We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis.
Methods
T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges.
Results
As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms.
Conclusions
In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.
This study evaluated the association between inflammatory diets as measured by the dietary inflammatory index (DII), and inflammation biomarkers, and the development of preeclampsia among the Chinese population. We followed the reporting guidelines of the STROBE statement for observational studies. A total of 466 preeclampsia cases aged over 18 years were recruited between March 2016 and June 2019, and 466 healthy controls were 1:1 ratio matched by age (± 3 years), week of gestation (± 1 week), and gestational diabetes mellitus. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a 79-item semiquantitative food frequency questionnaire (FFQ). Inflammatory biomarkers were analyzed by ELISA kits. The mean E-DII scores were -0.65 ± 1.58 for cases and -1.19 ± 1.47 for controls (P value <0.001). E-DII scores positively correlated with IFN-γ (rs = 0.194, P value = 0.001) and IL-4 (rs = 0.135, P value = 0.021). After multivariable adjustment, E-DII scores were positively related to preeclampsia risk (P trend <0.001). The highest tertile of E-DII was 2.18 times the lowest tertiles (95% CI = 1.52, 3.13). The odds of preeclampsia increased by 30% (95% CI= 18%, 43%, P value <0.001) for each E-DII score increase. The preeclampsia risk was positively associated with IL-2 (OR = 1.07, 95% CI = 1.03, 1.11), IL-4 (OR = 1.26, 95% CI = 1.03, 1.54) and TGF-β (OR = 1.17, 95% CI = 1.06, 1.29). Therefore, proinflammatory diets, corresponding to higher IL-2, IL-4 and TGF-β levels, were associated with increased preeclampsia risk.
Little is known about the effects of dietary patterns on prevalent pre-eclampsia in Chinese population. This study aimed to investigate the associations between dietary patterns and the odds of pre-eclampsia among Chinese pregnant women. A 1:1 age- and gestational week-matched case–control study was conducted between March 2016 and February 2019. A total of 440 pairs of pre-eclampsia cases and healthy controls were included. Dietary intakes were assessed by a seventy-nine-item FFQ and subsequently grouped into twenty-eight distinct groups. Factor analysis using the principal component method was adopted to derive the dietary patterns. Conditional logistic regression was used to analyse the associations of dietary patterns with prevalent pre-eclampsia. We identified four distinct dietary patterns: high fruit-vegetable, high protein, high fat-grain and high salt-sugar. We found that high fruit-vegetable dietary pattern (quartile (Q)4 v. Q1, OR 0·71, 95 % CI 0·55, 0·92, Ptrend = 0·013) and high protein dietary pattern (Q4 v. Q1, OR 0·72, 95 % CI 0·54, 0·95, Ptrend = 0·011) were associated with a decreased odds of pre-eclampsia in Chinese pregnant women. Whereas high fat-grain dietary pattern showed a U-shaped association with pre-eclampsia, the lowest OR was observed in the third quartile (Q3 v. Q1, OR 0·75, 95 % CI 0·57, 0·98, Ptrend = 0·111). No significant association was observed for high salt-sugar dietary pattern. In conclusion, pregnancy dietary pattern characterised by high fruit-vegetable or high protein was found to be associated with a reduced odds of pre-eclampsia in Chinese pregnant women.
Type IV shock interference has two triple points which produce two sliplines, forming a narrow jet that penetrates into the subsonic flow region behind the bow shock. Type IV shock interference in the case that the jet is supersonic has been extensively studied in the past. In this paper, type IV shock interference where the jet is transonic is studied. The transition condition from a supersonic to a transonic jet is identified and the influence of compression Mach waves, created inside the leading portion of the jet due to the pressure gradient outside the jet, on the transition and jet shape is analysed. It is found that these compression waves advance the transition from a supersonic to a transonic jet and make the flow inside the transonic jet have a two-branch structure: the lower branch is subsonic, the upper branch is supersonic and is composed of a combination of compressive and expansive waves. The mechanism by which the two-branch structure is produced is explained.
The fall armyworm (Spodoptera frugiperda), a destructive pest that originated in South and North America, spread to China in early 2019. Controlling this invasive pest requires an understanding of its population structure and migration patterns, yet the invasion genetics of Chinese S. frugiperda is not clear. Here, using the mitochondrial cytochrome oxidase subunit I (COI) gene, triose phosphate isomerase (Tpi) gene and eight microsatellite loci, we investigated genetic structure and genetic diversity of 16 S. frugiperda populations in China. The Tpi locus identified most S. frugiperda populations as the corn-strains, and a few were heterozygous strains. The microsatellite loci revealed that the genetic diversity of this pest in China was lower than that in South America. Furthermore, we found moderate differentiation among the populations, distinct genetic structures between adjacent populations and abundant genetic resources in the S. frugiperda populations from China sampled across 2 years. The survival rate of S. frugiperda was significantly higher when it was fed on corn leaves than on rice leaves, and the larval stage mortality rate was the highest under both treatments. Our results showed that S. frugiperda probably invaded China via multiple independent introductions and careful pesticide control, continuous monitoring and further studies will be needed to minimize its potential future outbreak.
Increasing evidence supports sarcopenia as an important parameter for predicting cardiometabolic risks. The objective of this study was to investigate the relationship between muscle mass, muscle strength, and physical performance, and cardiovascular risk among older community-dwelling adults.
Design:
The associations between dynapenia, sarcopenia, and Framingham risk score (FRS) were estimated by multivariate regression models.
Setting:
Muscle mass is estimated by skeletal muscle mass index using a bioelectrical impedance analysis. Muscle strength is measured by handgrip strength using an analogue isometric dynamometer. Physical performance is measured by gait speed using a 6-m walking distance. Dynapenia was defined as low muscle strength and/or slow gait speed presents with normal muscle mass. The diagnosis of presarcopenia and sarcopenia was based on criteria proposed by the Asian Working Group for Sarcopenia in 2014. The FRS was used for evaluating 10-year coronary heart disease (CHD) risk.
Participants:
Adults aged 65 years and older who attended health examinations from 2015 to 2017 were recruited.
Results:
There were totally 709 subjects enrolled in this study. Dynapenic men (n 47) had 17·70 ± 5·08 % FRS and sarcopenic women (n 74) had 7·74 ± 6·06 % FRS. Participants with presarcopenia had the lowest FRS (men: 15·41 ± 5·35 %; women: 5·25 ± 3·70 %). Men with dynapenia had higher FRS than the presarcopenia group with odds ratio (OR) of 2·52 (95 % confidence interval (CI): 1·03, 6·14). Women with sarcopenia had significantly higher FRS than the presarcopenia group with OR of 2·81 (95 % CI: 1·09, 7·27).
Conclusion:
Older dynapenic men and older sarcopenic women had higher risks of 10-year CHD. Presarcopenic older adults had the lowest CHD risk in both genders.
Boundary layer transition over a lifting body of 1.6 m length at $2^\circ$ angle of attack has been simulated at Mach 6 and a unit Reynolds number $1.0 \times 10^7$ m$^{-1}$. The model geometry is the same as the Hypersonic Transition Research Vehicle designed by the China Aerodynamics Research and Development Center. Four distinct transitional regions are identified, i.e. windward vortex region, shoulder vortex region, windward cross-flow region and shoulder cross-flow region. Multi-dimensional linear stability analyses by solving the two-dimensional eigenvalue problem (spatial BiGlobal approach) and the plane-marching parabolized stability equations (PSE3D approach) are further carried out to uncover the dominant instabilities in the last three regions as well as the shoulder attachment-line region. The shoulder vortex is conducive to both inner and outer modes of shear-layer instability, of which the latter most likely trigger the vortex breakdown. A novel method is presented to substantially reduce the computational cost of BiGlobal and PSE3D in resolving the cross-flow instabilities in cross-flow regions. The peak frequencies of cross-flow modes lie between 15 and 45 kHz. Whereas oblique second Mack modes are marginally unstable in the windward cross-flow region, they could be strong enough to compete with the cross-flow modes in the shoulder cross-flow region. In the shoulder attachment-line region, there exists only one unstable mode of Mack instability, differing from previous studies that show a hierarchy of modes in the context of symmetrical attachment-line flows. Results of the numerical simulation and multi-dimensional stability analyses are compared when possible, showing a fair agreement between the two approaches and highlighting the necessity of considering non-parallel effects.
Excitation–emission-spectral unmixing-based fluorescence resonance energy transfer (ExEm-spFRET) microscopy exhibits excellent robustness in living cells. We here develop an automatic ExEm-spFRET microscope with 3.04 s of time resolution for a quantitative FRET imaging. The user-friendly interface software has been designed to operate in two modes: administrator and user. Automatic background recognition, subtraction, and cell segmentation were integrated into the software, which enables FRET calibration or measurement in a one-click operation manner. In administrator mode, both correction factors and spectral fingerprints are only calibrated periodically for a stable system. In user mode, quantitative ExEm-spFRET imaging is directly implemented for FRET samples. We implemented quantitative ExEm-spFRET imaging for living cells expressing different tandem constructs (C80Y, C40Y, C10Y, and C4Y, respectively) and obtained consistent results for at least 3 months, demonstrating the stability of our microscope. Next, we investigated Bcl-xL-Bad interaction by using ExEm-spFRET imaging and FRET two-hybrid assay and found that the Bcl-xL-Bad complexes exist mainly in Bad-Bcl-xL trimers in healthy cells and Bad-Bcl-xL2 trimers in apoptotic cells. We also performed time-lapse FRET imaging on our system for living cells expressing Yellow Cameleon 3.6 (YC3.6) to monitor ionomycin-induced rapid extracellular Ca2+ influx with a time interval of 5 s for total 250 s.
The aim of this study was to determine the pregnancy loss rate of amniocentesis with double-needle insertions in twin pregnancies. This was a retrospective study of twin pregnancies who underwent amniocentesis with double-needle insertion between 2010 and 2019 at a single center. The pregnancy loss rates were recorded as single or double fetal loss before 24 weeks’ gestation and within 4 weeks after the procedure. Risk factors for pregnancy loss after amniocentesis were also assessed. A total of 678 twin pregnancies with amniocentesis were finally included. The pregnancy loss rates before 24 weeks’ gestation and within 4 weeks after the procedure were 0.9% and 1.9%, respectively. Only one fetal loss was presumed to be a direct result of the procedure. All other cases were complicated by structural or chromosomal anomalies. Twin pregnancies with abnormal ultrasound findings had a significantly higher rate of pregnancy loss with a relative risk of 4.81 (95% CI [1.03, 22.2]). Our study showed a low pregnancy loss rate after amniocentesis in twin pregnancies with double-needle insertions technique of sampling, which can help decision making in prenatal screening and diagnosis for twin pregnancies.
We evaluated the distributions of dental splatters and the corresponding control measure effects with high-speed videography and laser diffraction. Most of the dental splatters were small droplets (<50 μm). High-volume evacuation combined with a suction air purifier could clear away most of the droplets and aerosols.
Autism spectrum disorder (ASD) is a neurodevelopmental condition, with symptoms appearing in the early developmental period. Little is known about its current burden at the global, regional and national levels. This systematic analysis aims to summarise the latest magnitudes and temporal trends of ASD burden, which is essential to facilitate more detailed development of prevention and intervention strategies.
Methods
The data on ASD incidence, prevalence, disability-adjusted life years (DALYs) in 204 countries and territories between 1990 and 2019 came from the Global Burden of Disease Study 2019. The average annual percentage change was calculated to quantify the secular trends in age-standardised rates (ASRs) of ASD burden by region, sex and age.
Results
In 2019, there were an estimated 60.38 × 104 [95% uncertainty interval (UI) 50.17–72.01] incident cases of ASD, 283.25 × 105 (95% UI 235.01–338.11) prevalent cases and 43.07 × 105 (95% UI 28.22–62.32) DALYs globally. The ASR of incidence slightly increased by around 0.06% annually over the past three decades, while the ASRs of prevalence and DALYs both remained stable over the past three decades. In 2019, the highest burden of ASD was observed in high-income regions, especially in high-income North America, high-income Asia Pacific and Western Europe, where a significant growth in ASRs was also observed. The ASR of ASD burden in males was around three times that of females, but the gender difference was shrunk with the pronounced increase among females. Of note, among the population aged over 65 years, the burden of ASD presented increasing trends globally.
Conclusions
The global burden of ASD continues to increase and remains a major mental health concern. These substantial heterogeneities in ASD burden worldwide highlight the need for making suitable mental-related policies and providing special social and health services.
This retrospective study investigated the predictive value of the Controlling Nutritional Status (CONUT) score in patients with intermediate-stage hepatocellular carcinoma (HCC) who received transarterial chemoembolization (TACE). Nomograms were developed to predict progression-free and overall survival (PFS, OS). The medical data of 228 patients with HCC and treated with TACE were collected. The patients were apportioned to 2 groups according to CONUT score: low or high (<4, ≥4). Univariate and multivariate analyses were performed using Cox regression for OS and PFS. OS and PFS were estimated by the Kaplan-Meier curve and compared with the log-rank test. Nomograms were constructed to predict patient OS and PFS. The nomograms were evaluated for accuracy, discrimination, and efficiency. The cut-off value of CONUT score was 4. The higher the CONUT score, the worse the survival; Kaplan-Meier curves showed significant differences in OS and PFS between the low and high CONUT score groups (P = 0·033, 0·047). The nomograms including CONUT, based on the prognostic factors determined by the univariate and multivariate analyses, to predict survival in HCC after TACE were generated. The CONUT score is an important prognostic factor for both OS and PFS for patients with intermediate HCC who underwent TACE. The cut-off value of the CONUT score was 4. A high CONUT score suggests poor survival outcomes. Nomograms generated based on the CONUT score were good models to predict patient OS and PFS.
Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.
Accurate predetermination of the quantum yield ratio (QA/QD) and the extinction coefficient ratio (KA/KD) between acceptor and donor is a prerequisite for quantitative fluorescence resonance energy transfer (FRET) imaging. We here propose a method to measure KA/KD and QA/QD by measuring the excitation–emission spectra (ExEm-spectra) of one dish of cells expressing m (≥3) kinds of FRET constructs. The ExEm-spectra images are unmixed to obtain the weight maps of donor (WD), acceptor (WA), and acceptor sensitization (WS). For each cell, the frequency distribution plots of the WS/WD and WS/WA images are fitted by using a single-Gaussian function to obtain the peak values of WS/WD (SD) and WS/WA (SA). The statistical frequency-SD/SA plots from all cells are fitted by using a multi-Gaussian function to obtain the peak values of both SD and SA, and then the ranges of WS/WD (RSD) and WS/WA (RSA) for each FRET construct are predetermined. Based on the predetermined RSD and RSA values of FRET constructs, our method is capable of automatically classifying cells expressing different FRET constructs. Finally, the WS/WD–WA/WD plot from different kinds of cells is linearly fitted to obtain KA/KD and QA/QD values.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
It has been commonly observed on open waters that ducklings/goslings follow their mothers in a highly organized formation. The questions arise: (1) why are they swimming in formation? (2) what is the best swimming formation? (3) how much energy can be preserved by each individual in formation swimming? To address these questions, we established a simplified mathematical and numerical model and calculated the wave drag on a group of waterfowl in a swimming formation. We observed two new and interesting findings: wave-riding and wave-passing. By riding the waves generated by a mother duck, a trailing duckling can obtain a significant wave-drag reduction. When a duckling swims at the ‘sweet point’ behind its mother, a destructive wave interference phenomenon occurs and the wave drag of the duckling turns positive, pushing the duckling forward. More interestingly, this wave-riding benefit could be sustained by the rest of the ducklings in a single-file line formation. Starting from the third one in a queue, the wave drag of individuals gradually tended towards zero, and a delicate dynamic equilibrium was achieved. Each individual under that equilibrium acted as a wave passer, passing the waves’ energy to its trailing one without any energy losses. Wave-riding and wave-passing are probably the principal reasons for the evolution of swimming formation by waterfowl. This study is the first to reveal the reasons why the formation movement of waterfowl can preserve individuals’ energy expenditure. Our calculations provide new insights into the mechanisms of formation swimming.