Skip to main content Accessibility help
×
Home

Comparison of DNAzyme activity for the development of an immobilized heme sensor

  • Natalie Hughes (a1), Nancy Nguyen (a1), Deanna-Kaye Daley (a1), Justin Grennell (a1), Amira Gee (a1) and Mehnaaz F. Ali (a1)...

Abstract

Point-of-care systems require highly sensitive, quantitative and selective detection platforms for the real-time multiplexed monitoring of target analytes. To ensure facile development of a sensor, it is preferable for the detection assay to have minimal chemical complexity, contain no wash steps and provide a wide and easily adaptable detection range for multiple targets. Current studies involve label-free detection strategy for relevant clinical molecules such as heme using G-quadruplex based self-assembly. We have explored the measurement of binding and kinetic parameters of various G-quadruplex/heme complexes which are able to self-associate to form a DNAzyme with peroxidase mimicking capabilities and are critical to nucleic acid research. The detection strategy includes immobilizing the G-quadruplex sequences within a polymer matrix to provide a self-assembly based detection approach for heme that could be translated towards other clinically relevant targets.

Copyright

Corresponding author

*(Email: mali2@xula.edu)

References

Hide All
[1]Zhu, M., Zhang, H., Schmidt, E., and Jayawickramarajah, J., “Covalent and Non-Covalent Porphyrin-DNA conjugates,” in Handbook of Porphyrin Science. vol. 39, Kadish, K. M. S. K., Guilard, R, Ed., ed, 2016.
[2]Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., and Neidle, S., “Quadruplex DNA: sequence, topology and structure,” Nucleic Acid Res., vol. 34, pp. 54025415, 2006.
[3]Cree, S. L. and Kennedy, M. A., “Relevance of G-quadruplex structures to pharmacogenetics,” Frontiers in Pharmacology, vol. 5, pp. 18, 2014.
[4]Zhu, L., Li, C., Zhu, Z., Liu, D., Zou, Y., Wang, C., et al., “In Vitro Selection of Highly Efficient G-Quadruplex-Based DNAzymes,” Anal Chem, vol. 84, pp. 83838390, 2012.
[5]Ambrus, A., Chen, D., Dai, J., Bialis, T., Jones, R. A., and Yang, D., “Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution,” Nucleic Acid Res., vol. 34, pp. 27232735, 2006.
[6]Shi, Y., Huang, W. T., Luo, H. Q., and Li, N. B., “A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin,” Chem Comm, vol. 47, pp. 46764678, 2011.
[7]Pelossof, G., Tel-Vered, R., Elbaz, J., and Willner, I., “Amplified Biosensing using the Horseradish Peroxidase-Mimicking DNAzyme as an Electrocatalyst,” Anal Chem, vol. 82, pp. 43964402, 2010.
[8]Zhu, L., Li, C., Zhu, Z., Liu, D., Zou, Y., Wang, C., et al., “In Vitro Selection of Highly Efficient G-Quadruplex-Based DNAzymes,” Anal Chem, vol. 84, pp. 83838390, 2012.
[9]Leng, Y., Sun, K., Chen, X., and Li, W., “Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection,” Chem Soc Rev, vol. 44, pp. 5552–95, 2015.

Keywords

Comparison of DNAzyme activity for the development of an immobilized heme sensor

  • Natalie Hughes (a1), Nancy Nguyen (a1), Deanna-Kaye Daley (a1), Justin Grennell (a1), Amira Gee (a1) and Mehnaaz F. Ali (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed