We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Proton acceleration in a near-critical-density gas driven by a light spring (LS) pulse with a helical structure in its intensity profile is investigated using three-dimensional particle-in-cell simulations. Compared with other pulse modes with the same laser power, such as the Gaussian pulse or the donut Laguerre–Gaussian (LG) pulse, the LS structure significantly enhances the peak intensity and drives a stronger longitudinal acceleration field and transverse focusing field. Both the high intensity and helical structure of the LS pulse contribute to the formation of a bubble-like structure with a fine electron column on the axis, which is critical for stable proton acceleration. Therefore, it is very promising to obtain ultra-high-energy protons using LS pulses with a relatively lower power. For example, by using LS pulses with the same power of 4.81 PW, the proton in the gas can be accelerated up to 8.7 GeV, and the witness proton can be accelerated to 10.6 GeV from 0.11 GeV, which shows the overwhelming advantage over the Gaussian and LG pulse cases.
This study is dedicated to achieving efficient active noise control in a supersonic underexpanded planar jet, utilizing control parameters informed by resolvent analysis. The baseline supersonic underexpanded jet exhibits complex wave structures and substantial high-amplitude noise radiations. To perform the active control, unsteady blowing and suction are applied along the nozzle inner wall close to the exit. Employing both standard and acoustic resolvent analyses, a suitable frequency and spanwise wavenumber range for the blowing and suction is identified. Within this range, the control forcing can be significantly amplified in the near field, effectively altering the original sound-producing energetic structure while minimizing far-field amplification to prevent excessive noise. A series of large-eddy simulations are further conducted to validate the control efficiency, demonstrating an over 10 dB reduction in upstream-propagated screech noise. It is identified that the present unsteady control proves more effective than steady control at the same momentum coefficient. The controlled jet flow indicates that the shock structures become more stable, and the stronger the streamwise amplification of the forcing, the more likely it is to modify the mean flow characteristics, which is beneficial for reducing far-field noise radiation. Spectral proper orthogonal decomposition analysis of the controlled flow confirms that the control redistributes energy to higher forcing frequencies and suppresses large-scale antisymmetric and symmetric modes related to screech and its harmonics. The findings of this study highlight the potential of resolvent-guided control techniques in reducing noise in supersonic underexpanded jets and provide a detailed understanding of the inherent mechanisms for effective noise reduction through active control strategies.
Expert drivers possess the ability to execute high sideslip angle maneuvers, commonly known as drifting, during racing to navigate sharp corners and execute rapid turns. However, existing model-based controllers encounter challenges in handling the highly nonlinear dynamics associated with drifting along general paths. While reinforcement learning-based methods alleviate the reliance on explicit vehicle models, training a policy directly for autonomous drifting remains difficult due to multiple objectives. In this paper, we propose a control framework for autonomous drifting in the general case, based on curriculum reinforcement learning. The framework empowers the vehicle to follow paths with varying curvature at high speeds, while executing drifting maneuvers during sharp corners. Specifically, we consider the vehicle’s dynamics to decompose the overall task and employ curriculum learning to break down the training process into three stages of increasing complexity. Additionally, to enhance the generalization ability of the learned policies, we introduce randomization into sensor observation noise, actuator action noise, and physical parameters. The proposed framework is validated using the CARLA simulator, encompassing various vehicle types and parameters. Experimental results demonstrate the effectiveness and efficiency of our framework in achieving autonomous drifting along general paths. The code is available at https://github.com/BIT-KaiYu/drifting.
Summary: Melatonin serves as an endogenous synchronizer of biological rhythms. Age-related changes are evident with a significant reduction in melatonin observed in 24-hour secretion. Melatonin exerts a significant cytoprotective action by buffering free radicals and reversing inflammation. However, few studies have explored the association between physical activity and melatonin level. In this study, we compared melatonin level and actigraphy-derived sleep and activity indicators in older adults across two levels of exercise habit (sedentary-to- light exercise and moderate -to-vigorous exercise), as well as the association of these indicators with melatonin levels. We recruited 104 participants (aged 57– 84 years) who wore a wristwatch device to monitor their activity (MotionWatch 8; CamNtech, Cambridge, UK) for 14 days. Circadian rhythms were estimated using cosinor analysis, lag 1440 mins correlation coefficient, interdaily stability, and non-parametric analysis. Saliva samples were collected every 30 mins from 18:00 pm till one hour before usual bedtime, and maximum melatonin level during this period. A 5-minute Psychomotor Vigilance Task (PVT) was used to evaluate attention. Habits of physical activities were self-reported. Melatonin level was not significantly different between participants with sedentary- to-light and moderate-to-vigorous exercise habits. Analysis showed that participants who had moderate-vigorous exercise habit were older (p = 0.04), having longer sports time (p < 0.001) and WASO (p = 0.02), more occurrence of daytime naps (intradaily variability) (p = 0.05), more fragmentated 24-h sleep-wake cycle (interdaily stability, p = 0.01), and less regular 24h rhythm (lag 1140 mins correlation, p = 0.04). They also showed shorter response time (p = 0.05), and a smaller number of lapses (p = 0.04) in PVT. Regression analysis results showed that weekly exercise time is positively associated with melatonin level. Additionally, a later start hour of M10 is associated with 5.95 pg/ml increase in melatonin level. In consistent, exercise in older adults did not promote a robust sleep- wake cycle but is related to better cognitive function and higher melatonin levels.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
We investigate the coupling effects of the two-phase interface, viscosity ratio and density ratio of the dispersed phase to the continuous phase on the flow statistics in two-phase Taylor–Couette turbulence at a system Reynolds number of $6\times 10^3$ and a system Weber number of 10 using interface-resolved three-dimensional direct numerical simulations with the volume-of-fluid method. Our study focuses on four different scenarios: neutral droplets, low-viscosity droplets, light droplets and low-viscosity light droplets. We find that neutral droplets and low-viscosity droplets primarily contribute to drag enhancement through the two-phase interface, whereas light droplets reduce the system's drag by explicitly reducing Reynolds stress due to the density dependence of Reynolds stress. In addition, low-viscosity light droplets contribute to greater drag reduction by further reducing momentum transport near the inner cylinder and implicitly reducing Reynolds stress. While interfacial tension enhances turbulent kinetic energy (TKE) transport, drag enhancement is not strongly correlated with TKE transport for both neutral droplets and low-viscosity droplets. Light droplets primarily reduce the production term by diminishing Reynolds stress, whereas the density contrast between the phases boosts TKE transport near the inner wall. Therefore, the reduction in the dissipation rate is predominantly attributed to decreased turbulence production, causing drag reduction. For low-viscosity light droplets, the production term diminishes further, primarily due to their greater reduction in Reynolds stress, while reduced viscosity weakens the density difference's contribution to TKE transport near the inner cylinder, resulting in a more pronounced reduction in the dissipation rate and consequently stronger drag reduction. Our findings provide new insights into the physics of turbulence modulation by the dispersed phase in two-phase turbulence systems.
Many psychotropic drugs are highly associated with related weight gain. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are established anti-obesity and glucose-lowering agents. Preliminary evidence also indicates they are fit for purpose in mitigating psychotropic drug-related weight gain (PDWG). This systematic review aims to synthesize the extant evidence from randomized controlled trials (RCTs) on the effects of GLP-1RAs on weight change in persons experiencing PDWG.
Methods
Online databases (ie, PubMed, OVID Medline, Google Scholar) were searched to identify relevant studies from inception to January 1, 2024. Articles were screened by title, abstract, and full-text by three independent reviewers against inclusion and exclusion criteria.
