We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cerebral white matter hyperintensities (WMH) are prevalent incident findings on brain MRI scans among elderly people and have been consistently implicated in cognitive dysfunction. However, differential roles of WMH by region in cognitive function are still unclear. The aim of this study was to ascertain the differential role of regional WMH in predicting progression from mild cognitive impairment (MCI) to different subtypes of dementia.
Methods:
Participants were recruited from the Clinical Research Center for Dementia of South Korea (CREDOS) study. A total of 622 participants with MCI diagnoses at baseline and follow-up evaluations were included for the analysis. Initial MRI scans were rated for WMH on a visual rating scale developed for the CREDOS. Differential effects of regional WMH in predicting incident dementia were evaluated using the Cox proportional hazards model.
Results:
Of the 622 participants with MCI at baseline, 139 patients (22.3%) converted to all-cause dementia over a median of 14.3 (range 6.0–36.5) months. Severe periventricular WMH (PWMH) predicted incident all-cause dementia (Hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.43–3.43) and Alzheimer's disease (AD) (HR 1.86; 95% CI 1.12–3.07). Subcortical vascular dementia (SVD) was predicted by both PWMH (HR 16.14; 95% CI 1.97–132.06) and DWMH (HR 8.77; 95% CI 1.77–43.49) in more severe form (≥ 10 mm).
Conclusions:
WMH differentially predict dementia by region and severity. Our findings suggest that PWMH may play an independent role in the pathogenesis of dementia, especially in AD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.