making nanocomposites composed of similar or compatible PUDs and other condensation polymers.
Macular pigment (MP) confers potent antioxidant and anti-inflammatory effects at the macula, and may therefore protect retinal tissue from the oxidative stress and inflammation associated with ocular disease and ageing. There is a body of evidence implicating oxidative damage and inflammation as underlying pathological processes in diabetic retinopathy. MP has therefore become a focus of research in diabetes, with recent evidence suggesting that individuals with diabetes, particularly type 2 diabetes, have lower MP relative to healthy controls. The present review explores the currently available evidence to illuminate the metabolic perturbations that may possibly be involved in MP’s depletion. Metabolic co-morbidities commonly associated with type 2 diabetes, such as overweight/obesity, dyslipidaemia, hyperglycaemia and insulin resistance, may have related and independent relationships with MP. Increased adiposity and dyslipidaemia may adversely affect MP by compromising the availability, transport and assimilation of these dietary carotenoids in the retina. Furthermore, carotenoid intake may be compromised by the dietary deficiencies characteristic of type 2 diabetes, thereby further compromising redox homeostasis. Candidate causal mechanisms to explain the lower MP levels reported in diabetes include increased oxidative stress, inflammation, hyperglycaemia, insulin resistance, overweight/obesity and dyslipidaemia; factors that may negatively affect redox status, and the availability, transport and stabilisation of carotenoids in the retina. Further study in diabetic populations is warranted to fully elucidate these relationships.
Although the streaked optical pyrometer (SOP) system has been widely adopted in shock temperature measurements, its reliability has always been of concern. Here, two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods. A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system. To verify the reliability of the SOP system, the relative deviation between the measured data and the standard value of less than 5% was calibrated out, which demonstrates the reliability of the SOP system. Furthermore, a method to analyze the uncertainty and sensitivity of the SOP system is proposed. A series of laser-induced shock experiments were conducted at the ‘Shenguang-II’ laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin. The measured temperature of the quartz in our experiments agreed fairly well with previous works, which serves as evidence for the reliability of the SOP system.
Organic light emitting diodes (OLEDs) have drawn great attention owing to their potential applications in high-quality flat display panels and smart solid-state lighting. Over the last three decades, numerous approaches have been made on material design and device physics to achieve high-efficiency and long-lifespan. Herein, we report a novel tactic to employ solution-processed hybrid metal oxide, molybdenum trioxide-tungsten trioxide (MoO3:WO3), as an efficient and stable hole injection/transport (HIL/HTL) and electron blocking layer for efficient OLEDs. By using phosphorescent orange-red emitter tris(2-phenylquinoline)-iridium(III) Ir(2-phq)3, MoO3:WO3 HIL based OLED device exhibits a power efficiency of 27.7 lm W-1 and 22.9 lm W-1 at 100 and 1000 cd m-2, respectively, which are 89% and 157% higher than that of conventional OLED device consisting of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as an HIL. Moreover, the resulted device also displays 1.6 times lower turn-on voltage and 3.0 time higher brightness as compare to other counter part. The higher device performances of OLED device may be attributed to robust hole transporting ability, balanced charge carrier in the recombination zone and non-acidic nature of designed HIL. Our results demonstrate that a novel alternative approach based on transition metal oxide hybrid HIL/HTL as a substitute to PEDOT:PSS for high-efficiency solution process OLEDs.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Single-molecule manipulation and detection of biomolecules has significantly advanced our understanding of the molecular movement, dynamics, and biological function of proteins. Fluorescence microscopy currently serves as one of the primary noninvasive techniques for the sensitive detection of molecules in solution and on surfaces. However, the performance and sensitivity of this laser-induced fluorescence technique is strongly influenced by the fluorescent labels attached to DNA, proteins or cells. Organic dyes have most commonly been used as fluorescent biolabels; however, they quickly photobleach, limiting the time scale over which molecular events can be followed. Quantum dots show great promise for fluorescence measurements due to their improved photophysical properties, such as size-tunable narrow emissions, large Stokes shifts and minimal photobleaching. However, problems still exist for the use of quantum dots as biolabels, including: photoblinking, toxic synthetic approaches, surface passivation issues and relatively large physical sizes that are comparable to proteins. Here, we report the synthesis of a new class of fluorescent labels, gold nanoclusters, which consist of several gold