Results
We identified six studies with participants aged ≥18 (n=374) that were eligible for inclusion in our systematic review. Most studies reported a significant and clinically meaningful effect of GLP-1RAs on anthropometrics and/or metabolics. All RCTs replicated the finding of modest or greater effects of GLP-1RAs; the most studied agents were liraglutide and exenatide. There was insufficient literature to conduct a meta-analysis.
Conclusion
Evidence suggests that GLP-1RAs are effective in mitigating weight gain in persons prescribed psychiatric medication. It is hypothesized that GLP-1RAs may moderate weight change in persons prescribed psychiatric medication through direct effects on metabolism and cognitive processes implicated in hunger/satiety. Future studies should aim to explore the long-term safety, tolerability, and efficacy profiles of various GLP-1RAs in the treatment and prevention of abnormal weight and metabolic homeostasis in psychiatric populations.
Linear instability analysis of a viscous swirling liquid jet surrounded by ambient gas is carried out by considering the significant influence of axial shear effect. The jet azimuthal flow is assumed as a Rankine vortex, and the non-uniform velocity distribution in the jet axial direction is approximated by parabolic and error functions. The enhancement of jet rotation is found to promote the predominant mode with larger azimuthal wavenumbers, and the mode transition is decided by the competition between centrifugal force and axial shear stress. Subsequently, the influence of the axial shear effect is examined through changing the degree of shear stress and the thickness of the gas velocity boundary layer. It is found that an increase of jet average velocity or surface velocity in the axial direction leads to the predominant mode transition to smaller azimuthal wavenumbers, due to the combined effects of shear stress and gas pressure perturbation. A larger velocity difference between ambient gas and liquid jet also promotes the predominant modes with smaller azimuthal wavenumbers, and the physical mechanism is attributed to gas pressure perturbation. Phase diagrams of different azimuthal modes are given and compared with the study of Kubitschek & Weidman (J. Fluid Mech., vol. 572, 2007, pp. 261–286), where a static swirling column without axial shear stress was considered. The strengthened axial shear effect is found to delay the transition of predominant modes with the increase of angular velocity. Experimental studies considering the swirling jets with different axial velocities are further carried out, which validate the theoretical findings. Different instability mechanisms and their transition rules are also identified through energy budget analysis. This study is expected to give scientific guidance on understanding the instability mechanisms of the swirling jets that widely exist in natural phenomena and engineering applications.
Timing of food intake is an emerging aspect of nutrition; however, there is a lack of research accurately assessing food timing in the context of the circadian system. The study aimed to investigate the relation between food timing relative to clock time and endogenous circadian timing with adiposity and further explore sex differences in these associations among 151 young adults aged 18–25 years. Participants wore wrist actigraphy and documented sleep and food schedules in real time for 7 consecutive days. Circadian timing was determined by dim-light melatonin onset (DLMO). The duration between last eating occasion and DLMO (last EO-DLMO) was used to calculate the circadian timing of food intake. Adiposity was assessed using bioelectrical impedance analysis. Of the 151 participants, 133 were included in the statistical analysis finally. The results demonstrated that associations of adiposity with food timing relative to circadian timing rather than clock time among young adults living in real-world settings. Sex-stratified analyses revealed that associations between last EO-DLMO and adiposity were significant in females but not males. For females, each hour increase in last EO-DLMO was associated with higher BMI by 0·51 kg/m2 (P = 0·01), higher percent body fat by 1·05 % (P = 0·007), higher fat mass by 0·99 kg (P = 0·01) and higher visceral fat area by 4·75 cm2 (P = 0·02), whereas non-significant associations were present among males. The findings highlight the importance of considering the timing of food intake relative to endogenous circadian timing instead of only as clock time.
