We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to investigate the relationship between bone quality in terms of metabolism, homeostasis of elements, bone mineral density (BMD), and microstructure and keel-bone fractures in laying hens (Gallus gallus domesticus). One hundred and twenty 17 week old Lohmann White laying hens with normal keel bones were individually housed in furnished cages for 25 weeks. Birds were then euthanased and dissected to assess keel-bone status at 42 weeks. Serum and keel-bone samples from normal keel (NK) and fractured keel (FK) hens were collected to determine the previously mentioned bone quality parameters. The results showed FK hens to have higher levels of the components of osteocalcin, greater alkaline phosphatase activity in serum and keel bones, and greater tartrate-resistant acid phosphatase (TRAP) activity in keel bones, compared to NK hens. Additionally, FK hens also had higher concentrations of Li, B, K, Cu, As, Se, Sn, Hg, and Pb, but lower concentrations of Na, P, and Ca. Moreover, FK hens showed decreased bone microstructural parameters including bone volume/tissue volume, trabecular number, degree of anisotropy, connectivity density, and BMD, but increased trabecular separation. Meanwhile, no differences were detected in serum TRAP activity, trabecular thickness, bone surface, or bone surface/bone volume. Results showed laying hens with keel-bone fractures to have differences in bone metabolism, elements of home-ostasis, bone microstructure parameters, and BMD. These results suggest that keel-bone fractures may be associated with bone quality.
Limited studies provide direct evidence of Clonorchis sinensis adults in the early stage of gallbladder stone formation. Our current research systematically studied 33 gallbladder stones resembling adult worms and shed light on the definite connection of C. sinensis infection with concomitant cholelithiasis. A total of 33 gallbladder stones resembling adult C. sinensis worms were systematically analysed. Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray energy spectrometry were used to analyse the composition and microstructure. Meanwhile, a histopathological examination of the stone was carried out. The 33 gallbladder stones resembling adult C. sinensis worms included nine calcium carbonate (CaCO3) stones, 12 bilirubinate stones and 12 mixed stones. Clonorchis sinensis eggs were found in 30 cases, including all CaCO3 and mixed stones. Parasite tissues were detected in 12 cases, which were mainly CaCO3 stones or bilirubinate–CaCO3 mixed stones. The outer layer of stones was wrapped with 12.88% calcium salt, as revealed by X-ray energy spectrometry, while surprisingly, many C. sinensis eggs were found in the inner part of these stones. Based on our current findings, we concluded that calcification and packaging occurred after C. sinensis adult entrance into the gallbladder, subsequently leading to the early formation of CaCO3 or bilirubinate–CaCO3 mixed gallbladder stones. This discovery highlights definite evidence for C. sinensis infection causing gallbladder stones.
The ongoing Russian invasion of Ukraine has led many Ukrainians to fight for their country, either in the regular army or as civilian members of voluntary territorial defense forces. There is, however, a dearth of knowledge on the mental health of combatants in this conflict. Prior research on the mental health of combatants is unlikely to translate to the situation at hand because such research is focused on combatants fighting abroad and neglects civilian combatants.
Methods
This study provides the first attempt to investigate the mental health of Ukrainian combatants in the regular army and voluntary territorial defense forces by analyzing the prevalence rates of common mental health issues, as well as their demographic and socioeconomic predictors.
Results
Between March 19 and 31, 2022, the initial period of Russia’s invasion of Ukraine, a sample of 178 Ukrainian combatants (104 in the regular army and 74 civilian combatants) participated in a survey on symptoms of anxiety (GAD-2), depression (PHQ-2), and insomnia (ISI).
Conclusions
A sizable portion of Ukrainian combatants reached cut-off levels for clinical symptoms of anxiety (44·4%), depression (43·3%), and insomnia (12·4%). Importantly, the mental health of Ukrainian combatants varied between professional soldiers and civilian combatants, as well as by gender, marital status, by whether or not they were located in Russian-occupied/active-combat areas, and dependent on whether they were personally involved in combat. This study provides early evidence on the mental health of Ukrainian combatants, pointing to their urgent need for mental health assistance in the ongoing war.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and
$S/N$
in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
For a class of uncertain systems with large-error sensing, the low-order stable signal corrector and observer are presented for signal correction and uncertainty estimation according to completely decoupling estimation. The model-free signal corrector can reject the bounded stochastic disturbance/error in global position sensing, and system uncertainty can be estimated by the observer, even the existence of large disturbance in position sensing. Furthermore, a general form of signal corrector is given. The describing function method is used to analyse the robustness of the corrector in frequency domain, and the parameter selection rules are presented. The merits of the signal corrector includes its model free, gain-bounded stable structure, sufficient rejection of bounded stochastic disturbance/error in sensing and ease of parameters’ regulation. The corrector and observer are applied to a UAV navigation and control for large disturbance/error corrections in position/attitude angle and the uncertainties estimation in the UAV flight dynamics. The control laws are designed according to the correction-estimation results. Finally, experiments demonstrate the effectiveness of the proposed method.
The effect of sheared E × B flow on the blob dynamics in the scrape-off layer (SOL) of HL-2A tokamak has been studied during the plasma current ramp-up in ohmically heated deuterium plasmas by the combination of poloidal and radial Langmuir probe arrays. The experimental results indicate that the SOL sheared E × B flow is substantially enhanced as the plasma current exceeds a certain value and the strong sheared E × B flow has the ability to slow the blob radial motion via stretching its poloidal correlation length. The locally accumulated blobs are suggested to be responsible for the increase of plasma density just outside the Last Closed Flux Surface (LCFS) observed in this experiment. The results presented here reveal the significant role played by the strong sheared E × B flow on the blob dynamics, which provides a potential method to control the SOL width by modifying the sheared E × B flow in future tokamak plasmas.
Progressive capillary waves on the interface between two homogeneous fluids confined in a channel with rigid walls parallel to the undisturbed interface are investigated. This problem is formulated as a system of integrodifferential equations that can be solved numerically via a boundary integral equation method coupled with series expansions of the unknown functions. With this highly accurate scheme and numerical continuation, we explore the global bifurcation of periodic travelling waves. It is found that there are two types of limiting profile, self-intersecting and boundary-touching, which appear either along a primary branch bifurcating from infinitesimal periodic waves or on an isolated branch existing above a certain finite amplitude. For particular sets of parameters, these two types of bifurcation curves can intersect, which can be viewed as a secondary bifurcation phenomenon occurring on the primary branch. Based on asymptotic and numerical analyses of the almost limiting waves, it is found that the boundary-touching solutions feature a circular geometry, i.e. the interface is pieced together by circular arcs of the same radius. A theoretical investigation yields the necessary conditions for the existence of these extreme waves, whereby we can predict the limiting configurations for most parameter sets. The comparisons between theoretical predictions and numerical results show good agreement.
We present a set of peculiar radio sources detected using an unsupervised machine learning method. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to train a self-organizing map (SOM). The radio maps from three ASKAP surveys, Evolutionary Map of Universe pilot survey (EMU-PS), Deep Investigation of Neutral Gas Origins pilot survey (DINGO), and Survey With ASKAP of GAMA-09 + X-ray (SWAG-X), are used to search for the rarest or unknown radio morphologies. We use an extension of the SOM algorithm that implements rotation and flipping invariance on astronomical sources. The SOM is trained using the images of all ‘complex’ radio sources in the EMU-PS which we define as all sources catalogued as ‘multi-component’. The trained SOM is then used to estimate a similarity score for complex sources in all surveys. We select 0.5% of the sources that are most complex according to the similarity metric and visually examine them to find the rarest radio morphologies. Among these, we find two new odd radio circle (ORC) candidates and five other peculiar morphologies. We discuss multiwavelength properties and the optical/infrared counterparts of selected peculiar sources. In addition, we present examples of conventional radio morphologies including: diffuse emission from galaxy clusters, and resolved, bent-tailed, and FR-I and FR-II type radio galaxies. We discuss the overdense environment that may be the reason behind the circular shape of ORC candidates.
Mental health regional differences during pregnancy through the COVID-19 pandemic is understudied.
Objectives
We aimed to quantify the impact of the COVID-19 pandemic on maternal mental health during pregnancy.
Methods
A cohort study with a web-based recruitment strategy and electronic data collection was initiated in 06/2020. Although Canadian women, >18 years were primarily targeted, pregnant women worldwide were eligible. The current analysis includes data on women enrolled 06/2020-11/2020. Self-reported data included mental health measures (Edinburgh Perinatal Depression Scale (EPDS), Generalized Anxiety Disorders (GAD-7)), stress. We compared maternal mental health stratifying on country/continents of residence, and identified determinants of mental health using multivariable regression models.
Results
Of 2,109 pregnant women recruited, 1,932 were from Canada, 48 the United States (US), 73 Europe, 35 Africa, and 21 Asia/Oceania. Mean depressive symptom scores were lower in Canada (EPDS 8.2, SD 5.2) compared to the US (EPDS 10.5, SD 4.8) and Europe (EPDS 10.4, SD 6.5) (p<0.05), regardless of being infected or not. Maternal anxiety, stress, decreased income and access to health care due to the pandemic were increasing maternal depression. The prevalence of severe anxiety was similar across country/continents. Maternal depression, stress, and earlier recruitment during the pandemic (June/July) were associated with increased maternal anxiety.
Conclusions
In this first international study on the impact of the COVID-19 pandemic, CONCEPTION has shown significant country/continent-specific variations in depressive symptoms during pregnancy, whereas severe anxiety was similar regardless of place of residence. Strategies are needed to reduce COVID-19’s mental health burden in pregnancy.
The extant findings have been of great heterogeneity due to partial volume effects in the investigation of cortical gray matter volume (GMV), high comorbidity with other psychiatric disorders, and concomitant therapy in the neuroimaging studies of social anxiety disorder (SAD).
Objectives
To identity gray matter deficits in cortical and subcortical structures in non-comorbid never-treated patients, so as to explore the “pure” SAD-specific pathophysiology and neurobiology.
Methods
Thirty-two non-comorbid free-of-treatment patients with SAD and 32 demography-matched healthy controls were recruited to undergo high-resolution 3.0-Tesla T1-weighted MRI. Cortical thickness (CT) and subcortical GMV were estimated using FreeSurfer; then the whole-brain vertex-wise analysis was performed to compare group differences in CT. Besides, differences in subcortical GMV of priori selected regions-of-interest: amygdala, hippocampus, putamen, and pallidum were compared by an analysis of covariance with age, gender, and total subcortical GMV as covariates.
Results
The SAD patients demonstrated significantly decreased CT near-symmetrically in the bilateral prefrontal cortex (Monte Carlo simulations of P < 0.05). Besides, smaller GMV in the left hippocampus and pallidum were also observed in the SAD cohort (two-sample t-test of P < 0.05).
Conclusions
For the first time, the current study investigated the structural alterations of CT and subcortical GMV in non-comorbid never-treated patients with SAD. Our findings provide preliminary evidences that structural deficits in cortical-striatal-limbic circuit may contribute to the psychopathological basis of SAD, and offer more detailed structural substrates for the involvement of such aberrant circuit in the imbalance between defective bottom-up response and top-down control to external stimuli in SAD.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
To summarise and describe the clinical presentations, diagnostic approaches and airway management techniques in children with laryngotracheal trauma.
Methods
The clinical data related to laryngotracheal trauma diagnosed and treated at the Beijing Children's Hospital, between January 2013 and July 2018, were retrospectively reviewed. Disease diagnosis, treatment, management and outcomes were analysed.
Results
A total of 13 cases were enrolled, including 7 cases of penetrating laryngotracheal trauma. The six cases of blunt laryngotracheal trauma were caused by collisions with hard objects. In all cases, voice, airway and swallowing outcomes were graded as ‘good’, except for one patient who had residual paralysis of the vocal folds.
Conclusion
Flexible fibre-optic laryngoscopy and computed tomography can play an important role in diagnosing laryngotracheal trauma. The airway should be secured and, if necessary, opened by tracheal intubation or tracheostomy.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Using detailed data on company visits by Chinese mutual funds, we provide direct evidence of mutual fund information acquisition activities and the consequent informational advantages mutual funds establish in local firms. Mutual funds are more likely to visit local and nearby firms both in and outside of their portfolios, but the ease of travel between fund and firm locations can substantially alleviate geographic distance constraints. Company visits by mutual funds are strongly associated with both fund trading activities and fund trading performance. Our results show that geographic constraints and costly information acquisition amplify information asymmetry in financial markets.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
For the safety problems caused by the limited landing space of the deck during the arresting process of the carrier-based aircraft, a dynamic model of the carrier-based aircraft’s landing and arresting is built. Based on the batch simulation method, the lateral dynamics safety envelope of the aircraft during the arresting was defined, and the dynamic response of the key points in the envelope during the arresting process was investigated. Subsequently, the influence of engine thrust and aircraft quality on the arresting safety envelope was studied based on reasonable safety evaluation indicators, and the safety status envelope of the deck arresting was given. Then, the particular Hamilton-Jacobi partial differential equation is used to obtain the lateral dynamics safety envelope of the carrier-based aircraft in the process of landing and arresting by backward inversion. Results indicate that engine thrust and landing quality have little effect on the yaw angle in the arresting safety boundary during the arresting. Additionally, with the engine thrust and landing quality increase, the maximum safe off-centre distance gradually decreases, and the safety boundary decreases accordingly. During the phase of landing glide, the engine thrust and quality have little effect on the maximum safe eccentric distance. When the engine thrust is increased by 40%, the maximum safe yaw angle is reduced from 0.3°, and the safety boundary is reduced by 4.2%. When the aircraftquality increases by 40%, the maximum safe yaw angle is reduced by 0.4°, and the safety boundary is reduced by 2.8%. The findings of this paper can provide framework for the research on theaircraft-to-carrier dynamic matching characteristics of the carrier-based system, and is of great significance to the research on improving the safety of the carrier-based aircraft landing arresting.
To identify the clinical characteristics, treatment, and prognosis of relapsing polychondritis patients with airway involvement.
Methods
Twenty-eight patients with relapsing polychondritis, hospitalised in the First Hospital of Shanxi Medical University between April 2011 and April 2021, were retrospectively analysed.
Results
Fifty per cent of relapsing polychondritis patients with airway involvement had a lower risk of ear and ocular involvement. Relapsing polychondritis patients with airway involvement had a longer time-to-diagnosis (p < 0.001), a poorer outcome following glucocorticoid combined with immunosuppressant treatment (p = 0.004), and a higher recurrence rate than those without airway involvement (p = 0.004). The rates of positive findings on chest computed tomography and bronchoscopy in relapsing polychondritis patients with airway involvement were 88.9 per cent and 85.7 per cent, respectively. Laryngoscopy analysis showed that 66.7 per cent of relapsing polychondritis patients had varying degrees of mucosal lesions.
Conclusion
For relapsing polychondritis patients with airway involvement, drug treatment should be combined with local airway management.