atoms (<1 nm in size) with strong fluorescence emission. These small fluorescent gold nanoclusters are synthesized at physiological temperature using poly(amidoamine) dendrimer as a template. Small blue emissive gold nanoclusters were produced without the use of a reductant and without concurrent nanoparticle formation. Gold nanoclusters with green and red emissions were synthesized using a mild reductant, also without nanoparticle formation. The studies of pH-dependent stability suggest that these fluorescent nanoclusters are very stable in a pH range of 6 - 8. These new approaches produce gold nanoclusters with a much higher yield and eliminate the toxicity of the previously reported process, resulting in a biologically compliant approach. This work is the first known report of fluorescent gold nanoclusters via a green-chemistry approach and without the formation of gold nanoparticles. This work is funded by Los Alamos Laboratory Directed research and Development program.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Electrochromic and electrofluorescent cell was fabricated by the combination of electrochromic (EC) viologen and a fluorescent anthracene polymer. All-solid-state dual electrochromic windows which have color transition from yellow to dark blue were assembled by employing benzyl viologen, photo polymerizable electrolyte and polyanthracene (PAN). EC contrast and response of ECDs adopting the viologen and PAN could be optimized by changing the content of PAN. In the optimized condition, EC-EF device showed optical contrast and fluorescence switching with response time less than 5 sec.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Recent development of pulsed laser deposition technique makes it possible to build up different kinds of perovskite oxides and to create new electric and magnetic properties of heterointerfaces, which can neither be realized in bulk properties of the constitute oxides and nor be treated as the simple combination of them. The extraction of unique properties of interfaces thus crucially relies on the development of a new method to selectively detect their electronic properties accompanied with magnetism. Here we show a new approach with use of the optical magnetoelectric (ME) effect to address the unique properties of ferromagnetic oxide superlattices (SLs). The ME effect, that is, the control of the polarization P by a magnetic field H or inversely the control of the magnetization M by an electric field E, can be considered as a typical manifestation of cross-correlation phenomena in solids. Even at optical frequencies, such a cross-correlation response coming from the ME effect is known to show up in materials with a lack of both space-inversion and time-reversal symmetries. This is referred to as the optical ME effect. The optical ME response emerges as a change of reflection and transmission when the wavevector k of light is set to parallel or antiparallel to the toroidal moment T defined as P X M, which in turn enables us to control the intensity of light by changing the directions of E and/or H. In this work, we fabricated SLs composed of LaMnO3, SrMnO3, and LaAlO3 and exploited the use of their unique properties of heterointerfaces as a medium for optical ME effect. Such 'tricolor' SLs are expected to artificially break both space-inversion and time-reversal symmetries, which are induced by asymmetric stacking sequences of three different oxides and by the charge-transfer-induced magnetism at LaMnO3/SrMnO3 interfaces, respectively. We patterned the grating structure with a period of 4 ìm on SLs and employed the Bragg diffraction geometry to sensitively detect the optical ME effect. The optical ME effect was clearly observed when the diffracted light was used as a probe. The optical ME response depending on PABC X Minterface is a direct consequence of the symmetry breaking at interfaces. Its magnitude per interface was thus estimated to be tilde operator = varies with = similar to 0.01% in H of 2 kOe, which are relatively large as compared to previously reported values in bulk materials showing the optical ME effect. Our data provide that the present method would be used as a tool for the study of oxide heterointerfaces.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
We have explored the properties of triplet excited states in a series of platinum acetylide oligomers of the type [trans-Pt(PBu3)2(-CC-Ar)2], where Ar is a highly conjugated two-photon absorbing organic chromophore. Incorporation of two-photon absorbers into a pi-conjugated system produces short-lived excited states (fs/ps) with high efficiency. Platinum acetylide units introduce strong spin-orbit coupling into the pi-conjugated system to give rise to high yields of long-lived triplet excited states (ns/us) having large triplet-triplet absorption cross sections. Thus, a platinum acetylide having two-photon absorbers will, in principle, feature a strong non-linear absorption in broad time domain. The presentation will focus on (1) the synthesis and photophysical characterization under one- and two-photon excitation, (2) the effect of two-photon absorbing chromophores on nonlinear absorption properties of platinum acetylides and (3) the evidence for reverse saturable absorption.