This study examined the sour grapes/sweet lemons rationalization through 2 conditions: ‘attainable’ (sweet lemons) and ‘unattainable’ (sour grapes), reflecting China’s 2019-nCoV vaccination strategy. The aim was to find ways to change people’s beliefs and preferences regarding vaccines by easing their safety concerns and encouraging more willingness to get vaccinated. An online survey was conducted from January 22 to 27, 2021, with 3,123 residents across 30 provinces and municipalities in the Chinese mainland. The direction of belief and preference changed in line with the sour grapes/sweet lemons rationalization. Using hypothetical and real contrasts, we compared those for whom the vaccine was relatively unattainable (‘sour grapes’ condition) with those who could get the vaccine easily (‘sweet lemons’). Whether the vaccine was attainable was determined in the early stage of the vaccine roll-out by membership in a select group of workers that was supposed to be vaccinated to the greatest extent possible, or, by being in the second stage when the vaccine was available to all. The attainable conditions demonstrated higher evaluation in vaccine safety, higher willingness to be vaccinated, and lower willingness to wait and see. Hence, we propose that the manipulation of vaccine attainability, which formed the basis of the application of sour grapes/sweet lemons rationalization, can be utilized as a means to manipulate the choice architecture to nudge individuals to ease vaccine safety concerns, reducing wait-and-see tendencies, and enhancing vaccination willingness. This approach can expedite universal vaccination and its associated benefits in future scenarios resembling the 2019-nCoV vaccine rollout.
This study explores the relationships between group-affect tone, teams’ transactive memory systems (TMSs), and teams’ incremental creativity. Data were collected from 334 team members and 70 team leaders across 70 teams. Results indicate that positive group-affect tone enhances TMS, while negative group-affect tone impedes it. TMS positively impacts team incremental creativity. Additionally, both types of group-affect tone influence incremental creativity through TMS mediation. This research advances TMS theory and group-affect tone, substantiating the affect-cognition model and deepening the understanding of TMS’s role in incremental creativity.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
To ascertain whether psychotherapies combined with medication are more efficacious than those without medication and determine which combinations yield the best results.
Methods:
We conducted a network meta-analysis of randomised controlled trials (RCTs) comparing behavioural activation (BA), psychoanalytic/psychodynamic psychotherapy (DYN), interpersonal psychotherapy (IPT), individual face-to-face cognitive behavioural therapy (CBT (ftf)), group cognitive behavioural therapy (gCBT), and computerised or internet cognitive behavioural therapy (iCBT) with each other, or with treatment-as-usual (TAU) and wait list control (WLC) among adults formally diagnosed with depression. The psychotherapy arms were categorised as either psychotherapy alone or psychotherapy combined with medication (+ p). Treatment efficacy was assessed based on depression severity. We used a random-effects model to conduct a pairwise meta-analysis.
Results:
A total of 100 RCTs with 9,873 participants were included. The most common treatment was CBT (ftf) alone. All treatment arms were compared with TAU. Most psychotherapies combined with medication were superior to psychotherapy alone. In the subgroup analyses according to the baseline severity of depression, most psychotherapies combined with medication were more effective than psychotherapy alone in moderate-to-severe depression, whereas in mild depression, such differences were not observed. Among psychotherapies with medication, gCBT + p was significantly more effective than TAU and other psychotherapies in both the main and subgroup analyses.
Conclusion:
The efficacy of depression treatment varied depending on the severity of the depressive condition. Notably, gCBT + p was identified as the most effective approach for treating adult depression.
The delay-shift of the pre-pulse may mislead the determination of its origination and cause problems for the temporal contrast improvement of high-peak-power lasers, especially when the corresponding post-pulse is beyond the time window of the measurement device. In this work, an empirical formula is proposed to predict the delay-shift of pre-pulses for the first time. The empirical formula shows that the delay-shift is proportional to the square of the post-pulse’s initial delay, and also the ratio of the third-order dispersion to the group delay dispersion’s square, which intuitively reveals the main cause for the delay-shift and may provide a convenient routing for identifying the real sources of pre-pulses in both chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) systems. The empirical formula agrees well with the experimental results both in the CPA and the OPCPA systems. Besides, a numerical simulation is also carried out to further verify the empirical formula.
