Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T09:00:30.846Z Has data issue: false hasContentIssue false

Transverse magnetic field effects on the high-voltage pulsed discharge plasma in helium

Published online by Cambridge University Press:  21 February 2024

C. Chen
Affiliation:
Department of Physics, Harbin Institute of Technology, 150001 Harbin, PR China
K. M. Rabadanov*
Affiliation:
Department of Physics, Harbin Institute of Technology, 150001 Harbin, PR China Dagestan State University, 367002 Makhachkala, Russia
N. A. Ashurbekov
Affiliation:
Dagestan State University, 367002 Makhachkala, Russia
C. Yuan
Affiliation:
Department of Physics, Harbin Institute of Technology, 150001 Harbin, PR China
A. M. Shakhrudinov
Affiliation:
Dagestan State University, 367002 Makhachkala, Russia
*
Email address for correspondence: kurbanbagama91@mail.ru

Abstract

This study investigates the effect of a transverse magnetic field on high-voltage pulsed discharge in helium at a pressure of 30 Torr. A simple two-dimensional fluid model that describes the high-voltage pulsed discharge in helium in a transverse weak magnetic field (B = 0.4 T) is presented, which uses an empirical relation to account for the magnetic field. The results of using the empirical relation for the effective field agree well with the experimental results. The dynamics of discharge development in the presence of the magnetic field is also investigated. The magnetic field does not significantly affect the gas-discharge development dynamics in helium at a pressure of 30 Torr.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, L.L. 2014 The IST-LISBON database on LXCat. J. Phys.: Conf. Ser. 565, 012007.Google Scholar
Ashurbekov, N.A., Iminov, K.O. & Ramazanov, A.R. 2017 Generation of accelerated electrons in nanosecond electrical discharges using extensive slot cathodes limited by dielectric walls. J. Phys.: Conf. Ser. 830, 012024.Google Scholar
Ashurbekov, N.A., Kurbanismailov, V.S., Omarov, O.A. & Omarova, N.O. 2000 The kinetics of excited atoms and optical radiation under conditions of wave mechanism of breakdown in inert gases. High Temp. 38, 795810.CrossRefGoogle Scholar
Belmonte, T., Cardoso, R.P., Henrion, G. & Kosior, F. 2007 Collisional–radiative modelling of a helium microwave plasma in a resonant cavity. J. Phys. D: Appl. Phys. 40, 7343.CrossRefGoogle Scholar
Blewin, H.A. & Haydon, S.C. 1958 The electrical breakdown of gases in the presence of crossed electric and magnetic fields. J. Phys. 151, 340344.Google Scholar
Bobrov, V.A., Voiteshonok, V.S., Golovin, A.I., Golubev, M.M., Lomakin, B.N., Turkin, A.V. & Shloydo, A.I. 2013 Analysis of continuous generation of electron beams in medium-pressure gases. Tech. Phys. 58, 12051210.CrossRefGoogle Scholar
Bogdanov, E.A., Kapustin, K.D., Kudryavtsev, A.A. & Chirtsov, A.S. 2010 Different approaches to fluid simulation of the longitudinal structure of the atmospheric-pressure microdischarge in helium. Tech. Phys. 55, 14301442.CrossRefGoogle Scholar
Brandenburg, R. 2017 Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 26 (5), 053001.Google Scholar
COMSOL, Inc. 2023 COMSOL Multiphysics Reference Manual, Version 5.5, Available at: https://www.comsol.com (last access September 30, 2023).Google Scholar
Dujko, S., Bosnjakovic, D., White, R.D. & Petrovic, Z.L. 2015 Heating mechanisms for electron swarms in radio-frequency electric and magnetic fields. Plasma Sources Sci. Technol. 24 (5), 054006.Google Scholar
Dujko, S., Raspopovic, Z.M. & Petrovic, Z.L. 2005 Monte Carlo studies of electron transport in crossed electric and magnetic fields in CF4. J. Phys. D: Appl. Phys. 38 (16), 29522966.CrossRefGoogle Scholar
Gao, S. & Fang, J.K. 2022 Mechanism analysis of the effect of axial magnetic field on low pressure glow discharge. IEEE Trans. Plasma Sci. 50 (4), 782790.CrossRefGoogle Scholar
Golant, V.E., Zhilinsky, A.P. & Sakharov, I.F. 1980 Fundamentals of Plasma Physics. Wiley.Google Scholar
