We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There are few studies on the intelligent guidance of unmanned sailboats, which should coordinate pluralistic tasks at sea in the nature of its maneuvring intractability. To ensure the algorithmic practicability, this paper proposes a path-following and collision-avoidance guidance approach of unmanned sailboats with total formulaic description. The risk-detecting mechanism is fabricated by setting a circular detecting zone and using the time to the closest point of approach. Then, the risk of collision, the path deviation, the speed loss, and the course loss can be judged by constructing the cost functions and applying the distance to closest point of approach. The optimized heading angle is deemed as the one minimizing the aggregate cost functions, which is sought by applying and improving the beetle antennae search (BAS) algorithm. In the proposed modified BAS, the searching step is redesigned to enhance the searching efficiency. To ensure the convergence of the real heading angle to the reference, the backstepping-based control law is fabricated for the high-order sailboat model and in the linear form. The control parameters are offline optimized through the modified BAS. Compared with the adaptive control, this controller can guarantee more computation simplicity and the optimized control performance. Finally, simulation corroborates that the sailboat can successfully complete path following and collision avoidance while encountering multiple static and moving obstacles under the proposed schemes.
In this paper, the reflection of curved shock waves over a symmetry plane in planar supersonic flow is studied. This includes stable Mach reflection (MR) and the regular reflection (RR) to MR transition process. Curved shock theory (CST) is applied to derive the high-order parameters in front of and behind the shock wave. The method of curved shock characteristics is used to establish an analytical model to predict the wave configurations. The shock structures provided by the proposed model agree well with the numerical results. Flow structures, such as the height of the Mach stem and the shape of the shock wave and slip line, are studied by applying the analytical model. Isentropic waves generated from a curved wall are found to significantly influence the flow patterns. It appears that the compression waves obstruct the formation of the sonic throat and increase the Mach-stem height. The expansion waves have the opposite effect. The evolution mechanism of the Mach stem is found in conjunction with the RR-to-MR transition process. The CST is extended to a moving frame and used to model the transition. The time history of the moving triple point illustrates the effects of the incident shock angle and isentropic waves on the transition process.
High-speed water entry is a transient hydrodynamic process that is accompanied by strongly compressible flow, free surface splash, cavity evolution and other nonlinear hydrodynamic phenomena. To address these problems, a novel fluid–structure interaction (FSI) scheme based on the immersed boundary method is proposed which is suitable for strongly compressible multiphase flows. In this scheme, considering the multiphase interfaces at the immersed boundary, an improved immersed boundary method for effectively suppressing the non-physical force oscillation is proposed. Additionally, a quaternion-based six degrees of freedom motion system is used to describe rigid body motion, and the multiphase flow Eulerian finite element method is applied as the fluid solver. Using analytical solutions, experimental data and literature data, the accuracy and robustness of the FSI scheme are validated. Finally, the high-speed water entry of the slender body with different noses is investigated, and the hydrodynamic loads including the axial and normal drag forces and the bending moment are extensively discussed. The hydrodynamic load and motion trajectory are determined by the nose configuration. The tail slamming phenomenon is the primary focus, and it is revealed that its formation is primarily related to the pitch moment formed at the stage of crossing the free surface. Tail slamming also causes violent impact loads, especially bending moments, which may cause slender projectiles to break off. Finally, to combine the features of the flat and hemispherical noses, the water entry of the projectile with a truncated hemispherical nose is simulated and discussed.
Many studies suggest that both psychotherapy and drug therapy are effective in the treatment of bipolar disorders (BDs). However, the pathophysiology of both types of intervention has not been established definitively.
Methods
An activation likelihood estimation meta-analysis was performed to identify the distinct brain activity alterations between psychotherapy and drug therapy for the treatment of BDs. Articles were identified by searching databases including PubMed, Embase, Cochrane Library, and Web of Science databases. Eligible studies on BDs were published up until 10 June 2021.
Results
21 studies were included and we conducted a meta-analysis for different therapies and imaging tasks. After receiving psychotherapy, BD patients showed increased activation in the inferior frontal gyrus (IFG) and superior temporal gyrus. While after taking drug therapy, BD patients displayed increased activation in the anterior cingulate cortex, medial frontal gyrus, IFG, and decreased activation in the posterior cingulate cortex. The regions of brain activity changes caused by psychotherapy were mostly focused on the frontal areas, while drug therapy mainly impacted on the limbic areas. Different type of tasks also affected brain regions which were activated.
Conclusions
Our comprehensive meta-analysis indicates that these two treatments might have effect on BD in their own therapeutic modes. Psychotherapy might have a top-down effect, while drug therapy might have a bottom-up effect. This study may contribute to differential diagnosis of BDs and would be helpful to finding more accurate neuroimaging biomarkers for BD treatment.