What is a book, really? In tracing the passage of a single work from the alleys of Lahore to online retail and the author’s bookshelf, this chapter argues against idealism. In transmission, ideational content sediments within specific material contexts. In this way, ideas become objects. Consequently, the same idea can take shape by drastically different forms, affecting the practice of interpretation. The affordances of the object – what can be done with it, how, and where – affect our practices of interpretation.
The primary objectives of this umbrella review were to (a) quantify the relative importance, of “severity” and “rarity” criteria in health resource allocation; and (b) analyze the contextual factors influencing the relative importance. The secondary objective was to examine how “severity” and “rarity” criteria are defined.
Methods
Searches were carried out in PubMed and Embase to identify eligible systematic reviews. Quality appraisal of systematic reviews was undertaken. From identified systematic reviews, primary studies were extracted and further screened for eligibility. The inclusion of severity and rarity criteria and their respective weights in primary studies were examined. Descriptive and regression analyses were performed.
Results
Twenty-nine systematic reviews were screened, of which nine met the inclusion criteria. Primary studies included in these systematic reviews were retrieved and screened, resulting in forty articles included in the final analysis. Disease severity was more frequently considered (n = 29/40) than disease rarity (n = 23/40) as an evaluation criterion. Out of all cases where both were included as evaluation criteria, disease severity was assigned higher weights 84 percent of the time (n = 21/25).
Conclusions
Our review found consistent evidence that disease severity is more relevant and preferred to rarity as a priority-setting criterion albeit constraints in statistical analysis imposed by limited sample size and data availability. Where funding for rare diseases is concerned, we advocate that decision-makers be explicit in clarifying the significance of disease severity and/or rarity as a value driver behind decisions. Our findings also reinforce the relevance of disease severity as a criterion in priority setting.
In this paper, a capsule endoscopy system with a sensing function is proposed for medical devices. A single-arm spiral antenna is designed for data transmission and is combined with the voltage controlled oscillator to achieve sensing capabilities. The designed antenna operates at a 900 MHz industrial scientific medical band. By establishing a three-layer cylindrical model of the stomach, it was concluded that the antenna in the stomach has a high peak gain of −1.1 dBi. Additionally, the antenna achieved a −10 dB impedance bandwidth of 5%. The capsule endoscopy was experimentally measured in both actual stomach and simulated environments. The maximum working distance of the capsule endoscope was measured to be 6.8 m. Additionally, the proposed capsule endoscope was tested for its sensing function using solutions with different dielectric constants. Finally, it was confirmed through link analysis that it has good communication capabilities. The results and analysis confirm that the proposed capsule endoscope can be used for examining gastric diseases.
Caryocaridids are a unique representative of pelagic arthropods from the Ordovician period. They are typically found as flattened carapaces in mudstones and shales. This study reports on a species of caryocaridids, Soomicaris cedarbergensis, discovered in the Lower Ordovician of northwestern Xinjiang, NW China. The species shows the rare enrolled carapaces with a preserved cuticular ultrastructure. These specimens of caryocaridids from Xinjiang are the first reported in the Yili Block, and provide the substantial evidence that the paleogeographic distribution of caryocaridid phyllocarids could extend to the Central Asian Orogenic Belt. This species existed from the late Tremadocian until the end of the Ordovician (Hirnantian), making it the longest-ranging known species of caryocaridids. The carapace cuticle of S. cedarbergensis is composed of carbonate-fluorapatite and can be divided into three mineralized lamellae: outer, middle, and inner. The outer and inner lamellae each consist of three layers that correspond to the epicuticle, exocuticle, and endocuticle of extant crustacean carapaces. Moreover, the polygonal reticulation structure of the carapace in archaeostracans appears to be similar in shape and size to the hemolymph sinuses of leptostracans. This unique ultrastructure of the carapace cuticle in caryocaridids is believed to be better suited for a pelagic lifestyle.