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Nanomedicine encompasses a vast area of biomedical research, from the development of new generation of contrast agents for diagnostic imaging to synthesizing targeted delivery vehicles of therapeutic drugs. This talk will highlight the use of multifunctional nanoparticles with combined imaging, diagnostic and therapeutic functions for nanomedicine. In our Institute we are developing new optical nanoprobes for bioimaging. They include functionalized quantum dots, aggregation-enhanced two photon dyes as well as nanocomposite nanoparticles with combined optical, magnetic, plasmonic and PET imaging capabilities. The goal is to provide targeting nanoprobes for early detection of diseases as well as for real time monitoring of a disease progression or the progress of a therapy. The organically modified silica (ORMOSIL) nanoparticles have been developed as a new-generation drug carrier for photodynamic therapy (PDT) of cancer, as well as for an efficient non-viral gene delivery, capable of transfecting neuronal cells in vivo with superior efficacy over viral vectors.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Plasmonic nanoparticles have been successfully demonstrated as chemically functional nanosensors, based on the controllable electromagnetic properties at their surfaces. Surface enhanced spectroscopies such as surface enhanced Raman scattering (SERS) can be utilized to provide measurable signals that monitor properties local to the nanoparticle location, such as pH, with precision adequate for diagnostic purposes where applicable. A variety of different molecular layers can be developed that exploit this SERS-based sensing modality, to monitor specific chemical binding events. Plasmonic nanoparticles can also be utilized to specifically and selectively enhance the fluorescence of molecular markers in their direct vicinity. We will discuss the underlying physical principles of both SERS and fluorescence enhancement by plasmonic nanoparticles, and the role of the plasmon energy in both SERS and fluorescence ehancements, as well as the local substrate geometry, in these processes. Combining chemically functional monitors with therapeutic modalities such as photothermal cell ablation will expand the utility of this therapeutics approach.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Recently, the telecommunication market experiences an explosion in the subscribers of emergent high-debit services which require bandwidth that exceeds the one provided by actual copper based access networks [1]. To cope with these demands and keep competitive, great efforts have been done to develop access networks based on optical technology, such as passive all-optical networks due to their intrinsic low cost [2]. Sol-gel processing is suitable for the development of organic-inorganic hybrid (OIH) materials for the production of functional integrated optic (IO) devices in a cost effective way. Urea cross-linked OIH show acceptable transparency, mechanical flexibility and thermal stability [3-6]. The control over the refractive index is achieved by zirconium (IV) n-propoxide (ZPO) doping stabilized with methacrylic acid (MA) [3-5]. The combination in a single material of urea cross-linked OIH and ZPO allowed the preparation of UV written low losses planar waveguides [3] and low rugosity diffraction grating [4,5]. It has been demonstrated that MA acts not only as ZPO stabilizer but impacts directly on the photopolimerization properties as it contains a photopolymerizable group making the OIH easily UV patterned without photoinitiator [5]. Moreover, it also impacts on the OHIs local structure as it forms a complex with ZPO, that originate ordered clusters dispersed within the OIH host [4,5]. Besides the potential of this OIH as IO components, the hybrid hosts are room-temperature efficient white light emitters lacking metal activator ions, presenting quantum yields as higher as 20 % [6]. In this work, a series of OIH, so called di-ureasils, formed of a siliceous skeleton to which oligopolyether chains of different lengths are covalently grafted by means of urea bridges and modified by ZPO and MA will be prepared and characterized by X-ray and small angle X-ray diffractions, Raman, infrared, atomic force and photoluminescence spectroscopies. The use of the proposed OIH in the development of IO functionalities such as optical filters will be evaluated based on waveguide numerical simulation methods (beam propagation method). Waveguides will be written and characterized using the OIH aforementioned. The recording of a Bragg grating in the waveguides allow the implementation of a wavelength discrimination device with applications on optical filtering. The relevant properties of the devices, such as spectral rejection and insertion losses will be characterized. [1] S-J Park et al. Journal of Lightwave Tech. 22, 2004. [2] D.J. Shin et al., Journal of Lightwave Tech. 23, 2005. [3] C. Molina et al., J. Mater. Chem. 15, 3937, 2005. [4] R.A. Sá Ferreira et al., Proceedings of the International Conference on Telecomunications, 2006. [5] P.S. André et al. Proceedings ICTON, 1, We.C1.6, 223, 2006. [6] a) L.D. Carlos et al., Adv. Func. Mater. 11, 111, 2001; b) J. Chem. Phys. B. 108, 14924, 2004. Siemens SA and FCT (POCTI/CTM/59075/2004) is gratefully acknowledged.