Ovarian cancer is the most lethal female reproductive system tumour. Despite the great advances in surgery and systemic chemotherapy over the past two decades, almost all patients in stages III and IV relapse and develop resistance to chemotherapy after first-line treatment. Ovarian cancer has an extraordinarily complex immunosuppressive tumour microenvironment in which immune checkpoints negatively regulate T cells activation and weaken antitumour immune responses by delivering immunosuppressive signals. Therefore, inhibition of immune checkpoints can break down the state of immunosuppression. Indeed, Immune checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape of many solid tumours. However, ICIs have yielded modest benefits in ovarian cancer. Therefore, a more comprehensive understanding of the mechanistic basis of the immune checkpoints is needed to improve the efficacy of ICIs in ovarian cancer. In this review, we systematically introduce the mechanisms and expression of immune checkpoints in ovarian cancer. Moreover, this review summarises recent updates regarding ICI monotherapy or combined with other small-molecule-targeted agents in ovarian cancer.
The northern Alxa region is located in the central segment of the southern Central Asian Orogenic Belt. Many controversies and deficiencies still exist regarding the magma source characteristics, petrogenesis and tectonic regimes during the late Palaeozoic – early Mesozoic period within this region. This study presents whole-rock compositions and zircon U–Pb and Lu–Hf isotopic data for three early Mesozoic I- and A-type granitic plutons occurring in the northern Alxa region. The Haerchaoenji and Chahanhada I-type granitoids yielded zircon 206Pb–238U ages of 245 ± 5 Ma and 245 ± 2 Ma, respectively. The variable positive zircon ϵHf(t) values between +1.8 and +11.8, with young TDM ages of 425–837 Ma, indicate that these I-type granitoids were mainly derived from juvenile crustal materials. The Wulantaolegai pluton has a zircon 206Pb–238U age of 237 ± 2 Ma and is classified as having high-K calc-alkaline A-type affinity. Furthermore, the positive zircon ϵHf(t) values of the Wulantaolegai granite range from +3.3 to +8.7 with young TDM ages of 545–778 Ma, suggesting the involvement of a juvenile crustal source as well. Furthermore, the major-element compositions of the Chahanhada and Wulantaolegai granites suggest the input of metasedimentary components. Geochemically, the Haerchaoenji and Chahanhada I-type granitoids show an arc affinity, while the Wulantaolegai granite exhibits a post-collisional affinity. However, with regional data, we suggest that the Haerchaoenji and Chahanhada I-type granitoids were also emplaced in a post-collisional setting, and the arc affinity was probably inherited from recycled subduction-related materials. These lines of evidence obtained in this study enable us to argue that the Palaeo-Asian Ocean in the central segment of the Central Asian Orogenic Belt closed before Middle Triassic time.
Interpretation bias (i.e. the selective negative interpretation of ambiguous stimuli) may contribute to the development and maintenance of health anxiety. However, the strength of the empirical evidence for this association remains a topic of debate. This study aimed to estimate the association between health anxiety and interpretation bias and to identify potential moderators of this association. Chinese-language databases (CNKI, VIP, and Wanfang), English-language databases (Web of Science, PubMed, PsycINFO, and Scopus), and German-language databases (Psyndex and PubPsych) were searched for relevant studies. There were 36 articles (39 studies) identified by this search (N = 8984), of which 32 articles (34 studies) were included in the meta-analysis (N = 8602). Results revealed a medium overall effect size (g = 0.67). Statistically equivalent effect sizes were observed for patients diagnosed with clinical health anxiety (g = 0.58) and subclinical health anxiety (g = 0.72). The effect sizes for threat stimuli that were health related (g = 0.68) and not health related (g = 0.63) did not differ significantly. The effect size for studies using an offline paradigm (g = 0.75) was significantly higher than that for studies using an online paradigm (g = 0.50). It is concluded that health anxiety is significantly and robustly associated with interpretation bias. These findings are of central importance for the advancement of models and treatment of health anxiety.
We present an experimental study of Rayleigh–Bénard convection using liquid metal alloy gallium-indium-tin as the working fluid with a Prandtl number of $Pr=0.029$. The flow state and the heat transport were measured in a Rayleigh number range of $1.2\times 10^{4} \le Ra \le 1.3\times 10^{7}$. The temperature fluctuation at the cell centre is used as a proxy for the flow state. It is found that, as $Ra$ increases from the lower end of the parameter range, the flow evolves from a convection state to an oscillation state, a chaotic state and finally a turbulent state for $Ra>10^5$. The study suggests that the large-scale circulation in the turbulent state is a residual of the cell structure near the onset of convection, which is in contrast with the case of $Pr\sim 1$, where the cell structure is transiently replaced by high order flow modes before the emergence of the large-scale circulation in the turbulent state. The evolution of the flow state is also reflected by the heat transport characterised by the Nusselt number $Nu$ and the probability density function (p.d.f.) of the temperature fluctuation at the cell centre. It is found that the effective local heat transport scaling exponent $\gamma$, i.e. $Nu\sim Ra^{\gamma }$, changes continuously from $\gamma =0.49$ at $Ra\sim 10^4$ to $\gamma =0.25$ for $Ra>10^6$. Meanwhile, the p.d.f. at the cell centre gradually evolves from a Gaussian-like shape before the transition to turbulence to an exponential-like shape in the turbulent state. For $Ra>10^6$, the flow shows self-similar behaviour, which is revealed by the universal shape of the p.d.f. of the temperature fluctuation at the cell centre and a $Nu=0.19Ra^{0.25}$ scaling for the heat transport.
According to Hamilton's rule, matrilineal-biased investment restrains men in matrilineal societies from maximising their inclusive fitness (the ‘matrilineal puzzle'). A recent hypothesis argues that when women breed communally and share household resources, a man should help his sisters' household, rather than his wife's household, as investment to the later but not the former would be diluted by other unrelated members (Wu et al., 2013). According to this hypothesis, a man is less likely to help on his wife's farm when there are more women reproducing in the wife's household, because on average he would be less related to his wife's household. We used a farm-work observational dataset, that we collected in the matrilineal Mosuo in southwest China, to test this hypothesis. As predicted, high levels of communal breeding by women in his wife's households do predict less effort spent by men on their wife's farm, and communal breeding in men's natal households do not affect whether men help on their natal farms. Thus, communal breeding by women dilutes the inclusive fitness benefits men receive from investment to their wife and children, and may drive the evolution of matrilineal-biased investment by men. These results can help solve the ‘matrilineal puzzle'.
Sepsis is a clinical syndrome characterised by a severe disorder of pathophysiology caused by infection of pathogenic micro-organisms. The addition of antioxidant micronutrient therapies such as thiamine to sepsis treatment remains controversial. This study explored the effect of thiamine on the prognosis of patients with sepsis. This study was a retrospective study involving patients with sepsis from the Medical Information Mart for Intensive Care IV. Patients were divided into two groups, the thiamine received group (TR) and the thiamine unreceived group (TUR), according to whether they were supplemented with thiamin via intravenous while in the intensive care unit (ICU). The primary outcome was ICU mortality. The association between thiamine and outcome was analysed using the Cox proportional hazards regression model, propensity score matching (PSM), generalised boosted model-based inverse probability of treatment weighting (IPTW) and doubly robust estimation. A total of 11 553 sepsis patients were enrolled in this study. After controlling for potential confounders using Cox regression models, the TR group had a statistically significantly lower ICU mortality risk than the TUR group. The hazard ratio of ICU mortality for the TR group was 0·80 (95 % CI 0·70, 0·93). We obtained the same results after using PSM, IPTW and doubly robust estimation. Supplementation with thiamine has a beneficial effect on the prognosis of patients with sepsis. More randomised controlled trials are needed to confirm the effectiveness of thiamine supplementation in the treatment of sepsis.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Let
$\Gamma $
be a graph of valency at least four whose automorphism group contains a minimally vertex-transitive subgroup G. It is proved that
$\Gamma $
admits a nowhere-zero
$3$
-flow if one of the following two conditions holds: (i)
$\Gamma $
is of order twice an odd number and G contains a central involution; (ii) G is a direct product of a
$2$
-subgroup and a subgroup of odd order.
The treatment of water containing heavy metals has attracted increasing attention because the ingestion of such water poses risks to human health. Due to their relatively large specific surface areas and surface charges, clay minerals play a significant role in the adsorption of heavy metals in water. However, the major factors that influence the adsorption rates of clay minerals are not well understood, and thus methods to predict the sorption of heavy metals by clay minerals are lacking. A method that can identify the most appropriate clay minerals for removal of a given heavy metal, based on the predicted sorption of the clay minerals, is required. This paper presents a widely applicable deep learning neural network approach that yielded excellent predictions of the influence of the sorption ratio on the adsorption of heavy metals by clay minerals. The neural network model was based on datasets of heavy-metal parameters that are available generally. It yielded highly accurate predictions of the adsorption rate based on training data from the dataset and was able to account for a wide range of input parameters. A Pearson sensitivity analysis was used to determine the contributions of individual input parameters to the adsorption rates predicted by the neural network. This newly developed method can predict the major factors influencing heavy-metal adsorption rates. The model described here could be applied in a wide range of scenarios.
As the Chinese minister to the United States between 1889 and 1893, Cui Guoyin faced unprecedented pressures from the Qing government to achieve an alleviation of Chinese exclusion. However, American discrimination against Chinese escalated despite his tireless effort to stem it. The failure made him frustrated and especially sensitive to the issue of face. While finding it a useful tool to exonerate himself, Cui believed that face could also be helpful to Chinese bargaining with the United States over immigration. He incorporated this belief into his exchanges with the U.S. Department of State. At Cui's suggestion or at least agreeing with him, the Zongli Yamen referred to America's reputation as a pressure for concessions in its communications with the U.S. legation in Beijing as well. Such “weaponization” of face represents both an often ignored backward turn in late Qing's diplomatic mentality and the limit of its diplomatic leverage with the United States.
To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.