Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T12:36:51.115Z Has data issue: false hasContentIssue false

Nanostructured Tungsten Disulfide WS2 as Mie Scatterers and Nanoantennas

Published online by Cambridge University Press:  16 March 2020

Hasan Ahmed
Affiliation:
Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
Viktoriia E. Babicheva*
Affiliation:
Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
*
*Email: vbb@unm.edu
Get access

Abstract

Nanoparticles of high-refractive-index materials like semiconductors can achieve confinement of light at the subwavelength scale because of the excitation of Mie resonances. The nanostructures out of high-refractive-index materials have extensively been studied theoretically and realized in experiments exploring a wide range of photonic applications. Recently, transition metal dichalcogenides (TMDCs) from the family of van der Waals layered materials have been shown to exhibit tailorable optical properties along with high refractive index and strong anisotropy. We envision that TMDCs are a promising material platform for designing metasurfaces and ultra-thin optical elements: these van der Waals materials show a strong spectral response on light excitations in visible and near-infrared ranges, and metasurface properties can be controlled by nanoantenna dimensions and their arrangement. In this work, we investigate a periodic array of disk-shaped nanoantennas made of a TMDC material, tungsten disulfide WS2, placed on top of a silicon layer and oxide substrate. We show that the nanostructure resonance in TMDC disk-shaped nanoantenna array can be controlled by the variation in silicon layer thickness and have a dependence on the presence of index-match superstrate cover. We also report on the spectral features in absorption and reflection profiles of the same structure with different surrounding index.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Evlyukhin, A. B., Reinhardt, C., Seidel, A., Luk’yanchuk, B. S., Chichkov, B. N., Phys. Rev. B 82(4), 045404 (2010).CrossRefGoogle Scholar
Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., Chichkov, B. N., Nano Lett. 12(7), 37493755 (2012).CrossRefGoogle Scholar
Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., Kivshar, Y. S., Opt. Express 20, 20599 (2012).CrossRefGoogle Scholar
Zywietz, U., Evlyukhin, A. B., Reinhardt, C., Chichkov, B. N., Nature Commun. 5, Article #: 3402 (2014).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Laser & Photonics Reviews 12, 1800267 (2019).CrossRefGoogle Scholar
Shcherbakov, M. R., Liu, S., Zubyuk, V. V., Vaskin, A., Vabishchevich, P. P., Keeler, G., Pertsch, T., Dolgova, T. V., Staude, I., Brener, I., Fedyanin, A. A., "Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces," Nature Communications 8, 17 (2017).CrossRefGoogle ScholarPubMed
Babicheva, V. E. and Evlyukhin, A.B., MRS Communications 8, 712-717 (2018).CrossRefGoogle Scholar
Kuznetsov, A. I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B., Science 354, aag2472 (2016).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 4, 713-722 (2019).CrossRefGoogle Scholar
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., Luk’yanchuk, B., Nat. Commun. 4, 1527 (2013).CrossRefGoogle Scholar
Person, S., Jain, M., Lapin, Z., Sáenz, J. J., Wicks, G., Novotny, L., Nano Lett. 13(4), 1806 (2013).CrossRefGoogle Scholar
Staude, I., Miroshnichenko, A. E., Decker, M., Fofang, N. T., Liu, S., Gonzales, E., Dominguez, J., Luk, T. S., Neshev, D. N., Brener, I., Kivshar, Y., ACS Nano 7, 78247832 (2013).CrossRefGoogle Scholar
Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D. N., Brener, I., Pertsch, T., Kivshar, Y. S., Adv. Opt. Mater. 3, 813820 (2015).CrossRefGoogle Scholar
Babicheva, V. E., Petrov, M., Baryshnikova, K., Belov, P., Journal of the Optical Society of America B 34, D18-D28 (2017).CrossRefGoogle Scholar
Yang, C. Y., Yang, J. H., Yang, Z. Y., Zhou, Z. X., Sun, M. G., Babicheva, V. E., Chen, K. P., ACS Photonics 5, 2596 (2018).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Nanophotonics 7, 1663-1668 (2018).CrossRefGoogle Scholar
Babicheva, V. E., MRS Communications 8, 1455-1462 (2018).CrossRefGoogle Scholar
Jahani, S. and Jacob, Z., Nature Nanotechnology 11, 2336 (2016).CrossRefGoogle Scholar
Staude, I. and Schilling, J., Nature Photonics 11, 274284 (2017).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Applied Sciences 9, 2005 (2019).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 4, 2283-2288 (2019).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 3, 2783-2788 (2018).CrossRefGoogle Scholar
Ma, W., Alonso-González, P., Li, S., Nikitin, A.Y., Yuan, J., Martín-Sánchez, J., Taboada-Gutiérrez, J., Amenabar, I., Li, P., Vélez, S., Tollan, C., Dai, Z., Zhang, Y., Sriram, S., Kalantar-Zadeh, K., Lee, S.T., Hillenbrand, R., Bao, Q., Nature 562, 557562 (2018).CrossRefGoogle Scholar
Li, P., Dolado, I., Alfaro-Mozaz, F. J., Casanova, F., Hueso, L. E., Liu, S., Edgar, J. H., Nikitin, A. Y., Vélez, S., Hillenbrand, R., Science 359 (6378), 892-896 (2018).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 3, 1913 (2018).CrossRefGoogle Scholar
Abate, Y., Gamage, S., Zhen, L., Cronin, S.B., Wang, H., Babicheva, V., Javani, M.H., Stockman, M.I., Light: Science & Applications 5, e16162 (2016).CrossRefGoogle Scholar
Babicheva, V. E., "Multipole resonances and directional scattering by hyperbolic-media antennas," arxiv.org/abs/1706.07259, accessed on March 3, 2020.Google Scholar
Boulesbaa, A., Babicheva, V.E., Wang, K., Kravchenko, I.I., Lin, M.-W., Mahjouri-Samani, M., Jacob, C., Puretzky, A.A., Xiao, K., Ivanov, I., Rouleau, C.M., Geohegan, D.B., ACS Photonics 3, 23892395 (2016).CrossRefGoogle Scholar
Babicheva, V. E., Gamage, S., Zhen, L., Cronin, S. B., Yakovlev, V. S., Abate, Y., "Near-field Surface Waves in Few-Layer MoS2," ACS Photonics 5, 2106 (2018).CrossRefGoogle Scholar
Boltasseva, A. and Shalaev, V. M., ACS Photonics 6, 1-3 (2019).CrossRefGoogle Scholar
Dong, R. and Kuljanishvili, I., J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 35, 030803 (2017).CrossRefGoogle Scholar
Beal, A. R., Liang, W. Y., and Hughes, H. P., J. Phys. C: Solid State Phys. 9, 2449 (1976).CrossRefGoogle Scholar