Hagelaar, G.J.M. & Pitchford, L.C. 2005 Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14, 722733.CrossRefGoogle Scholar
Harcombe, D., Palmer, R.T. & Gozna, G.F. 1963 A magnetically controlled spark gap. J. Sci. Instrum. 40, 468.CrossRefGoogle Scholar
Hettkamp, E. & Lindemann, A. 2007 Influence of the modified pulsed arc process by variable magnetic fields. Plasma Process. Polym. 4, S305S308.CrossRefGoogle Scholar
Huxley, L.G.H. & Crompton, R.W. 1974 The Drift and Diffusion of Electrons in Gases. Wiley.Google Scholar
Kutasi, K., Hartmann, P. & Donko, Z. 2001 Self-consistent modelling of helium discharges: investigation of the role of He2 + ions. J.Phys. D: Appl.Phys. 34 (23), 33683377.CrossRefGoogle Scholar
Limpens, R., Platier, B., Lassise, A.C., Staps, T.J.A., van Ninhuijs, M.A.W., Luiten, O.J. & Beckers, J. 2021 Influence of a magnetic field on an extreme ultraviolet photon-induced plasma afterglow. J. Phys. D: Appl. Phys. 54, 435205.CrossRefGoogle Scholar
Li, S.Z. & Uhm, H.S. 2004 Influence of magnetic field on the electrical breakdown characteristics in cylindrical diode. Phys. Plasmas 11, 34433448.CrossRefGoogle Scholar
Li, Y., Fu, Y., Zhang, Z., Liu, Z., Hu, Q., Zou, X., Wang, X. & Jiang, X. 2023 Regulation of nanosecond pulse breakdown process by vertical magnetic field. Phys. Plasmas 30 (10), 103505.CrossRefGoogle Scholar
Ness, K.F. 1994 Multi-term solution of the Boltzmann equation for electron swarms in crossed electric and magnetic fields. J. Phys. D: Appl. Phys. 27 (9), 1848.CrossRefGoogle Scholar
Ness, K.F. & Makabe, T. 2000 Electron transport in argon in crossed electric and magnetic fields. Phys. Rev. E 62, 4083.CrossRefGoogle ScholarPubMed
Omarov, O.A., Omarova, N.O., Omarova, P.K. & Rukhadze, A.A. 2018 Energy characteristics of high-pressure gas breakdown in strong longitudinal magnetic fields. J. Phys.: Conf. Ser. 1094, 012029.Google Scholar
Radmilović-Radjenović, M. & Radjenović, B. 2006 The effect of magnetic field on the electrical breakdown characteristics. J. Phys. D: Appl. Phys. 39, 3002.CrossRefGoogle Scholar
Raspopovic, Z.M., Sakadzic, S., Petrovic, Z.L. & Makabe, T. 2000 Diffusion of electrons in time-dependent E(t)×B(t) fields. J. Phys. D: Appl. Phys. 33 (11), 1298.CrossRefGoogle Scholar
Rodríguez, E., Paul, E.J. & Bhattacharjee, A. 2022 Measures of quasisymmetry for stellarators. J. Plasma Phys. 88 (1), 905880109.CrossRefGoogle Scholar
Sakharov, A.D. 1959 Theory of Magnetic Thermonuclear Reactor, Part 2 Plasma Physics and the Problem of Controlled Thermonuclear Reactions. Pergamon.Google Scholar
Santos, M., Noel, C., Belmonte, T. & Alves, L.L. 2014 Microwave capillary plasmas in helium at atmospheric pressure. J. Phys. D: Appl. Phys. 47, 265201.CrossRefGoogle Scholar
Scholfield, D.W., Gahl, J.M. & Shimomura, N. 1999 Effective electric field for an arbitrary electromagnetic pulse. IEEE Trans. Plasma Sci. 27 (2), 628632.CrossRefGoogle Scholar
Shidoji, E., Makabe, T. & Ness, K.F. 2001 Influence of gas pressure and magnetic field upon dc magnetron discharge. Vacuum 60, 299.Google Scholar
Spitzer, L. Jr. 1958 The stellarator concept. Phys. Fluids 1, 253264.CrossRefGoogle Scholar
Starikovskiy, A.Y., Aleksandrov, N.L. & Shneider, M.N. 2021 Streamer self-focusing in an external longitudinal magnetic field. Phys. Rev. E 103, 063201.CrossRefGoogle Scholar
Tonks, L. 1937 Drift of ions and electrons in a magnetic field. Phys. Rev. 51, 744.CrossRefGoogle Scholar
Wang, W.C., Cheng, J., Shi, Z.B., Yan, L.W., Huang, Z.H., Wu, N., Zou, Q., Zhu, Y.J., Chen, X., Dong, J.Q., et al. 2022 Effect of sheared E ×B flow on the blob dynamics in the scrape-off layer of HL-2A tokamak. J. Plasma Phys. 88 (6), 905880605.CrossRefGoogle Scholar
White, R.D., Robson, R.E. & Ness, K.F. 1999 On approximations involved in the theory of charged particle transport in gases in electric and magnetic fields at arbitrary angles. IEEE Trans. Plasma Sci. 27, 12491253.CrossRefGoogle Scholar