Skip to main content Accessibility help
×
Home

An optical dustbin made by the subwavelength-induced super-black carbon aerogels

  • Hongqiang Wang (a1), Ai Du (a1), Zhihua Zhang (a1), Bin Zhou (a1) and Jun Shen (a1)...

Abstract

Super-black carbon aerogel sleeves (CAS) with different reflectivities and a clear aperture had been made, by the sol–gel polycondensation of resorcinol (R) and formaldehyde (F) under the catalysis of sodium carbonate (C), and was used to eliminate stray light. We explained that the subwavelength structure is the main factor that leads to the low reflectivity of CA and constructed a simple optical system to measure the exit power from CAS in different directions. We proved that different CASs have different matting effects, and all of these CASs have better matting effects than that of monolithic graphite that has higher reflectivity. To show the fine angular resolution ability of CAS, we measured the faculae from the reflected light of a compact disc and found that the CAS with a clear aperture of 1.0 mm is the best. The super-black CAS could be used in precision optical instruments and to eliminate stray light in the optical.

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: duai@tongji.edu.cn
b) e-mail: zzhtj@tongji.edu.cn

Footnotes

Hide All

Contributing Editor: Winston V. Schoenfeld

Footnotes

References

Hide All
1. Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989).
2. Schwan, M. and Ratke, L.: Flexible carbon aerogels. Carbon 2, 22 (2016).
3. Li, W. and Guo, S.: Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38, 1520 (2000).
4. Wu, D., Fu, R., Zhang, S., Dresselhaus, M.S., and Dresselhaus, G.: Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42, 2033 (2004).
5. Wu, D., Fu, R., Sun, Z., and Yu, Z.: Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. J. Non-Cryst. Solids 351, 915 (2005).
6. Feng, J., Feng, J., Jiang, Y., and Zhang, C.: Ultralow density carbon aerogels with low thermal conductivity up to 2000 °C. Mater. Lett. 65, 3454 (2011).
7. Feng, J., Feng, J., and Zhang, C.: Thermal conductivity of low density carbon aerogels. J. Porous Mater. 19, 551 (2012).
8. Sun, H., Xu, Z., and Gao, C.: Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554 (2013).
9. Guo, K., Hu, Z., Song, H., Du, X., Zhong, L., and Chen, X.: Low-density graphene/carbon composite aerogels prepared at ambient pressure with high mechanical strength and low thermal conductivity. RSC Adv. 5, 5197 (2014).
10. Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, T.F.: Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656 (2011).
11. Elkhatat, A.M. and Al-Muhtaseb, S.A.: Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23, 2887 (2011).
12. Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J-N., Béguin, F., and Pirard, J-P.: Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon 43, 2481 (2005).
13. Al-Muhtaseb, S.A. and Ritter, J.A.: Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv. Mater. 15, 101 (2003).
14. Zubizarreta, L., Menéndez, J.A., Job, N., Marco-Lozar, J.P., Pirard, J.P., Pis, J.J., Linares-Solano, A., Cazorla-Amorós, D., and Arenillas, A.: Ni-doped carbon xerogels for H2 storage. Carbon 48, 2722 (2010).
15. Singh, S., Bhatnagar, A., Dixit, V., Shukla, V., Shaz, M.A., Sinha, A.S.K., Srivastava, O.N., and Sekkar, V.: Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel. Int. J. Hydrogen Energy 41, 3561 (2016).
16. Lin, K-S., Mai, Y-J., Chiu, S-W., Yang, J-H., and Chan, S.L.I.: Synthesis and characterization of metal hydride/carbon aerogel composites for hydrogen storage. J. Nanomater. 2012, 1 (2012).
17. Tian, H.Y., Buckley, C.E., Sheppard, D.A., Paskevicius, M., and Hanna, N.: A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties. Int. J. Hydrogen Energy 35, 13242 (2010).
18. Wencui Li, G.R. and Fricke, J.: Carbon aerogels derived from cresol resorcinol formaldehyde for supercapacitors. Carbon 40, 2955 (2001).
19. Pröbstle, H., Wiener, M., and Fricke, J.: Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater. 10, 213 (2003).
20. Kim, S.J., Hwang, S.W., and Hyun, S.H.: Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40, 725 (2005).
21. Lai, F., Miao, Y-E., Zuo, L., Zhang, Y., and Liu, T.: Carbon aerogels derived from bacterial cellulose/polyimide composites as versatile adsorbents and supercapacitor electrodes. Chem. Nanostruct. Mater. 2, 212 (2016).
22. Zu, G., Shen, J., Zou, L., Wang, F., Wang, X., Zhang, Y., and Yao, X.: Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99, 203 (2016).
23. Catalão, R.A., Maldonado-Hódar, F.J., Fernandes, A., Henriques, C., and Ribeiro, M.F.: Reduction of NO with metal-doped carbon aerogels. Appl. Catal., B 88, 135 (2009).
24. Tian, H., Wu, J., Zhang, W., Yang, S., Li, F., Qi, Y., Zhou, R., Qi, X., Zhao, L., and Wang, X.: High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal. Chem. Eng. J. 313, 1051 (2016).
25. Meier, S.R., Korwi, M.L., and Merzbacher, C.I.: Carbon aerogel a new nonreflective material for the infrared. Appl. Opt. 39, 3940 (2000).
26. Merzbacher, C.I., Meier, S.R., Pierce, J.R., and Korwin, M.L.: Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids 285, 210 (2001).
27. Vukusic, P., Sambles, J.R., and Lawrence, C.R.: Structurally assisted blackness in butterfly scales. Proc. Biol. Sci. 271(Suppl. 4), S237 (2004).
28. Chen, Q., Hubbard, G., Shields, P.A., Liu, C., Allsopp, D.W.E., Wang, W.N., and Abbott, S.: Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94, 263118 (2009).
29. Zhao, Q., Fan, T., Ding, J., Zhang, D., Guo, Q., and Kamada, M.: Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing. Carbon 49, 877 (2011).
30. Zhu, J., Yang, X., Fu, Z., Wang, C., Wu, W., and Zhang, L.: Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. J. Porous Mater. 23, 1217 (2016).
31. Yang, Z-P., Hsieh, M-L., Bur, J.A., Ci, L., Hanssen, L.M., Wilthan, B., Ajayan, P.M., and Lin, S-Y.: Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array. Appl. Opt. 50, 1850 (2011).
32. Sun, W., Du, A., Feng, Y., Shen, J., Huang, S., Tang, J., and Zhou, B.: Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10, 9123 (2016).
33. Ganesan, K., Dennstedt, A., Barowski, A., and Ratke, L.: Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater. Des. 92, 345 (2016).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Wang et al supplementary material
Wang et al supplementary material 1

 Unknown (10.7 MB)
10.7 MB
UNKNOWN
Supplementary materials

Wang et al supplementary material
Wang et al supplementary material 2

 Unknown (14.3 MB)
14.3 MB
UNKNOWN
Supplementary materials

Wang et al supplementary material
Wang et al supplementary material 3

 Unknown (5.7 MB)
5.7 MB
UNKNOWN
Supplementary materials

Wang et al supplementary material
Wang et al supplementary material 4

 Unknown (1.5 MB)
1.5 MB
WORD
Supplementary materials

Wang et al supplementary material
Table S1

 Word (19 KB)
19 KB

An optical dustbin made by the subwavelength-induced super-black carbon aerogels

  • Hongqiang Wang (a1), Ai Du (a1), Zhihua Zhang (a1), Bin Zhou (a1) and Jun Shen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed